第5章特征值估计与广义逆矩阵

合集下载

矩阵论广义逆

矩阵论广义逆

矩阵论广义逆矩阵是线性代数中的重要概念,广义逆是矩阵论中的一个关键概念。

在矩阵论中,广义逆用于解决矩阵方程的求解问题。

本文将介绍矩阵论中的广义逆以及其应用。

1. 广义逆的定义在矩阵论中,矩阵的广义逆是指对于任意矩阵A,存在一个矩阵X,满足以下条件:1) AXA=A2) XAX=X3) (AX)^T=AX4) (XA)^T=XA广义逆的存在性和唯一性是矩阵论中的一个重要问题,对于满足以上条件的矩阵X,我们称其为A的广义逆,记作A⁺。

2. 广义逆的性质广义逆具有以下性质:1) AA⁺A=A2) A⁺AA⁺=A⁺3) (A⁺)^T=A⁺4) (AA⁺)^T=AA⁺广义逆的性质使得它在矩阵方程的求解中具有重要作用。

3. 广义逆的应用广义逆在矩阵方程的求解中有广泛的应用,下面介绍其中几个常见的应用:3.1 线性方程组的求解对于线性方程组Ax=b,如果A的广义逆A⁺存在,那么方程的解可以表示为x=A⁺b。

广义逆的存在性保证了线性方程组的解的存在性,并且通过广义逆的计算,可以得到解的一个特解。

3.2 最小二乘问题的求解最小二乘问题是指在给定线性方程组Ax=b无解时,求解使得||Ax-b||^2最小的x。

如果A的广义逆A⁺存在,那么最小二乘问题的解可以表示为x=A⁺b。

广义逆的计算可以通过奇异值分解等方法来实现。

3.3 线性回归分析线性回归分析是统计学中的一种重要方法,用于建立自变量与因变量之间的线性关系。

在线性回归分析中,广义逆可以用于求解回归系数,得到最佳拟合直线,并用于预测和推断。

4. 广义逆的计算方法广义逆的计算方法有多种,常见的包括伪逆法、奇异值分解法等。

伪逆法是通过对矩阵A进行分解或变换,得到A的伪逆矩阵。

奇异值分解法则是通过对矩阵A进行奇异值分解,得到A的伪逆矩阵。

这些计算方法都是基于矩阵的特征和性质进行推导和求解的。

5. 广义逆的应用举例以线性方程组的求解为例,假设有如下线性方程组:2x+y=3x+3y=9将其转化为矩阵形式为:A=[2 1; 1 3]b=[3; 9]求解线性方程组的解可以通过计算广义逆来实现。

矩阵论简明教程第二版(张凯院著)课后答案下载

矩阵论简明教程第二版(张凯院著)课后答案下载

矩阵论简明教程第二版(张凯院著)课后答案下载《矩阵论简明教程》是xx年科学出版社出版的图书。

以下是要与大家分享的矩阵论简明教程第二版(张凯院著),供大家参考!点击此处下载???矩阵论简明教程第二版(张凯院著)课后答案???矩阵的相似变换,范数理论,矩阵分析,矩阵分解,特征值的估计与表示,广义逆矩阵,矩阵的直积以及线性空间与线性变换。

各章均配有习题,书末有习题解答与提示。

与传统矩阵论教材不同的是,《矩阵论简明教程》不是从较抽象的线性空间与线性变换开始,而是以较具体的矩阵相似变换理论作为基础来介绍矩阵理论的主要内容,以达到由浅入深的目的,并使读者在较短时间内掌握近现代矩阵理论相当广泛而又很基本的内容。

