安徽省高考数学 模拟试题(五) 理 新人教A版
安徽省合肥市(新版)2024高考数学人教版模拟(自测卷)完整试卷

安徽省合肥市(新版)2024高考数学人教版模拟(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题一正方体的棱长为,作一平面与正方体一条体对角线垂直,且与正方体每个面都有公共点,记这样得到的截面多边形的周长为,则()A.B.C.D.以上都不正确第(2)题已知为抛物线的焦点,是该抛物线上的两点,,则线段的中点到轴的距离为A.B.C.D.第(3)题下列函数中,既是偶函数又在区间上单调递减的是()A.B.C.D.第(4)题△ABC的内角A,B,C的对边分别为a,b,c,已知,,则c=()A.4B.6C.D.第(5)题陀螺是中国民间较早的娱乐工具之一,它可以近似地视为由一个圆锥和一个圆柱组合而成的几何体,如图1是一种木陀螺,其直观图如图2所示,,分别为圆柱上、下底面圆的圆心,为圆锥的顶点,若圆锥的底面圆周长为,高为,圆柱的母线长为4,则该几何体的体积是()A.B.C.D.第(6)题直线:与:交于点P,圆C:上有两动点A,B,且,则的最小值为()A.B.C.D.第(7)题已知向量,,.若λ为实数,()∥,则λ=().A.B.C.1D.2第(8)题已知函数的导数为,且对恒成立,则下列不等式一定成立的是A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题1487年,瑞士数学家欧拉发现了复指数函数和三角函数的关系,并写下公式,这个公式在复变函数中有非常重要的地位,即著名的“欧拉公式”,被誉为“数学中的天桥”,据欧拉公式,则()A.B.C.D.已知函数(e为自然对数的底数,),则关于函数,下列结论正确的是()A.有2个零点B.有2个极值点C.在单调递增D.最小值为1第(3)题已知,则下列不等式成立的是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在中,角,,的对边分别为,,,若,则三角形的面积,这个公式最早出现在古希腊数学家海伦的著作《测地术》中,故称该公式为海伦公式.将海伦公式推广到凸四边形(凸四边形即任取平面四边形一边所在直线,其余各边均在此直线的同侧)中,即“设凸四边形的四条边长分别为,,,,,凸四边形的一对对角和的一半为,则凸四边形的面积”.如图,在凸四边形中,若,,,,则凸四边形面积的最大值为________.第(2)题已知对任意恒成立,则实数的取值范围是________.第(3)题已知为第四象限角,,则的值为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)若,求的最小值;(2)若有2个零点,证明:.第(2)题已知数列的前项和.(1)求的通项公式;(2)设,求数列的前项和.第(3)题如图有一块半径为4,圆心角为的扇形铁皮,是圆弧上一点(不包括,),点,分别半径,上.(1)若四边形为矩形,求其面积最大值;(2)若和均为直角三角形,求它们面积之和的取值范围.第(4)题某学校为了研究不同性别的学生对“村BA”赛事的了解情况,进行了一次抽样调查,分别随机抽取男生和女生各80名作为样本,设事件“了解村BA”,“学生为女生”,据统计,.(1)根据已知条件,补全列联表,并根据小概率值的独立性检验,判断该校学生对“村BA”的了解情况与性别是否有了解不了解总计男生女生总计(2)现从该校不了解“村BA”的学生中,采用分层随机抽样的方法抽取10名学生,再从这10名学生随机抽取4人,设抽取的4人中男生的人数为,求的分布列和数学期望.附:,.0.0500.0100.0050.0013.8416.6357.87910.828第(5)题为了解“朗读记忆”和“默读记忆”两种记忆方法的效率(记忆的平均时间)是否有差异,将40名学生平均分成两组分别采用两种记忆方法记忆同一篇文章.由于事先没有约定用什么图表记录记忆所用时间(单位:min),其结果是“朗读记忆”用茎叶图表示(如图①),“默读记忆”用频率分布直方图表示(分组区间为,,…,)(如图②).(1)分别计算“朗读记忆”和估算“默读记忆”(估算时,用各组的中点值代替该组的平均值)记忆这篇文的平均时间(单位:min);(2)依据(1),用m表示40位学生记忆的平均时间,完成下列2×2列联表,判断“朗读记忆”和“默读记忆”两种记忆方法与其效率记忆的平均时间m是否有关联,并说明理由.参考公式和数据:小于m不小于m合计朗读记忆(人数)默读记忆(人数)合计0.1000.0500.0100.001k 2.706 3.841 6.63510.828。
2022版高考数学一轮复习练案56理+53文第八章解析几何第七讲抛物线练习含解析新人教版

第七讲 抛物线A 组基础巩固一、选择题1.(2021·某某某某质检)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线上一点M (2,m )满足|MF |=6,则抛物线C 的方程为( D )A .y 2=2xB .y 2=4xC .y 2=8xD .y 2=16x[解析]设抛物线的准线为l ,作MM ′⊥直线l 于点M ′,交y 轴于M ″,由抛物线的定义可得:MM ′=MF =6,结合x M =2可知:M ′M ″=6-2=4,即p2=4,∴2p =16,据此可知抛物线的方程为:y 2=16x .选D .2.(理)(2021·某某皖南八校联考)已知双曲线y 2a2-x 2b 2=1(a >0,b >0)的两条渐近线互相垂直,且焦距为26,则抛物线y 2=2bx 的准线方程为( B )A .x =-3B .x =-32 C .y =-3D .y =-32(文)(2021·某某某某期末)抛物线y =4x 2的准线方程是( A ) A .y =-116B .y =116C .x =1D .x =-1[解析](理)由题意a 2=b 2=12⎝ ⎛⎭⎪⎪⎫2622=3,∴b =3.∴抛物线y 2=2bx 的准线方程为x =-32.故选B .(文)抛物线标准方程为x 2=14y ,∴p =18,∴准线方程为y =-p 2,即y =-116,故选A .3.(2021·某某八校联考)斜率为33的直线l 过抛物线C :y 2=2px (p >0)的焦点F ,若直线l 与圆M :(x -2)2+y 2=4相切,则p =( A )A .12B .8C .10D .6 [解析]抛笔线C :y 2=2px (p >0)的焦点F ⎝ ⎛⎭⎪⎫p 2,0, 直线l 的方程为3y =x -p2,又直线l 与圆M :(x -2)2+y 2=4相切,可得⎪⎪⎪⎪⎪⎪2-p 23+1=2,解得p =12,故选A .4.(2020·)设抛物线的顶点为O ,焦点为F ,准线为l ,P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q ,则线段FQ 的垂直平分线( B )A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP[解析]由抛物线定义知|PQ |=|PF |,∴FQ 的垂直平分线必过P ,故选B .5.(2021·某某某某一中调研)已知F 为抛物线C :y 2=8x 的焦点,M 为C 上一点,且|MF |=4,则M 到x 轴的距离为( A )A .4B .4 2C .8D .16[解析]设M (x 1,y 1),由抛物线性质得:x 1=4-2=2,∴y 21=8·2=16⇒|y 1|=4,故M 到x 的距离为4,故选A .6.(2021·某某某某模拟)已知抛物线C :y 2=4x 的焦点为F ,点M (x 0,y 0)在抛物线C 上,若|MF |=4,则( C )A .x 0=5B .y 0=23C .|OM |=21D .F 的坐标为(0,1)[解析]由题可知F (1,0),由|MF |=x 0+1,所以x 0=3,y 20=12,|OM |=x 20+y 20=9+12=21.故选C .7.(2021·某某某某质检)已知点A 在圆(x -2)2+y 2=1上,点B 在抛物线y 2=8x 上,则|AB |的最小值为( A )A .1B .2C .3D .4[解析]由题得圆(x -2)2+y 2=1的圆心为(2,0),半径为1. 抛物线y 2=8x 的焦点C (2,0), 则|BC |=x -22+y 2=x -22+8x =x +2,∴|BC |min =2,∴|AB |min =2-1=1,故选A .8.(2021·某某某某统测)抛物线方程为x 2=4y ,动点P 的坐标为(1,t ),若过P 点可以作直线与抛物线交于A ,B 两点,且点P 是线段AB 的中点,则直线AB 的斜率为( A )A .12B .-12C .2D .-2[解析]设A (x 1,y 1),B (x 2,y 2),由题得⎩⎪⎨⎪⎧x 21=4y 1x 22=4y 2,∴(x 1+x 2)(x 1-x 2)=4(y 1-y 2), 所以k =y 2-y 1x 2-x 1=12,故选A .9.(2021·某某高邮一中检测)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (3,23)的直线l 交抛物线于另一点N ,则|NF ||FM |等于( B )A .1 2B .1 3C .14 D .13[解析]∵F (1,0),∴k l =23-03-1=3,∴l :y =3(x -1),由⎩⎪⎨⎪⎧y 2=4xy =3x -1解得x N =13,x M =3,∴|NF ||FM |=13+13+1=13.故选B . 10.已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( D )A .34B .32C .1D .2[解析]如图F 为抛物线的焦点,则|FA |+|FB |≥|AB |=6(当且仅当A 、F 、B 共线时取等号), 即y A +y B +2≥6,∴y A +y B2≥2,故选D .11.(2021·某某某某期末改编)已知抛物线C :y 2=4x 的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点P (x 1,y 1),Q (x 2,y 2),点P 在l 上的射影为P 1,则下列结论错误的是( D )A .若x 1+x 2=6,则|PQ |=8B .以PQ 为直径的圆与准线l 相切C .设M (0,1),则|PM |+|PP 1|≥2D .