傅里叶变换与数字图像处理
傅里叶变换与数字图像处理

标签:it傅里叶变换是将时域信号分解为不同频率的正弦和/余弦和的形式。
傅里叶变换是数字图像处理技术的基础,其通过在时域和频域来回切换图像,对图像的信息特征进行提取和分析。
一维傅里叶变换及其反变换单变量连续函数,f(x)的傅里叶变换F(u)定义为等式:u=0, 1, 2,…,M1相瓯给定F®),通过溥里叶氏变换可以訣得K幼J—tZ这两个等式姐咸了傭里叶变换对9它fl指出在前一节中提到的董要尊实.即一t■函鞍可以从它的反变换中重新获得。
: 尸仏V)二[[/(砂)尹诚旳如刼J 一8 J —OC类愎地,反变換为:/(X, v) = f I F(阳)/咖+诃J—00 00单变童离欝函b N・r M-l)的傅里叶变换由以下等式绪也I M-1.v=0同样,给出F(u),能用反DFT来获得原函数:川门二工尸(心」皿卫i/=0x=Of 1? 2i■> MT从瓯拉公式中得至花""-cos^+ /sin^律出:A/-11 'I -1=一V f ix\Qos(—2mtx}/ M + / sin(—2^?/A if ( A- /cos 2.77a / M -j sin 2 mtx / M)其中,u=0, 1, 2,…,M 一1。
因此,我们看到傅里叶变换的每项[即对于每个u 值,F(u)的值由f(x)函数所有值的和组成。
f(x)的值则与各种频率的正弦值和余弦值相乘。
F(u)值的范围覆盖的域(u的值)称为频率域,因为u决定了变换的频率成分(x 也作用于频率,但它们相加,对每个u值有相同的贡献)。
F(u)的M项中的每一个被称为变换的频率分量。
使用术语频率域”和频率成分”与时间域”和时间成分”没有差别,如果x是一个时间变量,可以用它来表示f(x)的域和值。
二维DFT及其反变换一维离散傅里叶变换及其反变换向二维扩展是简单明了的。
一个图像尺寸为MX N的函数f(x,y)的离散傅里叶变换由以下等式给出:像在一维中的情形一样,此表达式必须对u值(u=0, 1, 2,…,M-1)和v值(v=0 , 1, 2,…,N-1)计算。
傅里叶变换与数字图像处理-推荐下载

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
【数字图像处理】傅里叶变换在图像处理中的应用

【数字图像处理】傅⾥叶变换在图像处理中的应⽤1.理解⼆维傅⾥叶变换的定义1.1⼆维傅⾥叶变换1.2⼆维离散傅⾥叶变换1.3⽤FFT计算⼆维离散傅⾥叶变换1.3图像傅⾥叶变换的物理意义2.⼆维傅⾥叶变换有哪些性质?2.1⼆维离散傅⾥叶变换的性质2.2⼆维离散傅⾥叶变换图像性质3.任给⼀幅图像,对其进⾏⼆维傅⾥叶变换和逆变换4.附录 94.1matlab代码4.2参考⽂献⽬录1.理解⼆维傅⾥叶变换的定义1.1⼆维傅⾥叶变换⼆维Fourier变换:逆变换:1.2⼆维离散傅⾥叶变换⼀个图像尺⼨为M×N的函数的离散傅⾥叶变换由以下等式给出:其中和。
其中变量u和v⽤于确定它们的频率,频域系统是由所张成的坐标系,其中和⽤做(频率)变量。
空间域是由f(x,y)所张成的坐标系。
可以得到频谱系统在频谱图四⾓处沿和⽅向的频谱分量均为0。
离散傅⾥叶逆变换由下式给出:令R和I分别表⽰F的实部和需部,则傅⾥叶频谱,相位⾓,功率谱(幅度)定义如下:1.3⽤FFT计算⼆维离散傅⾥叶变换⼆维离散傅⾥叶变换的定义为:⼆维离散傅⾥叶变换可通过两次⼀维离散傅⾥叶变换来实现:1)作⼀维N点DFT(对每个m做⼀次,共M次)2)作M点的DFT(对每个k做⼀次,共N次)这两次离散傅⾥叶变换都可以⽤快速算法求得,若M和N都是2的幂,则可使⽤基⼆FFT算法,所需要乘法次数为⽽直接计算⼆维离散傅⾥叶变换所需的乘法次数为(M+N)MN,当M和N⽐较⼤时⽤⽤FFT运算,可节约很多运算量。
1.3图像傅⾥叶变换的物理意义图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平⾯空间上的梯度。
如:⼤⾯积的沙漠在图像中是⼀⽚灰度变化缓慢的区域,对应的频率值很低;⽽对于地表属性变换剧烈的边缘区域在图像中是⼀⽚灰度变化剧烈的区域,对应的频率值较⾼。
傅⾥叶变换在实际中有⾮常明显的物理意义,设f是⼀个能量有限的模拟信号,则其傅⾥叶变换就表⽰f的频谱。
从纯粹的数学意义上看,傅⾥叶变换是将⼀个函数转换为⼀系列周期函数来处理的。
傅里叶变换在数字图像处理中的应用课件

• 由欧拉公 式
f (t)
F (n1 )e jn1t
• 其中 n
F (0) a0
F (n1 )
1 2
(an
jbn )