学习过工科线性代数课程的读者均可阅读《矩阵论简明教程》。

[1]第一章矩阵的相似变换1.1特征值与特征向量1.2相似对角化1.3Jordan标准形介绍1.4IHamilton-CayIey定理1.5向量的内积1.6酉相似下的标准形习题1第2章范数理论2.1向量范数2.2矩阵范数2.2.1方阵的范数2.2.2与向量范数的相容性2.2.3从属范数2.2.4长方阵的范数2.3范数应用举例2.3.1矩阵的谱半径2.3.2矩阵的条件数习题2第3章矩阵第4章矩阵分解第5章特征值的估计与表示第6章广义逆矩阵第7章矩阵的直积第8章线性空间与线性变换习题解答与提示参考文献1.实分析与复分析WalterRudin著课后习题答案机械工业出版社2.计算机专业英语教程第4版金志权课后习题答案电子工业出版社3.矩阵论简明教程第二版徐仲张凯院著课后答案科学出版社。

矩阵特征值的估计

矩阵特征值的估计


A
m∞
= n max aij = 3 × 2 = 6,
1≤i , j ≤ n
1 A + AH 2 1 A − AH 2
m∞
m∞
1 0 m = 0, = ∞ 2 1 1 H = A− A = 2A m∞ 2 2
m∞
6, =
由定理2知, λ ≤ 6,Re λ = 0,Im λ ≤ 6.
由此可知,A的特征值为0或纯虚数.
= i 1= j 1

∑∑ a η η
ij i
n
n
j
≤ ∑∑ aij ηi η j
= i 1= j 1
n
n
≤ max aij
1≤i , j ≤ n
= i 1= j 1
∑∑ η
n
n
i
ηj
n n 1 2 ≤ max aij ∑∑ ηi + η j 2 1≤i , j ≤ n = i 1= j 1
(
2
)
G′j = z ∈ C z − a jj ≤ R′j 为A的第j个列盖尔圆.
{
} ( j =1, 2, , n )
0.02 0.11 1 0.14 如A = 0.01 i 0.02 0.01 0.5 的三个盖尔圆为: G1 = G2 G3
i
R2 = 0.15
于是 AF =
n 2 = i 1 2
R F tr ( R H R ) =
2 1≤i < j ≤ n = i 1
= ∑ λi +

rij ≥ ∑ λi .
2 2
n
§5.2 矩阵特征值的分布区域
一、圆盘定理 1. Gerschgorin圆(盖尔圆) 定义1

广义逆矩阵

广义逆矩阵

广义逆矩阵矩阵是数学中的一种重要的概念,矩阵的逆矩阵也是非常重要的概念。

它们是数学中通常用来解决一些复杂问题的有效工具,而广义逆矩阵(Generalized Inverse Matrix)则是在这一领域中一种更加复杂的概念。

在本文中,我将对广义逆矩阵的定义,性质,求解方法等内容进行详细的介绍。

一、定义广义逆矩阵是在数学的线性代数中使用的一种概念,它是一种用于求解矩阵的新概念,它是一种非可逆矩阵。

首先,它是一种可以逆矩阵,但不能逆矩阵,它不能通过乘法求解,而是通过复合函数求解。

在定义广义逆矩阵之前,我们必须先定义矩阵和普通逆矩阵,因为广义逆矩阵是基于矩阵和普通逆矩阵所定义的。

矩阵是数学中的一种重要的概念,它是一种用数字表示空间或者抽象概念的表示方法,矩阵的相反数是普通逆矩阵,它具有与矩阵相反的定义,可以把矩阵的表达式变换为普通逆矩阵的形式。

而定义广义逆矩阵的免则如下:如果A是矩阵,那么A的广义逆矩阵记为A1,是满足以下条件的非可逆矩阵:AA1A=A。

二、性质研究广义逆矩阵的性质是必不可少的,因为它在数学上具有很多重要的性质。

(1)具有不可逆性:只有当矩阵A是可逆的时候,才能确定其广义逆矩阵;(2)具有自反性:设A为矩阵,则A1是A的广义逆矩阵,而A1的广义逆矩阵却是A本身;(3)具有可转性:设A和B分别为两个矩阵,则AB的广义逆矩阵等于B的广义逆矩阵乘以A的广义逆矩阵。