过点M (0,1)与抛物线C 有且仅有一个公共点的直线至多有2条[解析]对于选项A ,因为p =2,所以x 1+x 2+2=|PQ |,则|PQ |=8,故A 正确;对于选项B ,设N 为PQ 中点,设点N 在l 上的射影为N 1,点Q 在l 上的射影为Q 1,则由梯形性质可得NN 1=PP 1+QQ 12=PF +QF 2=PQ2,故B 正确;对于选项C ,因为F (1,0),所以|PM |+|PP 1|=|PM |+|PF |≥|MF |=2,故C 正确;对于选项D ,显然直线x =0,y =1与抛物线只有一个公共点,设过M 的直线为y =kx +1,联立⎩⎪⎨⎪⎧y =kx +1y 2=4x,可得k 2x 2+(2k-4)x +1=0,令Δ=0,则k =1,所以直线y =x +1与抛物线也只有一个公共点,此时有三条直线符合题意,故D 错误;故选D .二、填空题12.(2020·某某)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=163.[解析]由题意可得抛物线焦点F (1,0), 直线l 的方程为y =3(x -1),代入y 2=4x 并化简得3x 2-10x +3=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=103,由抛物线的定义知|AB |=x 1+x 2+p =103+2=163.13.(2021·某某某某质检)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2),线段FA 与抛物线交于点B ,且FB →=2BA →,则|BF |9[解析]由题意知F ⎝ ⎛⎭⎪⎫p 2,0,又A (0,2),且FB →=2BA →,∴B ⎝ ⎛⎭⎪⎫p 6,43,∴⎝ ⎛⎭⎪⎫432=2p ·p 6,解得p=433,∴|BF |=p 6+p 2=2p 3=839.14.(2021·某某调研改编)设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,A 为C 上一点,以F 为圆心,|FA |为半径的圆交l 于B ,D 两点,若∠ABD =90°,且△ABF 的面积为93,则__②③④__. ①|BF |=3②△ABF 是等边三角形 ③点F 到准线的距离为3 ④抛物线C 的方程为y 2=6x[解析]如图,由题意知|AB |=2|FH |=2p ,∴x A =3p2,从而y A =3p ,又S △ABF =12|AB |·y A =3p 2=93,∴p =3,∴C 的方程为y 2=6x ,④正确,③正确, ∴|BF |=|AF |=3p 2+p2=2p =6,①错,又|AB |=2p =6,∴△ABF 为等边三角形, ∴②正确,故答案为②③④. 三、解答题15.(2021·某某某某部分示X 高中协作体联考)如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)若直线PA 和PB 的倾斜角互补,求y 1+y 2的值及直线AB 的斜率. [解析](1)设抛物线解析式为y 2=2px , 把(1,2)的坐标代入得p =2,∴抛物线解析式为y 2=4x ,准线方程为x =-1. (2)∵直线PA 和PB 的倾斜角互补, ∴k PA +k PB =0, ∴y 1-2x 1-1+y 2-2x 2-1=y 1-2y 214-1+y 2-2y 224-1=0,∴1y 1+2+1y 2+2=0,∴y 1+y 2=-4,k AB =y 2-y 1x 2-x 1=y 2-y 1y 224-y 214=4y 2+y 1=-1.16.已知动点P 到定直线l :x =-2的距离比到定点F ⎝ ⎛⎭⎪⎫12,0的距离大32. (1)求动点P 的轨迹C 的方程;(3)过点D (2,0)的直线交轨迹C 于A ,B 两点,直线OA ,OB 分别交直线l 于点M ,N ,证明以MN 为直径的圆被x 轴截得的弦长为定值,并求出此定值.[解析](1)解法一:设点P 的坐标为(x ,y ),因为定点F ⎝ ⎛⎭⎪⎫12,0在定直线l :x =-2的右侧,且动点P 到定直线l :x =-2的距离比到定点F ⎝ ⎛⎭⎪⎫12,0的距离大32,所以x >-2且⎝ ⎛⎭⎪⎫x -122+y 2=|x +2|-32,化简得⎝ ⎛⎭⎪⎫x -122+y 2=x +12,即y 2=2x ,∴轨迹C 的方程为y 2=2x .解法二:由题意可知动点P 到直线l ′:x =-12的距离与到定点F ⎝ ⎛⎭⎪⎫12,0的距离相等,∴轨迹C 是以F 为焦点l ′为准线的抛物线,显然p 2=12,即p =1,∴轨迹C 的方程为y 2=2x . (2)证明:设A (2t 21,2t 1),B (2t 22,2t 2)(t ·t 2≠0), 则DA →=(2t 21-2,2t 1),DB →=(2t 22-2,2t 2). ∵A ,D ,B 三点共线,∴2t 2(2t 21-2)=2t 1(2t 22-2),∴(t 1-t 2)(t 1t 2+1)=0, 又t 1≠t 2,∴t 1t 2=-1,直线OA 的方程为y =1t 1x ,令x =-2,得M (-2,-2t 1).同理,可得N ⎝⎛⎭⎪⎫-2,-2t 2.所以以MN 为直径的圆的方程为(x +2)(x +2)+⎝ ⎛⎭⎪⎫y +2t 1⎝ ⎛⎭⎪⎫y +2t 2=0,即(x +2)2+y 2+2×t 1+t 2t 1t 2+4t 1t 2=0.将t 1t 2=-1代入上式,可得(x +2)2+y 2-2(t 1+t 2)y -4=0, 令y =0,得x =0或x =-4,故以MN 为直径的圆被x 轴截得的弦长为定值4.B 组能力提升1.(2021·某某某某一模)位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为5 m ,跨径为12 m ,则桥形对应的抛物线的焦点到准线的距离为( D )A .2512 mB .256 mC .95 mD .185m[解析]建立如图所示的平面直角坐标系.设抛物线的解析式为x 2=-2py (p >0),∵抛物线过点(6,-5),∴36=10p ,可得p =185,则桥形对应的抛物线的焦点到准线的距离为185m ,故选D .2.(2021·某某适应性考试)已知抛物线C :y 2=2px (p >0)的焦点到准线的距离为1,若抛物线C 上存在关于直线l :x -y -2=0对称的不同两点P 和Q ,则线段PQ 的中点坐标为( A )A .(1,-1)B .(2,0)C .⎝ ⎛⎭⎪⎫12,-32D .(1,1)[解析]因为焦点到准线的距离为p ,则p =1, 所以y 2=2x .设点P (x 1,y 1),Q (x 2,y 2).则⎩⎪⎨⎪⎧y 21=2x 1y 22=2x 2,则(y 1-y 2)(y 1+y 2)=2(x 1-x 2),∴k PQ =2y 1+y 2,又∵P ,Q 关于直线l 对称.∴k PQ =-1,即y 1+y 2=-2,∴y 1+y 22=-1,又∵PQ 的中点一定在直线l 上, ∴x 1+x 22=y 1+y 22+2=1.∴线段PQ 的中点坐标为(1,-1).故选:A .3.(2021·某某师大附中月考)如图所示,点F 是抛物线y 2=8x 的焦点,点A ,B 分别在抛物线y 2=8x 及圆(x -2)2+y 2=16的实线部分上运动,且AB 总是平行于x 轴,则△FAB 的周长的取值X 围是( C )A .(2,6)B .(6,8)C .(8,12)D .(10,14)[解析]抛物线的准线l :x =-2,焦点F (2,0),由抛物线定义可得|AF |=x A +2,圆(x -2)2+y 2=16的圆心为(2,0),半径为4,∴三角形FAB 的周长为|AF |+|AB |+|BF |=(x A +2)+(x B -x A )+4=6+x B ,由抛物线y 2=8x 及圆(x -2)2+y 2=16可得交点的横坐标为2,则x B ∈(2,6),所以6+x B ∈(8,12),故选C .4.(2021·某某、某某调研)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为( C )A .5B .6C .163D .203[解析]如图,设l 与x 轴交于点M ,过点A 作AD ⊥l 交l 于点D ,由抛物线的定义知,|AD |=|AF |=4,由F 是AC 的中点,知|AD |=2|MF |=2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,又x 1x 2=p 24=1,所以x 2=13,所以|AB |=x 1+x 2+p =3+13+2=163.故选C .另解:因为1|AF |+1|BF |=2p ,|AF |=4,所以|BF |=43,所以|AB |=|AF |+|BF |=4+43=163.故选C .5.(2021·某某省某某市期末)如图,已知点F 为抛物线C :y 2=2px (p >0)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,|MN |=16.(1)求抛物线C 的方程;(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.[解析](1)当直线l 的倾斜角为45°,则l 的斜率为1, ∵F ⎝ ⎛⎭⎪⎫p 2,0,∴l 的方程为y =x -p 2. 由⎩⎪⎨⎪⎧ y =x -p 2,y 2=2px ,得x 2-3px +p 24=0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=3p ,∴|MN |=x 1+x 2+p =4p =16, p =4,∴抛物线C 的方程为y 2=8x .(2)假设满足条件的点P 存在,设P (a,0),由(1)知F (2,0),①当直线l 不与x 轴垂直时,设l 的方程为y =k (x -2)(k ≠0),由⎩⎪⎨⎪⎧ y =k x -2,y 2=8x ,得k 2x 2-(4k 2+8)x +4k 2=0, Δ=(4k 2+8)2-4·k 2·4k 2=64k 2+64>0,x 1+x 2=4k 2+8k2,x 1x 2=4. ∵直线PM ,PN 关于x 轴对称,∴k PM +k PN =0,k PM =k x 1-2x 1-a ,k PN =k x 2-2x 2-a .∴k (x 1-2)(x 2-a )+k (x 2-2)(x 1-a )=k [2x 1x 2-(a +2)(x 1+x 2)+4a ]=-8a +2k =0,∴a =-2时,此时P (-2,0).②当直线l与x轴垂直时,由抛物线的对称性,易知PM,PN关于x轴对称,此时只需P与焦点F不重合即可.综上,存在唯一的点P(-2,0),使直线PM,PN关于x轴对称.。
高考数学(人教a版,理科)题库:二项分布与正态分布(含答案).