引入了负频率
F (n1 )
1 2
(an
jbn )
10
非周期信号的频谱分析
当周期信号的周期T1无限大时,就演变成 了非周期信号的单脉冲信号
T1
频率也变成连续变量
1
2
T1
0 d
n1
11
非周期函数傅立叶变换分析式
F (w) f (t )e jwt dt f(t) Nhomakorabea1
2
F ().e jtd
频谱演变的定性观察
1
2
T1
F (n1)
-T/2
T/2
F (n1) 1
F (n1 )
-T/2
T/2
1
2
2
13
三.从物理意义来讨论FT
(a) F(ω)是一个密度函数的概念 (b) F(ω)是一个连续谱 (c) F(ω)包含了从零到无限高
傅里叶变换
连续时间信号 的傅里叶变换
号周 期 性 信
信非 号周
期 性
离散时间信号 的傅里叶变换
号周 期 性 信
信非 号周
期
性
连续函数的 傅立叶变换
一、三角函数的傅里叶级数:
f1(t) a0 (an cos n1t bn sin n1t) n1
直流 分量
基波分量 n =1
谐波分量 n>1
N 1
j 2 mn
X (m) x(n)e N , m 0,1, 2,3, 4,...N 1
6.图像的傅立叶变换 - 数字图像处理实验报告

计算机与信息工程学院验证性实验报告一、实验目的1了解图像变换的意义和手段;2熟悉傅立叶变换的基本性质; 3熟练掌握FFT 变换方法及应用; 4通过实验了解二维频谱的分布特点;5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。
6评价人眼对图像幅频特性和相频特性的敏感度。
二、实验原理1 应用傅立叶变换进行图像处理傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。
通过实验培养这项技能,将有助于解决大多数图像处理问题。
对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。
2 傅立叶(Fourier )变换的定义对于二维信号,二维Fourier 变换定义为:2()(,)(,)j ux uy F u v f x y e dxdy π∞∞-+-∞-∞=⎰⎰逆变换:2()(,)(,)j ux uy f x y F u v e dudv π∞∞+-∞-∞=⎰⎰二维离散傅立叶变换为:112()001(,)(,)i k N N j mn N Ni k F m n f i k eNπ---+===∑∑逆变换:112()001(,)(,)i k N N j mn N Nm n f i k F m n eNπ--+===∑∑图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。
实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。
3利用MATLAB软件实现数字图像傅立叶变换的程序:I=imread(‘原图像名.gif’);%读入原图像文件imshow(I); %显示原图像fftI=fft2(I); %二维离散傅立叶变换sfftI=fftshift(fftI); %直流分量移到频谱中心RR=real(sfftI); %取傅立叶变换的实部II=imag(sfftI); %取傅立叶变换的虚部A=sqrt(RR.^2+II.^2); %计算频谱幅值A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225 %归一化figure; %设定窗口imshow(A); %显示原图像的频谱三、实验步骤1.将图像内容读入内存;2.用Fourier变换算法,对图像作二维Fourier变换;3.将其幅度谱进行搬移,在图像中心显示;4.用Fourier系数的幅度进行Fourier反变换;5.用Fourier系数的相位进行Fourier反变换;6.比较4、5的结果,评价人眼对图像幅频特性和相频特性的敏感度。
傅里叶变换简单应用

像傅里叶函数频谱图
8
fftshift %快速傅里叶变换后的图像
平移函数
五·总结
1
对于傅里叶变换,它能够应用到许多的领域,不仅仅是在图像处理方面。
2
通过这次自己动手进行对傅里叶变换应用的动手实验,能够更好地将傅里叶变换应用到实 际生活中,不再是仅仅只会做题。更加的理解了傅里叶变换在实际应用中的作用和用法。
3
傅里叶变换能够更好地运用到实践当中,我们还应该不断的学习,去更加的完善傅里叶变 换在实际中的应用。
20XX
Thanks! 谢谢观看!