(4)具有保持秩性:设A为矩阵,则A的广义逆矩阵A1具有与A相同的秩。

三、求解方法由于广义逆矩阵是一种特殊的矩阵,其解决方案也是复杂的,因此,在求解广义逆矩阵时,我们可以使用一些特殊的方法。

(1)谱分解法:谱分解法是求解广义逆矩阵的一种有效的方法,它是把矩阵A分解成三个矩阵的乘积,即A=UDUT,其中U和D的元素分别为A的奇异值和奇异值的平方根。

由于A的特征值是不变的,而特征向量是可变的,因此矩阵D的逆矩阵可以由特征向量得到,并且可以得到A1=UD1UT。

矩阵分析lecture7特征值与广义逆

矩阵分析lecture7特征值与广义逆

第七讲 特征值的估计与广义逆矩阵一、特征值界的估计设为一给定的复数矩阵,则A 可以表示成一个厄米特矩阵与一个反厄米特矩阵的和,即 ()ij n n A a ×= A B C =+ ()()22H jiij ij n n ij a a A A B b b ×++===()()22H jiij ij n nij a a A A C c c ×−−===设A,B,C 的特征值的集合为:121212{,,,},{,,,},{,,,}n n i i i n λλλμμμννν这里每个,j j μν均为实数.并假设:121212||||||,,n n n λλλμμμνν≥≥≥≥≥≥≥≥≥ ν1 定理:若n 阶矩阵()ij n n A a ×=的特征值的集合为12{,,,}n λλλ ,则有不等式22111||||n n nii i i j aλ===≤∑∑∑j等号成立当且仅当A 为正规矩阵时成立。

证明:由Schur 定理,存在酉矩阵U 及上三角矩阵T ,使得 H U AU T =因此,H H H U A U T =从而,H H H U AA U TT = tr()tr()tr()H H H H AA U AA U TT == (1)由于矩阵T 的对角线上的元素全为A 之特征值,所以,(2)221111||||||n nn niiii i i j tλ=====≤∑∑∑∑2ij t 2a j 而(2)式的右端为矩阵Tde Frobenius 范数的平方,由于A 与T 是酉相似,而酉相似保持F 范数不变,故(3)21111||||n nn nijij i j i j t=====∑∑∑∑综合(2),(3)便得所需证之不灯式。

又不等式(2)取等号当且仅当。

即A 酉相似于对角形矩阵,也就是A 为正规矩阵。

得证。

0()ij t i =≠注:该定理的一个直接推论为: ||,1,,i F A i n λ≤=推论1:若,,A B C 如前所述,则有 (1) 1,||max |i i i j nn a |j λ≤≤≤⋅;(2) 1,|Re()|max ||i i i j nn b j λ≤≤≤⋅(3) 1,|Im()|max ||i i i j nn c j λ≤≤≤⋅证明:由定理(1)之证明,知, H U AU T =H H H U A U T =得1()(22H )HHH A A U BU U U T T +==+ 1()(22H )HHH A A U CU U U T T −==−注意到T 为上三角阵,T 之主对角上元素为A 的特征值,又在酉相似下矩阵的F 范数保持不变,所以, 22221,11,||||||max |2nii ij ij ij i j ni i ji j nt b n λλ≤≤=≠≤≤++=≤∑∑∑i 2|b22221,11,||||||max |2nii ij ij ij i j ni i ji j nt c n λλ≤≤=≠≤≤−+=≤∑∑∑i 2|c于是, 221,11|Re()|||max ||2n nii ii i j ni i n b λλλ≤≤==+=≤∑∑i 2j221,11|Im()|||max ||2nnii i i i j ni i n c λλλ≤≤==−=≤∑∑i 2j n 2j 2j 2ij |j当然对任一,都有 {1,2,,}i ∈221,|Re()|max ||i i i j nn b λ≤≤≤i221,|Im()|max ||i i i j nn c λ≤≤≤i 由此得(2),(3),再由Th1,2221,111||||max ||n n niiji j ni i j an a λ≤≤===≤≤∑∑∑i 所以,1,||max |i i i j nn a λ≤≤≤i即(1)式成立。