第8讲二项分布与正态分布一、选择题1.甲、乙两地都位于长江下游,根据天气预报的纪录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )A.0.6 B.0.7C.0.8 D.0.66解析甲市为雨天记为事件A,乙市为雨天记为事件B,则P(A)=0.2,P(B)=0.18,P(AB)=0.12,∴P(B|A)=P ABP A=0.120.2=0.6.答案 A2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是( )A.512B.12C.712D.34解析本题涉及古典概型概率的计算.本知识点在考纲中为B级要求.由题意得P(A)=12,P(B)=16,则事件A,B至少有一件发生的概率是1-P(A)·P(B)=1-12×56=712.答案 C3.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率p的取值范围是().A.[0.4,1] B.(0,0.4]C.(0,0.6] D.[0.6,1]解析设事件A发生的概率为p,则C14p(1-p)3≤C24p2(1-p)2,解得p≥0.4,故选A.答案 A4.设随机变量X 服从正态分布N (2,9),若P (X >c +1)=P (X <c -1),则c 等于( ). A .1B .2C .3D .4解析 ∵μ=2,由正态分布的定义,知其函数图象关于x =2对称,于是c +1+c -12=2,∴c =2. 答案 B5.在正态分布N ⎝ ⎛⎭⎪⎫0,19中,数值前在(-∞,-1)∪(1,+∞)内的概率为( ).A .0.097B .0.046C .0.03D .0.0026 解析 ∵μ=0,σ=13∴P (X <1或x >1)=1-P (-1≤x ≤1)=1-P (μ-3σ≤X ≤μ+3σ)=1-0.997 4=0.002 6. 答案 D6.已知三个正态分布密度函数φi (x )=12πσi·e -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则 ( ).A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3D .μ1<μ2=μ3,σ1=σ2<σ3解析 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3. 答案 D 二、填空题7.三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局胜者对第一局的败者,第四局是第三局胜者对第二局败者,则乙队连胜四局的概率为________.解析设乙队连胜四局为事件A,有下列情况:第一局中乙胜甲(A1),其概率为1-0.4=0.6;第二局中乙胜丙(A2),其概率为0.5;第三局中乙胜甲(A3),其概率为0.6;第四局中乙胜丙(A4),其概率为0.50,因各局比赛中的事件相互独立,故乙队连胜四局的概率为:P(A)=P(A1A2A3A4)=0.62×0.52=0.09.答案 0.098.设随机变量X服从正态分布N(0,1),如果P(X≤1)=0.8413,则P(-1<X<0)=________.解析∵P(X≤1)=0.841 3,∴P(X>1)=1-P(X≤1)=1-0.841 3=0.158 7.∵X~N(0,1),∴μ=0.∴P(X<-1)=P(X>1)=0.158 7,∴P(-1<X<1)=1-P(X<-1)-P(X>1)=0.682 6.∴P(-1<X<0)=12P(-1<X<1)=0.341 3.答案0.341 39.设随机变量ξ服从正态分布N(0,1),记Ф(x)=P(ξ<x),给出下列结论:①Φ(0)=0.5;②Φ(x)=1-Φ(-x);③P(|ξ|<2)=2Φ(2)-1.则正确结论的序号是________.答案①②③10.商场经营的某种包装大米的质量(单位:kg)服从正态分布X~N(10,0.12),任选一袋这种大米,质量在9.8~10.2 kg的概率是________.解析P(9.8<X<10.2)=P(10-0.2<X<10+0.2)=0.954 4.答案0.954 4三、解答题11.设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分以上)的人数和130分以上的人数.解由题意得μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μ<-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=2P(X-μ<-σ)+0.682 6=1,∴P(X-μ<-σ)=0.158 7,∴P(X≥90)=1-P(X-μ<-σ)=1-0.158 7=0.841 3.∴54×0.841 3≈45(人),即及格人数约为45人.∵P(X≥130)=P(X-110≥20)=P(X-μ≥σ),∴P(X-μ≤-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=0.682 6+2P(X-μ≥σ)=1,∴P(X-μ≥σ)=0.158 7.∴54×0.158 7≈9(人),即130分以上的人数约为9人.12.在某市组织的一次数学竞赛中全体参赛学生的成绩近似服从正态分布N(60,100),已知成绩在90分以上的学生有13人.(1)求此次参加竞赛的学生总数共有多少人?(2)若计划奖励竞赛成绩排在前228名的学生,问受奖学生的分数线是多少?解设学生的得分情况为随机变量X,X~N(60,100).则μ=60,σ=10.(1)P(30<X≤90)=P(60-3×10<X≤60+3×10)=0.997 4.∴P(X>90)=12[1-P(30<X≤90)]=0.001 3∴学生总数为:130.001 3=10 000(人).(2)成绩排在前228名的学生数占总数的0.022 8. 设分数线为x.则P(X≥x0)=0.022 8.∴P(120-x0<x<x0)=1-2×0.022 8=0.954 4. 又知P(60-2×10<x<60+2×10)=0.954 4.∴x0=60+2×10=80(分).13.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P(X=1)=15100=320,P(X=1.5)=30100=310,P(X=2)=25100=14,P(X=2.5)=20100=15,P(X=3)=10100=110.X的分布列为X的数学期望为E(X)=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1).由于各顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)=320×320+320×310+310×320=980.故该顾客结算前的等候时间不超过2.5分钟的概率为980.14.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望E (X ).解 (1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D .由题意,知P (B )=34,P (C )=P (D )=23, 由于A =B C - D -+B -C D -+B - C -D , 根据事件的独立性和互斥性,得 P (A )=P (B C - D -+B -C D -+B - C -D ) =P (B C - D -)+P (B -C D -)+P (B - C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意,知X 的所有可能取值为0,1,2,3,4,5.根据事件的独立性和互斥性,得P (X =0)=P (B - C - D -) =[1-P (B )][1-P (C )][1-P (D )] =⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=136; P (X =1)=P (B C - D -)=P (B )P (C -)P (D -)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=112;P (X =2)=P (B - C D -+B - C - D )=P (B - C D -)+P (B - C -D ) =⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=19; P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D ) =34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13;P (X =4)=P (B -CD )=⎝ ⎛⎭⎪⎫1-34×23×23=19,P (X =5)=P (BCD )=34×23×23=13. 故X 的分布列为所以E (X )=0×136+1×112+2×19+3×13+4×19+5×13=4112.。
(名师导学)高考数学总复习 同步测试卷(五)导数及其应用 理(含解析)新人教A版-新人教A版高三全册

同步测试卷理科数学(五) 【p 293】(导数及其应用) 时间:60分钟 总分:100分一、选择题(本大题共6小题,每小题5分,共30分.每小题所给的四个选项中,只有一项是符合题目要求的.)1.函数y =x sin x +x 的导数是( )A .y′=sin x +x cos x +12xB .y′=sin x -x cos x +12xC .y′=sin x +x cos x -12xD .y′=sin x -x cos x -12x【解析】f′(x)=(x)′sin x +x(sin x)′+⎝ ⎛⎭⎪⎫x 12′ =sin x +x cos x +12x -12=sin x +x cos x +12x .【答案】A2.已知a 为函数f(x)=x 3-12x 的极小值点,则a =( )A .-4B .-2C .4D .2【解析】f′()x =3x 2-12=3()x +2()x -2,令f′()x =0得x =-2或x =2,易得f ()x 在()-2,2上单调递减,在()2,+∞上单调递增,故f ()x 的极小值点为2,即a =2.【答案】D 3.定积分⎠⎛-aaa 2-x 2d x 等于( )A .14πa 2B .12πa 2 C .πa 2D .2πa 2【解析】由题意可知定积分表示半径为a 的半个圆的面积,所以S =12(πa 2)=12πa 2.【答案】B4.直线y =kx +1与曲线f(x)=a ln x +b 相切于点P(1,2),则a +b =( )A .1B .4C .3D .2【解析】由f(x)=a ln x +b ,得f′(x)=ax,∴f′(1)=a.再由直线y =kx +1与曲线f(x)=a ln x +b 相切于点P(1,2),得 ⎩⎪⎨⎪⎧k =a ,k +1=b ,b =2,∴⎩⎪⎨⎪⎧k =1,a =1,b =2, ∴a+b =3. 【答案】C5.已知函数y =f(x)是R 上的可导函数,当x ≠0时,有f ′(x )+f (x )x>0,则函数F (x )=xf (x )+1x的零点个数是( )A .0B .1C .2D .3【解析】由已知得f ′(x )·x +f (x )x >0,得(xf (x ))′x>0,得(xf (x ))′与x 同号,令g (x )=xf (x ).则可知g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, 且g (0)=0,又由xf (x )+1x =0,即g (x )=-1x ,显然y =g (x )的图象与y =-1x的图象只有一个交点,选B.【答案】B6.定义在R 上的偶函数f (x )的导函数为f ′(x ),若对任意的实数x ,都有2f (x )+xf ′(x )<2恒成立,则使x 2f (x )-f (1)<x 2-1成立的实数x 的取值X 围是( )A .{x |x ≠±1}B .(-∞,-1)∪(1,+∞)C .(-1,1)D .(-1,0)∪(0,1)【解析】f (x )是R 上的偶函数,则函数g (x )=x 2f (x )-x 2也是R 上的偶函数, 对任意的实数x ,都有2f (x )+xf ′(x )<2恒成立, 则g ′(x )=x [2f (x )+xf ′(x )-2].当x ≥0时,g ′(x )<0,当x <0时,g ′(x )>0,即偶函数g (x )在区间(-∞,0)上单调递增,在区间(0,+∞)上单调递减, 不等式x 2f (x )-f (1)<x 2-1即x 2f (x )-x 2<12f (1)-12, 据此可知g (x )<g (1),则x <-1或x >1.即实数x 的取值X 围是(-∞,-1)∪(1,+∞). 【答案】B二、填空题(本大题共4小题,每小题5分,共20分,将各小题的结果填在题中横线上.) 7.某产品的销售收入y 1(万元)是产量x(千台)的函数y 1=17x 2,生产成本y 2(万元)是产量x(千台)的函数y 2=2x 3-x 2,已知x>0,为使利润最大,应生产________(千台).