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简 意赅地阐述您的观点。
析。
二·步骤流程图
流程图: 对得到的实验结果进行检查,分析。
打开 MATL AB
更改默认路径, 将实验所需文
件放入
编写实验程序, 将程序保存到
默认文件夹
运行程序,检 查错误并纠正, 得到实验结果
三·MATLAB程序源代码: (一)对原图像进行傅里叶
变换
(二)输出彩色图像的傅里叶频谱
(三)对彩色图像进行二维DCT变换
一·用MATLAB实现步骤
1
打开计算机,安装和启动MATL AB程
2
设置默认路径为C盘下的图片文件夹,
序。
将实验所需材料放入该文件夹内。
3
利用MATL AB工具箱中的函数编制
FFT频谱显示的函数。
4
调入、显示获得的图像,图像储存格
式应为“.jpg”。
5
对该程序进行编译,检查错误并纠正。 6
ቤተ መጻሕፍቲ ባይዱ
运行,并显示结果,比较差异进行分
利 用 计 算 机 上 安 装 的 M AT L A B 软 件 , 我 们 可 以 编 写 程 序 代 码 来用傅里叶变换对数字图像进行处理。
数字图像处理中的快速傅里叶变换算法
数字图像处理中的快速傅里叶变换算法数字图像处理是一门非常重要的学科,它主要关注如何对数字图像进行处理和分析。
在数字图像处理中,傅里叶变换是一种非常重要的工具,在很多领域都有广泛的应用。
特别是在数字信号处理和图像处理领域,傅里叶变换是一种重要的工具,它可以将时域信号转化成频域信号,进行频域分析和处理,帮助我们从中获取更多的信息。
在数字图像处理中,快速傅里叶变换算法是一种非常重要的算法,它拥有很高的计算效率和精度,被广泛应用于数字图像处理中。
一、傅里叶变换傅里叶变换是数学中的一种重要的工具,它可以将任意一个函数分解为一系列正弦波的加权和。
在数字图像处理中,傅里叶变换可以将图像表示为一个二维函数,其中每个分量代表着不同的频率。
通过傅里叶变换,我们可以了解图像中不同颜色和亮度的分布状况,从而帮助我们更好地进行图像处理和分析。
二、快速傅里叶变换算法快速傅里叶变换算法是对传统傅里叶变换进行优化得到的一种算法。
传统的傅里叶变换算法计算复杂度很高,需要进行许多乘法和加法运算,运算时间很长,难以满足实时处理的要求。
为了解决这个问题,人们开发出了快速傅里叶变换算法,它可以有效地缩短傅里叶变换的运算时间,提高计算效率。
快速傅里叶变换算法的基本思想是将傅里叶变换的计算分解为多个较小的傅里叶变换,从而实现快速计算。
这样就可以通过迭代的方式,逐步将傅里叶变换的计算分解为多个较小的傅里叶变换,从而获得更高的计算效率。
快速傅里叶变换算法一般采用分治的思想,将二维傅里叶变换分解为两个一维傅里叶变换,从而实现二维傅里叶变换的计算。
三、应用领域快速傅里叶变换算法被广泛应用于数字图像处理领域。
在图像去噪、图像压缩、图像增强、图像分割等领域,傅里叶变换都有着很广泛的应用。
特别是在数字信号处理和通信领域,傅里叶变换被广泛应用于信号的频域分析和处理,帮助我们了解信号的频域特性和频谱分布状况,从而更好地进行信号处理和分析。
四、总结快速傅里叶变换算法是数字图像处理中非常重要的一种算法,它可以快速、高效地实现傅里叶变换的计算,提升计算效率,满足实时处理的要求。
图像处理与傅里叶变换原理与运用
图像处理与傅里叶变换1背景傅里叶变换是一个非常复杂的理论,我们在图像处理中集中关注于其傅里叶离散变换离散傅立叶变换(Discrete Fourier Transform) 。
1.1离散傅立叶变换图象是由灰度(RGB )组成的二维离散数据矩阵,则对它进行傅立叶变换是离散的傅立叶变换。
对图像数据f(x,y)(x=0,1,… ,M-1; y=0,1,… ,N-1)。