矩阵论-第五章-广义逆及最小二乘

矩阵论-第五章-广义逆及最小二乘

第五章 广义逆及最小二乘解在应用上见得最频繁的、大约莫过于线性方程组了。

作一番调查或整理一批实验数据,常常归结为一个线性方程组:Ax b =然而是否是相容方程呢?倘若不是,又如何处理呢?最小二乘解是常见的一种处理方法。

其实它不过是最小二乘法的代数形式而已。

广义逆从1935年Moore 提出以后,未得响应。

据说: (S.L.Campbell & C.D.Meyer.Jr Generalized Inverses of Linear Transformations 1979 P9)原因之一,可能是他给出的定义,有点晦涩。

其后,1955年Penrose 给出了现在大都采用的定义以后,对广义逆的研究起了影响,三十年来,广义逆无论在理论还是应用上都有了巨大发展,一直成为了线性代数中不可缺少的内容之一。

为了讨论的顺利进行,我们在第一节中先给出点准备,作出矩阵的奇值分解。

§5.1 矩阵的酉交分解、满秩分解和奇值分解在线行空间中,知道一个线性变换在不同基偶下的矩阵表示是相抵的或等价的。

用矩阵的语言来说,就是:若 ,m n A B C ×∈,倘有非异矩阵()P m n ×,()Q n n ×存在,使B PAQ =则称A 与B 相抵的或等价的。

利用初等变换容易证明m n A C ×∈,秩为r ,则必有P ,Q ,使000r m nI PAQ C ×⎛⎞=∈⎜⎟⎝⎠(5.1-1) 其中r I 是r 阶单位阵。

在酉空间中,上面的说法,当然也成立,如果加上P ,Q 是酉交阵的要求,情形又如何呢?下面就来讨论这个问题。

定理 5.1.1 (酉交分解) m n A C ×∈,且秩为r ,则(),(),,H H m n U m n V n n U U I V V I ∃××==,使00r HU AV Δ⎛⎞=×⎜⎟⎝⎠(m n) (5.1-2) 其中r Δ为r 阶非异下三角阵。

矩阵的广义逆及其应用.ppt

矩阵的广义逆及其应用.ppt
高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
§1 广义逆矩阵
(6) 若F是列满秩矩阵,则 F (F H F )1 F H
(7) 若G是行满秩矩阵,则 G GH (GGH )1
(8) 若矩阵A的满秩分解为A FG,则有 A G F ;
高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
第五章 矩阵的广义逆
§1 广义逆矩阵 一、矩阵的广义逆
设A Rnn,对于线性方程组 Ax b,当A可逆时, 方程组有唯一解:x A1b.
若矩阵 A不可逆时,如何求解方程组 Ax b?
更一般,当矩阵 A Rmn不是方阵时,如何讨论 方程组 Ax b的解, 其中x Rn,b Rm ? 为了分析和解决上述问题,引入广义逆的概念.
高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
§1 广义逆矩阵
定理2:设A Rmn,b Rm,x Rn,若性方程组 Ax b 是相容的,即方程组Ax b 有解,则其
通解为: x Ab (In A A)t,t是任意n 1向量. 证明:首先证明t Rn,x Ab (In A A)t是 方程组的解,然后证明方程组的任一解x,均可 表示成x Ab (In A A)t的形式.
A


1
1
1
2

(3)(1)3

0
3 3 2 4
0
1 2 4
0
1
2

0 4 8
高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
§1 广义逆矩阵
1
A

0
0
1 2 4 (1)(2)2 1 1 0 0

广义逆矩阵的计算方法及意义

广义逆矩阵的计算方法及意义

广义逆矩阵的计算方法及意义广义逆矩阵是矩阵理论中的一个非常重要的概念,它不仅在数值计算中具有重要意义,而且在优化理论、信号处理以及系统控制等领域也广泛应用。

本文将从广义逆矩阵的定义、计算方法及其意义等方面阐述这一重要概念。

一、广义逆矩阵的定义广义逆矩阵的定义是指,对于任意的一个矩阵A ∈ Rm×n,若存在一个矩阵A+ ∈ Rn×m,使得下列两个条件成立,即:A × A+ × A = AA+ × A × A+ = A+则称A+为A的广义逆矩阵。