【解析】由题意,利润y =y 1-y 2=17x 2-(2x 3-x 2)=18x 2-2x 3(x >0). y′=36x -6x 2,由y′=36x -6x 2=6x(6-x)=0,得x =6(x >0), 当x∈(0,6)时,y′>0,当x∈(6,+∞)时,y′<0. ∴函数在(0,6)上为增函数,在(6,+∞)上为减函数. 则当x =6(千台)时,y 有最大值为216(万元). 【答案】68.曲线y =2x 与直线y =-x +3及x 轴围成的图形的面积为________.【解析】由曲线y =2x 与直线y =-x +3及x 轴围成的图形的面积为⎠⎛012x d x +⎠⎛13(-x+3)d x =43x 32|10+⎝ ⎛⎭⎪⎫-12x 2+3x |31=43+2=103.【答案】1039.若函数f(x)=x 3-ax 2+3x -4a 3在(-∞,-1),(2,+∞)上都是单调增函数,则实数a 的取值集合是________.【解析】由f′(x)=3x 2-2ax +3,(1)当Δ=4a 2-36≤0⇒-3≤a≤3时,f(x)在R 上为增函数,满足条件; (2)当Δ=4a 2-36>0⇒a <-3或a >3时,由⎩⎪⎨⎪⎧-1<a3<2⇒-3<a <6,f ′(-1)≥0⇒a ≥-3,f ′(2)≥0⇒a ≤154,∴3<a ≤154,∴综合得a 的取值集合是⎣⎢⎡⎦⎥⎤-3,154. 【答案】⎣⎢⎡⎦⎥⎤-3,15410.若不等式|mx 3-ln x |≥1(m >0),对∀x ∈(0,1]恒成立,则实数m 的取值X 围是__________________.【解析】不等式|mx 3-ln x |≥1(m >0),对∀x ∈(0,1]恒成立, 等价为mx 3-ln x ≥1或mx 3-ln x ≤-1, 即m ≥1+ln x x 3或m ≤ln x -1x3, 记f (x )=1+ln x x 3,g (x )=ln x -1x3, 则f ′(x )=1x ·x 3-3x 2(1+ln x )x 6=-2-3ln xx4,由f ′(x )=-2-3ln xx4=0, 解得ln x =-23,即x =e -23,由f (x )>0,解得0<x <e -23,此时函数单调递增,由f (x )<0,解得x >e -23,此时函数单调递减,即当x =e -23时,函数f (x )取得极大值,同时也是最大值f (e -23)=1+ln e -23(e -23)3=1-23e-2=13e 2, 此时m ≥13e 2;由g (x )=ln x -1x3, ∵当x =1时,ln x -1x3=0, ∴当m >0时,不等式m ≤ln x -1x3不恒成立, 综上,m ≥13e 2.【答案】⎣⎢⎡⎭⎪⎫e 23,+∞ 三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.) 11.(16分)已知函数f(x)=e x-2x.(1)求曲线y =f(x)在点(0,f(0))处的切线方程;(2)若函数g(x)=f(x)-a ,x∈[-1,1]恰有2个零点,某某数a 的取值X 围. 【解析】(1)∵f(x)=e x-2x ,∴f′(x)=e x-2. ∴f′(0)=-1, 又f(0)=1,∴曲线y =f(x)在点(0,f(0))处的切线方程为y -1=-x , 即x +y -1=0.(2)由题意得g(x)=e x-2x -a , ∴g′(x)=e x-2,由g′(x)=e x -2=0解得x =ln 2,故当-1≤x<ln 2时,g′(x)<0,g(x)在[-1,ln 2)上单调递减; 当ln 2<x≤1时,g′(x)>0,g(x)在(ln 2,1]上单调递增. ∴g(x)min =g(ln 2)=2-2ln 2-a , 又g(-1)=e -1+2-a ,g(1)=e -2-a , 结合函数的图象可得,若函数恰有两个零点,则⎩⎪⎨⎪⎧g (-1)=e -1+2-a≥0,g (1)=e -2-a≥0,g (ln 2)=2-2ln 2-a<0,解得2-2ln 2<a≤e -2. ∴实数a 的取值X 围是(2-2ln 2,e -2].12.(16分)已知定义在正实数集上的函数f(x)=ax 2-(a +2)x +ln x.(1)若函数g(x)=f(x)-ax 2+1,在其定义域上g(x)≤0恒成立,某某数a 的最小值; (2)若a>0时,f(x)在区间[1,e ]上的最小值为-2,某某数a 的取值X 围.【解析】(1)由g(x)=ln x -(a +2)x +1≤0在其定义域上恒成立,因为x>0,∴a+2≥ln x +1x,设h(x)=ln x +1x(x>0),h′(x)=1-ln x -1x 2=-ln xx2, 所以0<x<1时,h′(x)>0,h(x)递增,x>1时,h′(x)<0,h(x)递减, 因此h(x)max =h(1)=1,∴a+2≥1可得a≥-1, 综上实数a 的最小值是-1.(2)f′(x)=2ax -(a +2)+1x =(ax -1)(2x -1)x (x>0,a>0),f′(x)=0,x 1=12,x 2=1a,当a≥1,1a ≤1,x∈(1,e ),f′(x)≥0,f(x)单调递增,f(x)min =f(1)=-2符合题意,当1e <a<1,x∈[1,e ],x∈⎝ ⎛⎭⎪⎫1,1a ,f(x)单调递减,x∈⎝ ⎛⎭⎪⎫1a ,e ,f(x)单调递增; f(x)min =f ⎝ ⎛⎭⎪⎫1a <f(1)=-2舍去,当0<a≤1e,x∈(1,e ),f(x)单调递减,f(x)min =f(e )<f(1)=-2舍去,综上实数a 的取值X 围是[1,+∞).13.(18分)已知函数f(x)=-x -mx +2ln x ,m∈R .(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1,x 2,且x 1<x 2,证明:f (x 2)>1-x 2.【解析】(1)由f (x )=-x -m x+2ln x ,得f ′(x )=-1+m x 2+2x =-x 2+2x +m x 2=-x 2-2x -mx 2,x ∈(0,+∞).设g(x)=x2-2x-m,x∈(0,+∞).当m≤-1时,即Δ=4+4m≤0时,g(x)≥0,f′(x)≤0.∴f(x)在(0,+∞)上单调递减.当m>-1时,即Δ=4+4m>0时,令g(x)=0,得x1=1-1+m,x2=1+1+m,x1<x2.当-1<m<0时,0<x1<x2,在(0,x1)∪(x2,+∞)上,f′(x)<0,在(x1,x2)上,f′(x)>0,∴f(x)在(0,x1)上单调递减,在(x1,x2)上单调递增,在(x2,+∞)上单调递减.当m≥0时,x1≤0<x2,在(0,x2)上,f′(x)>0,在(x2,+∞)上,f′(x)<0,∴f(x)在(0,x2)上单调递增,在(x2,+∞)上单调递减.综上,当m≤-1时,f(x)在(0,+∞)上单调递减;当-1<m<0时,f(x)在(0,1-1+m),(1+1+m,+∞)上单调递减,在(1-1+m,1+1+m)上单调递增;当m≥0时,f(x)在(0,1+1+m)上单调递增,在(1+1+m,+∞)上单调递减.(2)∵f(x)有两个极值点x1,x2,且x1<x2,∴由(1)知g(x)=x2-2x-m有两个不同的零点x1,x2,x1=1-1+m,x2=1+1+m,且-1<m<0,此时,x22-2x2-m=0,要证明f(x2)=-x2-mx2+2ln x2>1-x2,只要证明2ln x2-mx2>1.∵m =x 22-2x 2,∴只要证明2ln x 2-x 2>-1成立. ∵m ∈(-1,0),∴x 2=1+1+m ∈(1,2). 设h (x )=2ln x -x ,x ∈(1,2), 则h ′(x )=2x-1,当x ∈(1,2)时,h ′(x )>0, ∴h (x )在x ∈(1,2)上单调递增, ∴h (x )>h (1)=-1,即2ln x 2-x 2>-1,∴f (x )有两个极值点x 1,x 2,且x 1>x 2时,f (x 2)>1-x 2.word 11 / 11。
(新课标)高考数学模拟系列(二)试题 理 新人教A版

12023年高考模拟系列试卷(二) 数学试题【新课标版】(理科)1.本试卷分第一卷(阅读题)和第二卷(表达题)两局部。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试完毕后,将本试卷和答题卡一并交回。
第一卷(选择题,共60分)一、此题共12小题,每题5分,共60分,在每题给出的四个选项中只有一个选项是符合题目要求的1、设集合{}21,M x x x =-≤∈R ,{}21,02N y y x x ==-+≤≤,那么()RM N ⋂等于( )A .RB .{}|1x x R x ∈≠且C .{}1D .∅2、在复平面内,复数2013ii 1iz =+-表示的点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限3、假设sin601233,log cos60,log tan 30a b c ===,那么( )A .a b c >>B .b c a >>C .c b a >>D .b a c >>4、设数列{}n a 是公差不为零的等差数列,它的前n 项和为n S ,且1S 、2S 、4S 成等比数列,那么41a a 等于( ) A .6B .7C .4D .35、已知点()1,0A -和圆222x y +=上一动点P ,动点M 满足2MA AP =,那么点M 的轨迹方程是( )A .()2231x y -+=B .223()12x y -+=C .2231()22x y -+= D .223122x y ⎛⎫+-= ⎪⎝⎭6、命题“存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥-”的否认为( )A .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥- B .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- C .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- D .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≤- 7、设a b <,函数()()2y x a x b =--的图象可能是( )28、程序框图如下:如果上述程序运行的结果S 的值比2023小,假设使输出的S 最大,那么判断框中应填入( ) A .10k ≤ B .10k ≥ C .9k ≤ D .9k ≥9、图为一个空间几何体的三视图,其中俯视图是下边一个等边三角形,其内切圆的半径是1,正视图和侧视图是上边两个图形,数据如图,那么此几何体的体积是( )A .1533π+B .21533π+C .3033π+D .43033π+ 10、在9212x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A .5376-B .5376C .84-D .8411、如果点P 在平面区域220140x y x x y -+≤⎧⎪≥-⎨⎪+-≤⎩上,点Q 在曲线(x -1)2+(y -1)2=1上,那么|PQ |的最小值为( )A .5-1B .355 C .3515- D .523-1 12、已知椭圆C :22221(0)x ya b a b+=>>的左右焦点为12,F F ,过2F 的直线与圆222()()x a y b b -+-=相切于点A ,并与椭圆C 交与不同的两点P ,Q ,如图,假设A 为线段PQ 的靠近P 的三等分点,那么椭圆的离心率为 ( )3A .23B .33C .53D .73第二卷(非选择题,共90分)二、填空题:本大题共4小题,每题4分,共16分,把答案填在题中横线上 13、由曲线23y x =-和直线2y x =所围成的面积为 。
(课标专用 5年高考3年模拟A版)高考数学 第六章 数列 3 等比数列及其前n项和试题 文-人教版高