则其离散傅立叶变换定义可表示为:式中,u=0,1,…, M-1;v= 0,1,…, N-1 其逆变换为式中,x=0,1,…, M-1;y= 0,1,…, N-1在图象处理中,一般总是选择方形数据,即M=N影像f(x,y)的振幅谱或傅立叶频谱: 相位谱:能量谱(功率谱) )1(2exp ),(1),(101∑∑-=-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=M x N y N vy M uxi y x f MNv u F π)2(2exp ),(1),(101∑∑-=-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=M u N v N vy M uxi v u F MNy x f π),(),(),(22v u I v u R v u F +=[]),(/),(),(v u R v u I arctg v u =ϕ),(),(),(),(222v u I v u R v u F v u E +==1.2快速傅里叶变化可分离性的优点是二维的傅立叶变换或逆变换由两个连续的一维傅立叶变换变换来实现,对于一个影像f(x,y),可以先沿着其每一列求一维傅立叶变换,再对其每一行再求一维变换正变化逆变换由于二维的傅立叶变换具有可分离性,故只讨论一维快速傅立叶变换。
正变换 逆变换由于计算机进行运算的时间主要取决于所用的乘法的次数。
按照上式进行一维离散由空间域向频率域傅立叶变换时,对于N 个F∑∑∑∑-=-=-=-=⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+=110101)(2exp ),(1)(2exp ),(1)(2exp ),(1),(N v N u N u N v N vy i v u F NN ux i v u F N N vy ux i v u F NNy x f πππ∑-=⎥⎦⎤⎢⎣⎡-=12exp )(1)(N x N ux i x f Nu F π∑∑∑∑-=-=-=-=⎥⎦⎤⎢⎣⎡-⨯⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=11101)(2exp ),(1)(2exp ),(1)(2exp ),(1),(N y N x N x N y N vy i y x f NN ux i y x f NN vy ux i y x f NNv u F πππ∑-=⎥⎦⎤⎢⎣⎡=12exp )(1)(N u N ux i u F Nx f π(u)值,中的每一个都要进行N 次运算,运算时间与N 2成正比。
傅里叶变换及其在图像处理中的应用
傅里叶变换及其在数字图像处理中的应用王家硕 学号:1252015一、 Fourier 变换1. 一维连续傅里叶变换设 f (x)为x 的实变函数,如果f (x)满足下面的狄里赫莱条件: (1)具有有限个间隔点。
(2)具有有限个极点。
(3)绝对可积。
则 f (x )的傅里叶变换(Fourier Transformation ,FT )定义为: Fourier 正变换:dt e t f t f f F t j ⎰+∞∞--==ωω)()]([)(;Fourier 逆变换:ωωπωd e f t F f t f t j ⎰∞+∞---==)(21)]([)(1,式中:1-=j ,ω 为频域变量。
f (x )与F (w )构成傅里叶变换对,可以证明傅里叶变换对总是存在的。
由于f (x )为实函数,则它的傅里叶变换F (w )通常是复函数,于是F (w )可写成F (w ) = R (w ) + j I (w ) (1)式中:R (w )和I (w )分别是F (w )的实部和虚部。
公式1可表示为指数形式:式中:F (w ) 为f (x )的傅里叶幅度谱,f (w )为f (x )的相位谱。
2. 二维连续傅里叶变换如果二维函数f (x , y )是连续可积的,即∞<⎰⎰+∞∞-dxdy y x f |),(,且F (u , v )是可积的,则二维连续傅里叶变换对可表示为:dt e y x f v u F t j ⎰⎰+∞∞--+∞∞-=ω),(),(dt e v u F y x F t j ⎰⎰∞+∞-∞+∞-=ω),(),(对于图像 f (x, y),F(u, v)是它的频谱。
变量u 是对应于x 轴的空间频率,变量v 是对应于y 轴的空间频率,与在一维的情况类似,可定义二维傅里叶变换的幅度谱和相位谱为:3.一维离散傅里叶变换对一个连续函数f (x)等间隔采样可得到一个离散序列。