其中,A+也满足下列两个条件:(A × A+)T = A × A+(A+ × A)T = A+ × A需要注意的是,如果A的列线性无关,则A+实际上就是A的逆矩阵。

二、广义逆矩阵的计算方法广义逆矩阵的计算方法有以下几种:(1)矩阵求导法矩阵求导法是一种比较简单的计算广义逆矩阵的方法。

它的基本思想是,将A与A的转置相乘,得到一个对称矩阵B,然后对B进行求导,最终就可以得到广义逆矩阵A+。

但是,这种方法的计算复杂度较高,适用范围也比较狭窄。

(2)奇异值分解法奇异值分解法是一种较广泛使用的计算广义逆矩阵的方法。

该方法的基本思想是,将A进行奇异值分解,得到A = UΣVT,然后对Σ进行逆运算,得到Σ+,最后通过A+ = VΣ+UT,就可以得到广义逆矩阵A+。

(3)正交交替投影法正交交替投影法是一种可以解决较大规模矩阵计算问题的方法。

该方法的基本思想是,通过Von Neumann展开,将广义逆矩阵的计算转化为一个正交投影问题,然后利用正交的性质以及平衡收敛的原理,不断迭代求解,最终得到广义逆矩阵A+。

三、广义逆矩阵的意义广义逆矩阵作为一种重要的矩阵理论工具,具有许多重要的应用意义,下面我们对其进行简单的介绍:(1)最小二乘法在数据处理的过程中,经常会出现数据不完备或者存在噪声的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
F
B
2 F
n2 max i, j
| bij
|2 ,
i j
n | tii t ii |2
i1
2
n | tij |2 2 i, j1
T TH 2
2
F
C
2 F
n2 max i, j
| cij
|2 ,
i j
所以有
|
Re k
|2
n2
max | i, j
bij
|2

|
Imk
|2
n2
max | i, j
i 1
i j
i , j1
i , j 1
所以得到
n
n
| i |2
T
2 F
A2 F
| aii |2 .
i 1
i , j 1
由式(5-2)知结论中等号成立当且仅当
(5-3)
| tij |2 0 .
i j
即 T 为对角阵,因此结论中等号成立当且仅当 A 酉相似于对角形矩阵, 也就是 A 为正规矩阵(定理 2-8). 证毕.
5.1 特征值的界的估计
下面给出一些利用矩阵元素直接估计矩阵特征值上下界的方法,
为便于表达,对于 A (aij ) C nn ,记矩阵
B (bij )
A AH 2
, bij
aij
a ji 2
C
(cij )
A AH 2
, cij
aij
a ji 2
则 B 为 Hermite矩阵, C 为反 Hermite矩阵,且 A B C .
例 已知矩阵
3 i 2 3i 2i
A 1
0 0
0
1
0
的一个特征值为 2,估计其它两个特征值的上界.
解 记 1 2 ,A 的其它两个特征值为 2 ,3 ,由定理 5-1 得
3
3
| 2 |2 | i |2 | 1 |2 | aij |2 | 1 |2 25 ,
i 1
i, j1
本章要讨论的另一个问题是广义逆矩阵方面的问题. 我们知道,若方阵A的行列式不等于零,则存在唯一的 方阵B,满足AB=BA=E,并称B为A的逆矩阵,记为A-1. 当A不是方阵,或方阵A的行列式等于零时,则上述的 逆矩阵就不存在. Moore在1920年将逆矩阵的概念推广到任意矩阵上,他是用正交投影算子来定义逆矩阵的, 人们把他定义的广义逆矩阵称为Moore广义逆. 1955年,Penrose用方程组
i 1
i
2
|2
n | tii
i 1
t ii 2
|2