等比数列及其前n项和挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点等比数列的定义及通项公式①理解等比数列的概念.②掌握等比数列的通项公式.③了解等比数列与指数函数的关系2018课标全国Ⅰ,17,12分等比数列判定及通项公式递推公式★★★2017课标全国Ⅱ,17,12分等比数列基本量计算等差数列基本量计算等比数列的性质及其应用能利用等比数列的性质解决相应的问题2015课标Ⅱ,9,5分等比数列下标和定理等比数列通项公式★★☆等比数列的前n项和掌握等比数列的前n项和公式2016课标全国Ⅰ,17,12分等比数列前n项和等差数列基本量计算★★★2018课标全国Ⅲ,17,12分等比数列前n项和公式等比数列通项公式2017课标全国Ⅰ,17,12分等比数列前n项和计算等差数列的判定2015课标Ⅰ,13,5分等比数列前n项和计算等比数列定义分析解读本节在高考中主要考查等比数列的定义、性质、通项公式、前n项和公式及等比中项等相关内容.对等比数列的定义、通项公式、性质及等比中项的考查,常以选择题、填空题的形式出现,难度较小.对前n项和以及与其他知识(函数、不等式)相结合的考查,多以解答题的形式出现,注重题目的综合与新颖,突出对逻辑思维能力的考查.本节内容在高考中分值为5分左右,难度不大.破考点【考点集训】考点一等比数列的定义及通项公式1.(2019届某某某某模拟,6)已知等比数列{a n}各项均为正数,满足a1+a3=3,a3+a5=6,则a1a3+a2a4+a3a5+a4a6+a5a7=( )A.62B.62√2C.61D.61√2答案 A2.(2018某某八校第一次联考,17)已知数列{a n}满足a1=1,a2=4,a n+2=4a n+1-4a n.(1)求证:{a n+1-2a n}是等比数列;(2)求{a n}的通项公式.解析(1)证明:由a n+2=4a n+1-4a n得a n+2-2a n+1=2a n+1-4a n=2(a n+1-2a n)=22(a n-2a n-1)=…=2n(a2-2a1)≠0,∴a a+2-2a a+1a a+1-2a a=2,∴{a n+1-2a n}是等比数列.(2)由(1)可得a n+1-2a n=2n-1(a2-2a1)=2n,∴a a+12a+1-a a2a=12,∴{a a2a}是首项为12,公差为12的等差数列,∴a a2a=a2,则a n=n·2n-1.考点二等比数列的性质及其应用1.(2018某某马某某第二次教学质量监测,5)已知等比数列{a n}满足a1=1,a3·a5=4(a4-1),则a7的值为( )A.2B.4C.92D.6答案 B2.(2019届某某某某新华区模拟,9)已知正数组成的等比数列{a n}的前8项的积是81,那么a1+a8的最小值是( )A.2√3B.2√2C.8D.6答案 A考点三等比数列的前n项和1.(2018某某某某教学质量检测(二),16)数列{a n}满足a1+3a2+…+(2n-1)a n=3-2a+32a,n∈N*,则a1+a2+…+a n=.答案1-12a2.(2019届某某某某模拟,15)设等比数列{a n}的前n项和为S n,8a2-a5=0,则公比q的值为,若-a a2a有最大值-2,则a1的值为.答案2;43.(2018某某(长郡中学、某某八中)、某某(某某二中)等十四校第二次联考,17)已知{a n}是等差数列,{b n}是等比数列,a1=1,b1=2,b2=2a2,b3=2a3+2.(1)求{a n },{b n }的通项公式; (2)若{a aa a}的前n 项和为S n ,求证:S n <2.解析 (1)设{a n }的公差为d,{b n }的公比为q, 由题意得{2a =2(1+a ),2a 2=2(1+2d)+2,解得{a =1,a =2或{a =-1,a =0(舍), ∴a n =n,b n =2n. (2)证明:由(1)知a a a a =a2a, ∴S n =12+222+323+…+a -12a -1+a2a, 则12S n =122+223+324+…+a -22a -1+a -12a+a 2a +1,两式相减得12S n =12+122+123+…+12a -a2a +1=12[1-(12)a ]1-12-a2a +1,∴S n =2-(12)a -1-a2a ,∴S n <2.炼技法 【方法集训】方法 等比数列的判定方法1.(2019届某某某某模拟,15)如图所示,正方形上连接着等腰直角三角形,等腰直角三角形两直角边上再连接正方形,……,如此继续下去,若共得到1 023个正方形,设初始正方形的边长为√2,则最小正方形的边长为.答案 1162.(2017某某仿真模拟,16)已知数列{a n }的前n 项和为S n ,且满足:a 1=1,a 2=2,S n +1=a n+2-a n+1(n∈N *),若不等式λS n >a n 恒成立,则实数λ的取值X 围是. 答案 (1,+∞)过专题【五年高考】A 组 统一命题·课标卷题组考点一 等比数列的定义及通项公式1.(2018课标全国Ⅰ,17,12分)已知数列{a n }满足a 1=1,na n+1=2(n+1)a n .设b n =a aa. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. 解析 (1)由条件可得a n+1=2(a +1)aa n .将n=1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n=2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得a a +1a +1=2a aa,即b n+1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a a a=2n-1,所以a n =n·2n-1.2.(2017课标全国Ⅱ,17,12分)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解析 设{a n }的公差为d,{b n }的公比为q,则a n =-1+(n-1)d,b n =q n-1. 由a 2+b 2=2得d+q=3①. (1)由a 3+b 3=5得2d+q 2=6②. 联立①和②解得{a =3,a =0(舍去),或{a =1,a =2.因此{b n }的通项公式为b n =2n-1. (2)由b 1=1,T 3=21得q 2+q-20=0. 解得q=-5或q=4.当q=-5时,由①得d=8,则S 3=21. 当q=4时,由①得d=-1,则S 3=-6.考点二 等比数列的性质及其应用(2015课标Ⅱ,9,5分)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( ) A.2B.1C.12D.18答案 C考点三 等比数列的前n 项和1.(2015课标Ⅰ,13,5分)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n=. 答案 62.(2018课标全国Ⅲ,17,12分)等比数列{a n }中,a 1=1,a 5=4a3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m. 解析 (1)设{a n }的公比为q,由题设得a n =q n-1. 由已知得q 4=4q 2,解得q=0(舍去)或q=-2或q=2. 故a n =(-2)n-1或a n =2n-1. (2)若a n =(-2)n-1,则S n =1-(-2)a3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n-1,则S n =2n-1.由S m =63得2m=64,解得m=6. 综上,m=6.3.(2017课标全国Ⅰ,17,12分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列. 解析 (1)设{a n }的公比为q,由题设可得{a 1(1+q)=2,a 1(1+q +a 2)=-6.解得q=-2,a 1=-2.故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =a 1(1-a a )1-a =-23+(-1)n·2a +13. 由于S n+2+S n+1=-43+(-1)n·2a +3-2a +23=2[-23+(-1)a·2a +13]=2S n ,故S n+1,S n ,S n+2成等差数列.B 组 自主命题·省(区、市)卷题组考点一 等比数列的定义及通项公式1.(2018,5,5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f,则第八个单音的频率为( )A.√23fB.√223f C.√2512fD.√2712f答案 D2.(2014某某,12,5分)如图,在等腰直角三角形ABC 中,斜边BC=2√2.过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;……,依此类推.设BA=a 1,AA 1=a 2,A 1A 2=a 3,……,A 5A 6=a 7,则a 7=.答案 14考点二 等比数列的性质及其应用(2015某某,13,5分)若三个正数a,b,c 成等比数列,其中a=5+2√6,c=5-2√6,则b=. 答案 1考点三 等比数列的前n 项和1.(2017某某,9,5分)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=. 答案 32解析 设等比数列{a n }的公比为q. 当q=1时,S 3=3a 1,S 6=6a 1=2S 3,不符合题意,∴q≠1,由题设可得{a 1(1-a 3)1-a =74,a 1(1-a 6)1-a=634,解得{a 1=14,a =2,∴a 8=a 1q 7=14×27=32.2.(2018某某,18,13分)设{a n }是等差数列,其前n 项和为S n (n∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.解析 (1)设等比数列{b n }的公比为q.由b 1=1,b 3=b 2+2,可得q 2-q-2=0.因为q>0,可得q=2,故b n =2n-1.所以,T n =1-2a1-2=2n-1.设等差数列{a n }的公差为d.由b 4=a 3+a 5,可得a 1+3d=4. 由b 5=a 4+2a 6,可得3a 1+13d=16,从而a 1=1,d=1,故a n =n, 所以,S n =a (a +1)2.(2)由(1),有T 1+T 2+…+T n =(21+22+ (2))-n=2×(1-2a )1-2-n=2n+1-n-2.由S n +(T 1+T 2+…+T n )=a n +4b n 可得a (a +1)2+2n+1-n-2=n+2n+1,整理得n 2-3n-4=0,解得n=-1(舍),或n=4. 所以,n 的值为4.3.(2016,15,13分)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b4. (1)求{a n }的通项公式;(2)设=a n +b n ,求数列{}的前n 项和. 解析 (1)等比数列{b n }的公比q=a 3a 2=93=3,(1分)所以b 1=a 2a=1,b 4=b 3q=27.(3分)设等差数列{a n }的公差为d. 因为a 1=b 1=1,a 14=b 4=27, 所以1+13d=27,即d=2.(5分) 所以a n =2n-1(n=1,2,3,…).(6分) (2)由(1)知,a n =2n-1,b n =3n-1. 因此=a n +b n =2n-1+3n-1.(8分)从而数列{}的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n-1=a (1+2a -1)2+1-3a1-3=n 2+3a -12.(13分)C 组 教师专用题组考点一 等比数列的定义及通项公式1.(2014某某,17,12分)在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 解析 (1)设{a n }的公比为q,依题意得{a 1q =3,a 1a 4=81,解得{a 1=1,a =3.因此,a n =3n-1.(2)因为b n =log 3a n =n-1, 所以数列{b n }的前n 项和S n =a (a 1+a a )2=a 2-n2.2.(2014,15,13分)已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列. (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.解析 (1)设等差数列{a n }的公差为d,由题意得 d=a 4-a 13=12-33=3.所以a n =a 1+(n-1)d=3n(n=1,2,…).设等比数列{b n -a n }的公比为q,由题意得 q 3=a 4-a 4a 1-a 1=20-124-3=8,解得q=2.所以b n -a n =(b 1-a 1)q n-1=2n-1. 从而b n =3n+2n-1(n=1,2,…). (2)由(1)知b n =3n+2n-1(n=1,2,…).数列{3n}的前n 项和为32n(n+1),数列{2n-1}的前n 项和为1×1-2a1-2=2n-1. 所以数列{b n }的前n 项和为32n(n+1)+2n-1.3.(2013某某,16,12分)在等比数列{a n}中,a2-a1=2,且2a2为3a1和a3的等差中项,求数列{a n}的首项、公比及前n项和.解析设该数列的公比为q.由已知,可得a1q-a1=2,4a1q=3a1+a1q2,所以a1(q-1)=2,q2-4q+3=0,解得q=3或q=1.由于a1(q-1)=2,因此q=1不合题意,应舍去.故公比q=3,首项a1=1.所以数列的前n项和S n=3a-12.4.(2013某某,19,14分)已知首项为32的等比数列{a n}的前n项和为S n(n∈N*),且-2S2,S3,4S4成等差数列.(1)求数列{a n}的通项公式;(2)证明S n+1a a ≤136(n∈N*).解析(1)设等比数列{a n}的公比为q,因为-2S2,S3,4S4成等差数列,所以S3+2S2=4S4-S3,即S4-S3=S2-S4,可得2a4=-a3,于是q=a4a3=-12.又a1=32,所以等比数列{a n}的通项公式为a n=32×(-12)a-1=(-1)n-1·32a.(2)证明:S n=1-(-12)a,S n+1a a=1-(-12)a+11-(-12)a={2+12a(2a+1),n为奇数,2+12a(2a-1),n为偶数.当n为奇数时,S n+1a a 随n的增大而减小,所以S n+1a a≤S1+1a1=136.当n为偶数时,S n+1a a 随n的增大而减小,所以S n+1a a≤S2+1a2=2512.故对于n∈N*,有S n+1a a ≤136.考点二等比数列的性质及其应用1.