设共采样N个,则这个离散序列可表示为{ f (0), f (1), f (2), , f (N -1)}。
数字图像处理--图像的傅里叶变换
figure,imshow(abs(iJP)*100);title('相应的傅里叶反变换');B)利用MATLAB软件实现数字图像傅立叶变换的程序B=imread('M.JPG');I=rgb2gray(B);imshow(I);fftI=fft2(I);sfftI=fftshift(fftI);RR=real(sfftI);II=imag(sfftI);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225;figure;imshow(A);C)绘制一个二值图像矩阵,并将其傅立叶函数可视化f=zeros(30,30);f(5:24:13:17)=1;imshow(f,'notruesize')F=fft2(f);F2=log(abs(F));figure,imshow(F2,[-1 5],'notruesize');colormap(jet);F=fft2(f,256,256);figure,imshow(log(abs(F)),[-1 5],'notruesize');colormap(jet);F2=fftshift(F);figure,imshow(log(abs(F2)),[-1 5],'notruesize');colormap(jet);1.离散余弦变换A)使用dct2对图像‘N.jpg’进行DCT变换。
RGB=imread('N.jpg');imshow(RGB)I=rgb2gray(RGB);figure,imshow(I)J=dct2(I);figure,imshow(log(abs(J)),[]),colormap(jet(64));colorbar;B)将上述DCT变换结果中绝对值小于10的系数舍弃,使用idct2重构图像并与原图像比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅里叶变换与数字图像处理(2012-05-24 20:06:24)转载▼标签:it傅里叶变换是将时域信号分解为不同频率的正弦和/余弦和的形式。
傅里叶变换是数字图像处理技术的基础,其通过在时域和频域来回切换图像,对图像的信息特征进行提取和分析。
一维傅里叶变换及其反变换单变量连续函数,f(x)的傅里叶变换F(u)定义为等式:u=0,1,2,…,M一1同样,给出F(u),能用反DFT来获得原函数:其中,u=0,1,2,…,M一1。
因此,我们看到傅里叶变换的每项[即对于每个u 值,F(u)的值由f(x)函数所有值的和组成。
f(x)的值则与各种频率的正弦值和余弦值相乘。
F(u)值的范围覆盖的域(u的值)称为频率域,因为u决定了变换的频率成分(x 也作用于频率,但它们相加,对每个u值有相同的贡献)。
F(u)的M项中的每一个被称为变换的频率分量。
使用术语“频率域”和“频率成分”与“时间域”和“时间成分”没有差别,如果x是一个时间变量,可以用它来表示f(x)的域和值。
二维DFT及其反变换一维离散傅里叶变换及其反变换向二维扩展是简单明了的。
一个图像尺寸为M×N 的函数f(x,y)的离散傅里叶变换由以下等式给出:像在一维中的情形一样,此表达式必须对u值(u=0,1,2,…,M-1)和v值(v=0,1,2,…,N-1)计算。
同样,给出F(u,v),可以通过反傅里叶变换获得,f(x,y),由表达式给出:其中,x=0,1,2,…,M-1,y=0,1,2,…,N-1。
变量u和v是变换或频率变量,x和y是空间或图像变量。
正如在一维中的情形那样,常量1/MN的位置并不重要,有时它在反变换之前。
其他时候,它被分为两个相等的常数1/根号MN,分别乘在变换和反变换的式子前。
定义傅里叶谱、相角和频率谱:并且其功率谱为:其中,R(u,v)和I(u,v)分别是F(u,v)的实部和虚部。
通常在进行傅里叶变换之前用(-1)x+y乘以输入的图像函数。
由于指数的性质,很容易看出:其中Ζ[·]表示引文中的傅里叶变换。
这个等式说明f(x,y)(-1)x+y傅里叶变换的原点[即F(0,0)]被设置在u =M/2和v=N/2上。