| Im k
|2
n
| Im i
i 1
|2
n
|
i 1
i
i
2
|2
n | tii
i 1
t ii 2
|2 .
由于在酉相似下矩阵的 F 范数不变,所以
n | tii t ii |2
i1
2
n | tij |2 2 i, j1
T TH 2
其中T 为上三角矩阵,T 的对角线元素 tii (i 1,2,n) 为 A 的特征值,
以及 B,C 的定义,可得
于是有
U H BU U H A AH U T T H ,
2
2
U H CU U H A AH U T T H ,
2
2
| Re k
|2
n
| Re i |2
i 1
n | i
故 | 2 | 5 .同理可得 | 3 | 5 .
事实上,由| E A | ( 1)( 2)( i) 知 A 的其它两个特
征值为 1, i .
推论 1 设 A, B,C 如前所设,则有
(1)
|
k
|
n max | i, j
aij
|,
(2)
|
Re k
|
nmax | i, j
bij
|

(3)
|
Imk
AGA=A,GAG=G,(AG)H=AG,(GA)H= GA. 来定义A的广义逆. 不久以后,Bjerhammer证明了Moore逆与Penrose逆的等价性,所以后来吧它叫做Moore- Penrose逆,并记为A+. 此后,对广义逆矩阵的研究又有很大的发展,现已形成了一套系统的理论. 这里主要介 绍15种广义逆矩阵中较常用的A-及A+两种,其它就不一一介绍了.
的谱)为{ 1, 2 ,, n },则
n
n
| i |2
| aij |2
A2. F
i 1
i, j1
且等号当且仅当 A 为正规矩阵时成立.
证明 由第 3 章定理 3-19(舒尔定理),存在酉矩阵U 及上三角矩阵T ,
使得
U H AU T ,
从而
U H AAHU TT H ,
tr( AAH ) tr(U H AAHU ) tr(TT H ) , (5-1)
设 A, B,C 的特征值分别为 k , k ,i k ( i 1, k 1,2,n) ,
k , k 都是实数,且满足 | 1 || 2 | | n | ,
1 2 n , 1 2 n .
定理 5-1(舒尔定理) 设 A (aij ) Cnn , A 的特征值集合( A
矩阵的特征值的估计与广义逆矩阵是矩阵理论中两个不同的专门课题,两者都有丰富的内容 和许多重要的应用. 在本章,仅就这两方面的内容作一基本概述.
矩阵特征值的计算与估计在理论上和实际应用中都是重要的,但要精确计算特征值并非总是可能 的,即使在某些特殊情况下有可能,可是付出的代价也是很大的.好在许多应用中并不需要精确计算 矩阵的特征值,而只需要有一个粗略的估计就够了. 例如,在线性系统理论中,通过估计系统矩阵A的 特征值是否有负实部,便可判定系统的稳定性;当研究一个迭代法的收敛性时便要判断迭代矩阵的特 征值是否都落在单位圆内;在差分方法的稳定性理论以及自控理论中都需要估计矩阵的特征值是否在 复数平面上的某一确定的区域中.
由于T 的对角线元素 tii (i 1,2,, n) 为 A 的特征值,得
n
n
n
| i |2
| tii |2
| tii |2
| tij
|2
T
2.
F
i 1
i 1
i 1
i j
(5-2)
由于在酉相似下矩阵的 F 范数不变,即
n
n
n
| tii |2 | tij |2 | tii |2 | aii |2 .
cij
|2

两边开方即得max | i, j
bij
|

证毕.
|
Imk
|
nmax | i, j
|
n max i, j
|
cij
|

证明 (1) 由定理 5-1 得
n
n
| k
|2
| i
i 1
|2
| aij
i, j 1
|2
n2 max i, j
| aij
|2 ,
即得
|
k
|
n max | i, j
aij
|.
(2) (3) 由舒尔定理,存在酉矩阵U 使得
U H AU T , U H AHU T H ,
相关文档
最新文档