(2018某某,10,4分)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则( )A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4答案 B2.(2014大纲全国,8,5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=( )A.31B.32C.63D.64答案 C3.(2013某某,14,5分)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=.答案63考点三等比数列的前n项和1.(2013课标Ⅰ,6,5分)设首项为1,公比为2的等比数列{a n}的前n项和为S n,则( )3A.S n=2a n-1B.S n=3a n-2C.S n=4-3a nD.S n=3-2a n答案 D2.(2013某某,12,5分)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于.答案 63.(2013,11,5分)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=;前n项和S n=.答案2;2n+1-24.(2015某某,16,12分)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n-a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;}的前n项和为T n,求T n.(2)设数列{1a a解析(1)由已知S n=2a n-a1,有a n=S n-S n-1=2a n-2a n-1(n≥2),即a n=2a n-1(n≥2).从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1).所以a1+4a1=2(2a1+1),解得a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n =2n.(2)由(1)得1a a=12a .所以T n =12+122+…+12a =12[1-(12)a ]1-12=1-12a .5.(2015某某,16,13分)已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解析 (1)设{a n }的公差为d,则由已知条件得 a 1+2d=2,3a 1+3×22d=92,化简得a 1+2d=2,a 1+d=32, 解得a 1=1,d=12, 故通项公式a n =1+a -12,即a n =a +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8.设{b n }的公比为q,则q 3=a 4a 1=8,从而q=2,故{b n }的前n 项和T n =a 1(1-a a )1-a =1×(1-2a )1-2=2n-1.6.(2014某某,19,12分)设等差数列{a n }的公差为d,点(a n ,b n )在函数f(x)=2x的图象上(n∈N *). (1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln2,求数列{a n a a 2}的前n 项和S n . 解析 (1)证明:由已知可知,b n =2a a >0, 当n≥1时,a a +1a a=2a a +1-a a =2d, 所以数列{b n }是首项为2a 1,公比为2d的等比数列.(2)函数f(x)=2x的图象在(a 2,b 2)处的切线方程为y-2a 2=(x-a 2)2a 2ln 2,该切线在x 轴上的截距为a 2-1ln2.由题意知,a 2-1ln2=2-1ln2,解得a 2=2. 所以d=a 2-a 1=1,a n =n,b n =2n,a n a a 2=n·4n.于是,S n =1×4+2×42+3×43+…+(n -1)×4n-1+n×4n,4S n =1×42+2×43+…+(n -1)×4n +n×4n+1, 因此S n -4S n =4+42+ (4)-n×4n+1=4a +1-43-n×4n+1=(1-3a )4a +1-43.所以S n =(3a -1)4a +1+49.7.(2013某某,19,13分)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18. (1)求数列{a n }的通项公式;(2)是否存在正整数n,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解析 (1)设数列{a n }的公比为q,则a 1≠0,q≠0.由题意得{a 2-a 4=a 3-a 2,a 2+a 3+a 4=-18,即{-a 1a 2-a 1a 3=a 1a 2,a 1q(1+q +a 2)=-18, 解得{a 1=3,a =-2.故数列{a n }的通项公式为a n =3×(-2)n-1. (2)由(1)有S n =3·[1-(-2)a]1-(-2)=1-(-2)n.若存在n,使得S n ≥2 013,则1-(-2)n≥2 013, 即(-2)n≤-2 012.当n 为偶数时,(-2)n>0,上式不成立;当n 为奇数时,(-2)n=-2n≤-2 012,即2n≥2 012,则n≥11.综上,存在符合条件的正整数n,且所有这样的n 的集合为{n|n=2k+1,k∈N ,k≥5}.【三年模拟】 时间:45分钟 分值:55分一、选择题(每小题5分,共30分)1.(2018某某某某一模,3)若等比数列{a n }的前n 项和为S n ,且S 2=3,S 6=63,则S 5=( ) A.-33 B.15 C.31 D.-33或31 答案 D2.(2018某某某某调研,4)已知等比数列{a n }的公比为正数,前n 项和为S n ,a 1+a 2=2,a 3+a 4=6,则S 8等于( ) A.81-27√3 B.54C.38-1D.80 答案 D3.(2019届某某模拟,6)设数列{(n 2+n)a n }是等比数列,且a 1=16,a 2=154,则数列{3na n }的前15项和为( )A.1415B.1516C.1617D.1718答案 B4.(2019届某某渝中区模拟,7)已知各项均为正的等比数列{a n }中,a 2与a 8的等比中项为√2,则a 42+a 62的最小值是( ) A.1B.2C.4D.8答案 C5.(2019届某某双台子区模拟,5)已知等比数列{a n }的各项均为正数,S n 为其前n 项和,且满足:a 1+3a 3=72,S 3=73,则a 4=( ) A.14B.18C.4D.8答案 A6.(2019届某某杨浦区模拟,11)在数列{a n }中,a 1=1,a 2=64,且数列{a a +1a a}是等比数列,其公比q=-12,则数列{a n }的最大项等于( ) A.a 7B.a 8C.a 6或a 9D.a 10答案 C二、填空题(共5分)7.(2019届某某某某模拟,15)已知等比数列{a n }的前n 项和S n =3n+r,则a 3-r=,若数列{a (a +4)(23)a}的最大项是第k 项,则k=. 答案 19;4三、解答题(共20分)8.(2018某某福安一中考试,17)已知等比数列{a n }的各项均为正数,且a 2=4,a 3+a 4=24. (1)求数列{a n }的通项公式;(2)若数列{b n }的前n 项和S n =n 2+n+2n+1-2(n∈N *),求证:数列{a n -b n }是等差数列. 解析 (1)设等比数列{a n }的公比为q,依题意知q>0. 因为{a 2=4,a 3+a 4=24,所以{a 1q =4,a 1a 2+a 1a 3=24,两式相除得q 2+q-6=0,解得q=2或q=-3(舍去).所以a 1=a2a =2. 所以数列{a n }的通项公式为a n =a 1·q n-1=2n.(2)证明:当n=1时,b1=4;当n≥2时,b n=S n-S n-1=n2+n+2n+1-2-(n-1)2-(n-1)-2n+2=2n+2n,又b1=4符合此式,∴b n=2n+2n(n∈N*).设=a n-b n,则=-2n,当n≥2时,--1=-2,∴{}即{a n-b n}是等差数列.9.(2019届某某模拟,18)已知等比数列{a n}的公比q>1,且满足:a2+a3+a4=28,a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式;(2)若b n=a n lo g12a n,S n=b1+b2+…+b n,求使S n+n·2n+1>62成立的正整数n的最小值.解析(1)由a3+2是a2,a4的等差中项,得a2+a4=2(a3+2).因为a2+a3+a4=28,所以a2+a4=28-a3,所以2(a3+2)=28-a3,解得a3=8,所以a2+a4=20,所以{a1q+a1a3=20,a1a2=8,解得{a1=2,a=2,或{a1=32,a=12.又q>1,所以{a n}为递增数列. 所以a1=2,q=2,所以a n=2n.(2)b n=a n lo g12a n=2n·log122n=-n·2n.S n=b1+b2+…+b n=-(1×2+2×22+…+n×2n)①,则2S n=-(1×22+2×23+…+n×2n+1)②,②-①,得S n=(2+22+…+2n)-n·2n+1=2n+1-2-n·2n+1, 即数列{b n}的前n项和S n=2n+1-2-n·2n+1,由S n+n·2n+1=2n+1-2>62,得n>5,所以正整数n的最小值为6.。
安徽省迎河中学2014届高考数学考前模拟试题 理 新人教A版
2014届安徽省迎河中学高考模拟数 学 试 题 (理)一、选择题:本大题共10小题,每小题5分.(1)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则(A )=B A ∅ (B )R =B A (C )A B ⊆ (D )B A ⊆ (2)若复数z 满足()i 34i 43+=-z ,则z 的虚部为 (A )4- (B )54-(C )4 (D )54(3)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右(4)已知双曲线C :)0,0(12222>>=-b a b y a x 的离心率为25,则C 的渐近线方程为 (A )x y 41±=(B )x y 31±=(C ) x y 21±=(D )x y ±= (5)执行右面的程序框图,如果输入的[]31t ,-∈,则输出的s 属于 (A )[]43,- (B )[]25,- (C )[]34,- (D )[]52,- (6)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则=m(A )3 (B )4 (C )5 (D )6(7)某几何体的三视图如右图所示,则该几何体的体积为(A )8π16+ (B )8π8+ (C )π6116+(D )16π8+ (8)在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为(A )=0()cos=2R θρρ∈和 (B )=()cos=22R πθρρ∈和(C ) =()cos=12R πθρρ∈和 (D )=0()cos=1R θρρ∈和(9)已知函数⎩⎨⎧+≤+-=0),1(ln 02)(2>x x x ,x x f , 若ax x f ≥)(,则a 的取值范围是(A )](0,∞- (B )](1,∞- (C )[]12,- (D )[]02,-(10)设n n n C B A △的三边长分别为n a ,n b ,n c ,n n n C B A △的面积为n S ,3,2,1=n …… 若1b >1c ,1112a c b =+,n n a a =+1,2n 1a c b n n +=+,2n1a b c n n +=+,则 (A ){}n S 为递减数列 (B ){}n S 为递增数列 (C ){}12-n S 为递增数列,{}n S 2为递减数列 (D ){}12-n S 为递减数列,{}n S 2为递增数列二..填空题:本大题共5小题,每小题5分,共25分。
高考数学新人教A版(理科)一轮复习课件:第二篇函数、导数及其应用第5节对数函数
则需 22<a<1(如图所示).
当
a>1
时,不符合题意,舍去.所以实数
a
的取值范围是
22,1.故
选 B.
返回导航
考点三 对数函数的性质及应用 考查角度 1:比较大小.
设 a=log3π,b=log2 3,c=log3 2,则( )
(A)a>b>c
(B)a>c>b
(C)b>a>c
(D)b>c>a
返回导航
返回导航
(2)B 由题意得,当 0<a<1 时,要使得 4x
<logax0<x≤12,即当 0<x≤12时,函数 y=4x 的图 象在函数 y=logax 图象的下方.
又当 x=12时,412=2,即函数 y=4x 的图象过
点12,2,把点12,2代入函数 y=logax,得 a= 22, 若函数 y=4x 的图象在函数 y=logax 图象的下方,
返回导航
【反思归纳】 (1)logaf(x)>logag(x) ⇔
或
.
(2)有关形如 y=logaf(x)的单调性:先求定义域,根据复合函数 y=
logau,u=f(x)的单调性(判断)求解.
(3)对于形如 y=logaf(x)(a>0 且 a≠1)的复合函数的值域的求解步骤
为:①分解成 y=logau,u=f(x)两个函数;②求 f(x)的定义域;③求 u
返回导航
考查角度 4:与对数函数有关的参数取值(范围)问题. 高考扫描:2013 高考新课标全国卷Ⅰ
函数 (A)(-∞,2) (C)(2,3)∪(3,+∞)
的定义域是( ) (B)(2,+∞) (D)(2,4)∪(4,+∞)
返回导航
C 解析:要使函数有意义就满足
,
2020版高考数学第五章数列第2节等差数列及其前n项和讲义理(含解析)新人教A版
第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.体会等差数列与一次函数的关系.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.[微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数. (4)若公差d =0,则前n 项和不是二次函数. 答案 (1)√ (2)√ (3)× (4)×2.(必修5P46A2改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A.31B.32C.33D.34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32.答案 B3.(必修5P68A8改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( ) A.-3B.-52C.-2D.-4解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎪⎨⎪⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4. 答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中, ∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0,∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5. 答案 S 5考点一 等差数列基本量的运算【例1】 (1)(一题多解)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8(2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( ) A.9B.10C.11D.15解析 (1)法一 设等差数列{a n }的公差为d , 依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4. 法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7, ∴a m =a 1+(m -1)d =7m -40=30,∴m =10. 答案 (1)C (2)B规律方法 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于( ) A.3 B.4 C.log 318 D.log 324(2)(一题多解)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2, 解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318, ∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d , 由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎪⎨⎪⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎪⎨⎪⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎪⎨⎪⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30.答案 (1)A (2)30考点二 等差数列的判定与证明 典例迁移【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列. 【迁移探究2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n . 规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. 2.判定一个数列是等差数列还常用到结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23.=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列. 考点三 等差数列的性质及应用 多维探究角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6B.12C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120, 由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48. 答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45, 所以a 7+a 8+a 9=45. 答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则 (1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1); (2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( ) A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3, ∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质, ∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8. ∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A 考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立. (1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0, 因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2). 所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2nλ. (2)当a 1>0,λ=100时,由(1)知,a n =2n100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n=2-n lg 2,所以数列{b n }是单调递减的等差数列,公差为-lg 2, 所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大.规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值. ①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( )A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎪⎨⎪⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S nn=na 1+n (n -1)2dn=-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110[思维升华]1.证明等差数列可利用定义或等差中项的性质,另外还常用前n 项和S n =An 2+Bn 及通项a n =pn +q 来判断一个数列是否为等差数列. 2.等差数列基本量思想(1)在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解. (2)若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d .若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.(3)灵活使用等差数列的性质,可以大大减少运算量. [易错防范]1.用定义法证明等差数列应注意“从第2项起”,如证明了a n +1-a n =d (n ≥2)时,应注意验证a 2-a 1是否等于d ,若a 2-a 1≠d ,则数列{a n }不为等差数列.2.利用二次函数性质求等差数列前n 项和最值时,一定要注意自变量n 是正整数.基础巩固题组 (建议用时:40分钟)一、选择题1.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100B.99C.98D.97解析 设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧9a 1+36d =27,a 1+9d =8,所以⎩⎪⎨⎪⎧a 1=-1,d =1, 所以a 100=a 1+99d =-1+99=98. 答案 C2.(2019·淄博调研)设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( )A.1B.-1C.2D.12 解析 由于S 11S 9=11a 69a 5=119×911=1. 答案 A 3.(2019·中原名校联考)若数列{a n }满足1a n +1-1a n =d (n ∈N *,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( )A.10B.20C.30D.40解析 依题意,11x n +1-11x n=x n +1-x n =d , ∴{x n }是等差数列.又x 1+x 2+…+x 20=20(x 1+x 20)2=200. ∴x 1+x 20=20,从而x 5+x 16=x 1+x 20=20.答案 B4.(2019·北京海淀区质检)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( )A.174斤B.184斤C.191斤D.201斤解析 用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数,由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996,∴8a 1+8×72×17=996,解之得a 1=65. ∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤.答案 B5.已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则S n 取最大值时的n 为( ) A.4 B.5 C.6 D.4或5 解析 由{a n }为等差数列,得S 99-S 55=a 5-a 3=2d =-4, 即d =-2,由于a 1=9,所以a n =-2n +11,令a n =-2n +11<0,得n >112, 所以S n 取最大值时的n 为5.答案 B二、填空题6.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为________.解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n 解得n =5,故这个数列的项数为10.答案 107.已知数列{a n }满足a 1=1,a n -a n +1=2a n a n +1,则a 6=________. 解析 将a n -a n +1=2a n a n +1两边同时除以a n a n +1,1a n +1-1a n =2. 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,2为公差的等差数列, 所以1a 6=1+5×2=11,即a 6=111. 答案 1118.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析 依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200. 答案 200三、解答题9.等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2≤2n +35<3,b n =2; 当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4≤2n +35<5,b n =4. 所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n ,证明:数列{b n }是等差数列,并求其前n 项和T n .(1)解 设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k , 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)证明 由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2.能力提升题组(建议用时:20分钟)11.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269. 答案 B12.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( ) A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1),所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A13.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 13014.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81,∴⎩⎪⎨⎪⎧2a 7=26,9a 5=81,解得⎩⎪⎨⎪⎧a 7=13,a 5=9, ∴d =a 7-a 57-5=13-92=2,∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.新高考创新预测15.(多填题)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=________,公差d =________.解析 由{a n }为等差数列,得数列⎩⎨⎧⎭⎬⎫S n n 是首项为a 1,公差为d 2的等差数列,∵S 55-S 44=2,∴d 2=2⇒d =4,又S 2=S 6⇒2a 1+4=6a 1+6×52×4⇒a 1=-14. 答案 -14 4。
高考数学 热点题型和提分秘籍 专题05 函数的单调性与最值 理(含解析)新人教A版-新人教A版高三全
2016年高考数学 热点题型和提分秘籍 专题05 函数的单调性与最值理(含解析)新人教A 版【高频考点解读】1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用函数的图象理解和研究函数的性质. 【热点题型】题型一 函数单调性的判断例1、(1)下列函数f (x )中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-x D .f (x )=ln(x +1)(2)函数y =x +2x +1在(-1,+∞)上是________(填“增函数”或“减函数”). 【答案】 (1)C(2)减函数 【解析】【提分秘籍】(1)图象法作图象→看升降→归纳单调性区间(2)转化法(3)导数法求导→判断f′x正、负→单调性区间(4)定义法取值→作差→变形→定号→单调性区间求函数的单调区间,一定要注意定义域优先原则.【举一反三】下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=x+1B.y=(x-1)2C.y=2-x D.y=log0.5(x+1)【答案】A【解析】题型二求函数的单调区间例2、求下列函数的单调区间:(1)y=-x2+2|x|+1;(2)y=log1(x2-3x+2).2解析(1)由于y=⎩⎪⎨⎪⎧-x 2+2x +1x ≥0,-x 2-2x +1x <0,即y =⎩⎪⎨⎪⎧-x -12+2x ≥0,-x +12+2x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).【提分秘籍】(1)求函数的单调区间与确定单调性的方法一致.常用的方法有:①利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. ②定义法:先求定义域,再利用单调性定义确定单调区间.③图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间.(2)若函数f (x )的定义域上(或某一区间上)是增函数,则f (x 1)<f (x 2)⇔x 1<x 2.利用上式,可以去掉抽象函数的符号,将函数不等式(或方程)的求解化为一般不等式(或方程)的求解,但无论如何都必须在定义域内或给定的X 围内进行.【举一反三】求下列函数的单调区间,并指出其增减性. (1)y =(a >0且a ≠1);(2)y =log 12(4x -x 2).题型三函数单调性的应用例3、已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f (x )=e x+sin x ,则( )A .f (1)<f (2)<f (3)B .f (2)<f (3)<f (1)C .f (3)<f (2)<f (1)D .f (3)<f (1)<f (2) 【答案】D【解析】由f (x )=f (π-x ),得函数f (x )的图象关于直线x =π2对称,又当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f ′(x )=e x +cos x >0恒成立,所以f (x )在⎝ ⎛⎭⎪⎫-π2,π2上为增函数,f (2)=f (π-2),f (3)=f (π-3),且0<π-3<1<π-2<π2,所以f (π-3)<f (1)<f (π-2),即f (3)<f (1)<f (2).【提分秘籍】1.高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.2.高考对函数单调性的考查主要有以下几个命题角度: (1)利用函数的单调性比较大小.(2)利用函数的单调性解决与抽象函数有关的不等式问题. (3)利用函数的单调性求参数.(4)利用函数的单调性求解最值(或恒成立)问题.【方法规律】(1)含“f ”号不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.(2)分段函数单调性解法为了保证函数在整个定义域内是单调的,除了要分别保证各段表达式在对应区间上的单调性一致外,还要注意两段连接点的衔接.【举一反三】已知函数f (x )的定义域是(0,+∞),且满足f (xy )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫12=1,如果对于0<x <y ,都有f (x )>f (y ).(1)求f (1)的值;(2)解不等式f (-x )+f (3-x )≥-2.则⎩⎪⎨⎪⎧x <0,-x 2·3-x 2≤1,解得-1≤x <0.∴不等式的解集为{x |-1≤x <0}. 【变式探究】已知f (x )=⎩⎪⎨⎪⎧3-a x -a x <1log a x x ≥1是(-∞,+∞)上的增函数,则a 的取值X 围是( ) A .(1,+∞) B .(1,3) C.⎣⎢⎡⎭⎪⎫32,3D.⎝ ⎛⎭⎪⎫1,32【答案】⎣⎢⎡⎭⎪⎫32,3 【解析】【高考风向标】【2015高考某某,理6】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =- 【答案】B【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.【2015高考某某,理15】设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】①③④⑤ 【解析】(2014·卷)下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.(2014·某某卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 【答案】D【解析】由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1; 当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).(2014·某某卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.【答案】1【解析】由题意可知,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12=f ⎝ ⎛⎭⎪⎫-12=-4⎝ ⎛⎭⎪⎫-122+2=1. (2014·某某卷)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R,∃a ∈D ,f (a )=b ”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=a ln(x+2)+xx2+1(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有________.(写出所有真命题的序号)【答案】①③④【解析】(2014·某某卷)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值X围.【解析】(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2, 则g (0)=a -e +2>0,g (1)=1-a >0, 解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值X 围是(e -2,1).(2013·某某卷)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值; (3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值X 围. 【解析】所以,函数f(x)的图像在点A,B处的切线互相垂直时,x2-x1的最小值为1.(2013·某某卷)设函数f(x)=e x+x-a(a∈R,e为自然对数的底数).若曲线y=sinx上存在(x0,y0)使得f(f(y0))=y0,则a的取值X围是( )A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]【答案】A【解析】因为y0=sin x0∈[-1,1],且f(x)在[-1,1]上(有意义时)是增函数,对于y 0∈[-1,1],如果f(y 0)=c >y 0,则f(f(y 0))=f(c)>f(y 0)=c >y 0,不可能有f(f(y 0))=y 0.同理,当f(y 0)=d <y 0时,则f(f(y 0))=f(d)<f(y 0)=d <y 0,也不可能有f(f(y 0))=y 0,因此必有f(y 0)=y 0,即方程f(x)=x 在[-1,1]上有解,即e x+x -a =x 在[-1,1]上有解.显然,当x <0时,方程无解,即需要e x+x -a =x 在[0,1]上有解.当x≥0时,两边平方得e x+x -a =x 2,故a =e x-x 2+x.记g(x)=e x-x 2+x ,则g′(x)=e x-2x +1.当x∈⎣⎢⎡⎦⎥⎤0,12时,e x>0,-2x +1≥0,故g′(x)>0,当x∈⎝ ⎛⎦⎥⎤12,1时,e x>e >1,0>-2x +1≥-1,故g′(x)>0.综上,g′(x)在x∈[0,1]上恒大于0,所以g(x)在[0,1]上为增函数,值域为[1,e],从而a 的取值X 围是[1,e].(2013·某某卷)函数y =x33x -1的图像大致是( )【答案】C【解析】函数的定义域是{x∈R|x≠0},排除选项A ;当x<0时,x 3<0,3x-1<0,故y>0,排除选项B ;当x→+∞时,y>0且y→0,故为选项C 中的图像.(2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .x 0∈R,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=0 【答案】C【解析】【高考押题】1.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A. k >12 B. k <12C. k >-12D. k <-12【答案】D【解析】使y =(2k +1)x +b 在(-∞,+∞)上是减函数,则2k +1<0,即k <-12.2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A. y =x 3B. y =|x |+1C. y =-x 2+1 D. y =2-|x |【答案】B 【解析】3.已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A. f (4)>f (-6)B. f (-4)<f (-6)C. f (-4)>f (-6)D. f (4)<f (-6) 【答案】C【解析】由(x 1-x 2)(f (x 1)-f (x 2))>0知f (x )在(0,+∞)上递增,∴f (4)<f (6)⇔f (-4)>f (-6).4. 函数y =(12)2x 2-3x +1的递减区间为( )A. (1,+∞)B. (-∞,34)C. (12,+∞)D. [34,+∞)【答案】D【解析】设t =2x 2-3x +1,其递增区间为[34,+∞),∴复合函数递减区间为[34,+∞),选D 项.5. 函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A. (-∞,0)∪(12,2] B. (-∞,2]C. (-∞,12)∪[2,+∞) D. (0,+∞)【答案】A【解析】∵x ∈(-∞,1)∪[2,5),y =2x -1在(-∞,1)上为减函数,在[2,5)上也为减函数,则x -1∈(-∞,0)∪[1,4). ∴2x -1∈(-∞,0)∪(12,2]. 6. 设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧gx +x +4,x <g x ,g x -x ,x ≥g x .则f (x )的值域是( )A. [-94,0]∪(1,+∞)B. [0,+∞)C. [-94,+∞)D. [-94,0]∪(2,+∞)【答案】D 【解析】7. 函数f (x )=x 2-2x -3的单调增区间为________. 【答案】[3,+∞)【解析】定义域x 2-2x -3≥0,∴x ≤-1或x ≥3,函数的递增区间为[3,+∞). 8. 函数y =xx +a在(-2,+∞)上为增函数,则a 的取值X 围是________.【答案】a ≥2 【解析】y =xx +a=1-ax +a,依题意,得函数的单调增区间为(-∞,-a )、(-a ,+∞),要使函数在(-2,+∞)上为增函数,只要-2≥-a ,即a ≥2.9.设函数f (x )的图象关于y 轴对称,又已知f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f -x +f xx<0的解集为________.【答案】(-1,0)∪(1,+∞) 【解析】10.已知函数f (x )是定义在(0,+∞)上的减函数,且满足f (xy )=f (x )+f (y ),f (13)=1.(1)求f (1);(2)若f (x )+f (2-x )<2,求x 的取值X 围.解:(1)令x =y =1,则f (1)=f (1)+f (1),∴f (1)=0. (2)∵2=1+1=f (13)+f (13)=f (19),∴原不等式等价于f [x (2-x )]<f (19),由f (x )为(0,+∞)上的减函数,得⎩⎪⎨⎪⎧x >0,2-x >0,x 2-x >19,⇒⎩⎪⎨⎪⎧x >0,2-x >0,1-223<x <1+223,⇒1-223<x <1+223,即x 的取值X 围为(1-223,1+223).11. 已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值X 围.12.已知函数g (x )=x +1,h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域; (2)当a =14时,求函数f (x )的值域.解:(1)f (x )=x +1x +3,x ∈[0,a ],(a >0). (2)函数f (x )的定义域为[0,14],令x +1=t ,则x =(t -1)2,t ∈[1,32],f (x )=F (t )=tt 2-2t +4=1t +4t-2, ∵t =4t 时,t =±2∉[1,32],又t ∈[1,32]时,t +4t 单调递减,F (t )单调递增,F (t )∈[13,613]. 即函数f (x )的值域为[13,613].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省
2013届高考模拟冲刺(五)
数学(理)试题
考生注意:
1.本试卷分第1卷(选择题)和第II 卷(非选择题)两部分。
2.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、班级和考号填写在试卷的相应位置。
3.请将第I 卷的答案填在第II 卷前面的答案栏上。
第Ⅱ卷用0.5毫米黑色墨水签字笔答题。
4.本次考试时间120分钟,试卷满分150分。
第I 卷 (选择题共50分)
一、选择题(本大题包括10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知i 是虚数单位,则复数号
1i i +在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限
D .第四象限 2.已知集合2{|2,},{|,},x M y y x R N y y x x R M N ==∈==∈⋂则
A .{2,4}
B .{(2,4),(4,16)}
C .(0,∞)
D .[0,+∞)
3.在等差数列{}n a 中,已知S n 是其前n 项和,且a 1 –a 4 –a 8 -a n +a 15=2,则S 15 =
A .-30
B .30
C .-15
D .15
4.在极坐标系中,圆4cos cos sin ,a a ρθρθρθ=+=的圆心在直线上则的值为
A .0
B .1
C .2
D .3
5.432(1)(1x x -的展开式中的系数是
A .—6
B .—3
C .0
D .3
6.已知双曲线22221(0,0)x y a b a b -=>>(c 为双曲线的半焦距长),则该双曲线的离心率为
A .3
B
C .2 D
7.已知函数()f x 是定义在R 上的偶函数,且当0,()ln(1)x f x x ≥=+时,则函数()f x 的
大致图 像为
8.一个几何体的三视图如图所示,则该几何体的体积为
A .1516
B .4748
C .9596
D .1
9.方程3cos()sin()022
x x x π
π++-=在实数集内解的个数为 A .1 B .2 C .3 D .至少4个
10.经过正方体ABCD-A 1B 1C 1D 1任意两个顶点的直线中,与AC 成异面直线且所成角为60°的
直 线的概率为
A .114
B .17
C .314
D .27
第Ⅱ卷(非选择题共100分)
二、填空题(本大题包括5小题,每小题5分,共25分.把答案填写在题中横线上)
11.命题“若22,12x x x -<-<<则”的否定是 。
12.程序框图(算法流程图)如图所示,其输出结果是 。
13.若x ,y 满足约束条件,其中11,1
y a x +>+且的 最大值为3,则a 的值为 。
14.已知向量a 在向量b 上的投影为2,且||a b a b --与b 的夹角为34
π,则|a|= 。
15.△ABC 的三个角的正弦值对应等于△A 1B 1 C 1的三个角的余弦值,在△ABC 中,角A 、B 、
C 的 对边分别为a 、b 、c ,且角A 、B 是△ABC 中的两个较小的角,则下列结论中正确的是 .(写出所有正确结论的编号)
①△A 1B 1C 1是锐角三角形;②△ABC 是钝角三角形;③sinA>cosB
④222
0a b c +->
⑤若c=4,则ab<8.
三、解答题(本大题包括6小题,共75分.解答应写出文字说明、证明过程或演算步骤)
16.(本小题满分12分)
在一次数学考试中,第22题第第23题为选做题,规定每位考生必须且只需在其中选做一题,设4名考生中每位考生选做第22题的概率为13
,选做第23题的概率为23。
(I )求这4名考生中甲、乙两名学生选做同一道题的概率;
(II )设这4名考生中选做第22题的学生入数为X ,求X 的分布列及期望。
17.(本小题满分12分)
在△ABC 中,a 、b 、c 分别为内角A 、B 、C 的对边,acosC ,bcosB ,ccosA 成等差数列 (I )求角B;
(Ⅱ)若a+c=4,求AC 边上的中线长的最小值.
18.(本小题满分12分)
在等比数列2212362211{},,,log 2log 2,{}4512
n n n n n n a a a a a a b T b +=
⋅==⋅中设为数列的前n 项和
(I )求n n a T 和;
(Ⅱ)若对任意的n ∈N *,不等式2(1)n n T n λ<--恒成立,求实数λ的取值范围.
19.(本小题满分13分)
如图所示,等腰梯形PDAB 中,PB ∥DA ,PB=4,AD=PD=2,C 为PB 的中点,将△PCD 沿CD 折起,使平面PCD ⊥平面ABCD ,点M 为折叠后边PB 的中点
(I )求证:PA ⊥平面CDM;
(Ⅱ)求二面角D —MC —B 的余弦值.
20.(本小题满分13分) 已知函数21()ln 1.2
a f x a x x +=+
+ (I )当11,()[,]2a f x e e =-时求在区间上的最值 (Ⅱ)讨论函数()f x 的单调性.
21.(本小题满分13分)
已知椭圆C :22221(0)x y a b a b +=>>的两个焦点为F 1,F 2,其离心率e <,P 为椭圆C 上一点,且△PF 1 F 2为直角三角形,12135||,||.33
PF PF =
= (I )求椭圆C 的方程5
(II )若直线l 过圆M :22420x y x y ++-=的圆心M ,交椭圆C 于A ,B 两点,且A ,
B 关于点M 对称,求直线l 的方程.。