换句话说,用(-1)x+y乘以f(x,y)将F(u,v)原点变换到频率坐标下的(M/2;N/2),它是二维DFT设置的M×N区域的中心。
我们将此频率域的范围指定为频率矩形,它从u=0到u=M-1从v=0到v=N-1(u和v是整数)。
为了确保移动后的坐标为整数,要求M和N为偶数。
当在计算机中使用傅里叶变换时,总和的范围为u从1到M,v从1到N。
实际的变换中心将为u=(M/2)+1和v=(N/2)十1。
当(u,v)=(0,0)时的变换值为:即f(x,y)的平均值。
换句话说,如果f(x,y)是一幅图像,在原点的傅里叶变换即等于图像的平均灰度级。
因为在原点处常常为零,F(0,0)有时称做频率谱的直流成分。
了解了傅里叶变化,下面看看为什么要在频率域研究图像增强。
1.可以利用频率成分和图像外表之间的对应关系。
一些在空间域表述困难的增强任务,在频率域中变得非常普通。
2.滤波在频率域更为直观,它可以解释空间域滤波的某些性质。
3.可以在频率域指定滤波器,做反变换,然后在空间域使用结果滤波器作为空间域滤波器的指导。
4.一旦通过频率域试验选择了空间滤波,通常实施都在空间域进行。
在冈萨雷斯版<数字图像处理>里面的解释就非常的形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。
棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。
傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。
当我们考虑光时,讨论它的光谱或频率谱。
同样, 傅立叶变换使我们能通过频率成分来分析一个函数。
傅立叶变换在图像处理中有非常非常的作用。
因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。
傅立叶变换在图像处理以下几个话题都有重要作用:1.图像增强与图像去噪绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;2.图像分割之边缘检测提取图像高频分量3.图像特征提取:形状特征:傅里叶描述子纹理特征:直接通过傅里叶系数来计算纹理特征其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性4.图像压缩可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;5.信号在频率域的表现在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。
当频率为0时,表示直流信号,没有变化。
因此,频率的大小反应了信号的变化快慢。
高频分量解释信号的突变部分,而低频分量决定信号的整体形象。
在图像处理中,频域反应了图像在空域灰度变化剧烈程度,也就是图像灰度的变化速度,也就是图像的梯度大小。
对图像而言,图像的边缘部分是突变部分,变化较快,因此反应在频域上是高频分量;图像的噪声大部分情况下是高频部分;图像平缓变化部分则为低频分量。
也就是说,傅立叶变换提供另外一个角度来观察图像,可以将图像从灰度分布转化到频率分布上来观察图像的特征。
书面一点说就是,傅里叶变换提供了一条从空域到频率自由转换的途径。
对图像处理而言,以下概念非常的重要:图像高频分量:图像突变部分;在某些情况下指图像边缘信息,某些情况下指噪声,更多是两者的混合;低频分量:图像变化平缓的部分,也就是图像轮廓信息高通滤波器:让图像使低频分量抑制,高频分量通过低通滤波器:与高通相反,让图像使高频分量抑制,低频分量通过带通滤波器:使图像在某一部分的频率信息通过,其他过低或过高都抑制还有个带阻滤波器,是带通的反。
6.图像去噪图像去噪就是压制图像的噪音部分。
因此,如果噪音是高频额,从频域的角度来看,就是需要用一个低通滤波器对图像进行处理。
通过低通滤波器可以抑制图像的高频分量。
但是这种情况下常常会造成边缘信息的抑制。
常见的去噪模板有均值模板,高斯模板等。
这两种滤波器都是在局部区域抑制图像的高频分量,模糊图像边缘的同时也抑制了噪声。
还有一种非线性滤波-中值滤波器。
中值滤波器对脉冲型噪声有很好的去掉。
因为脉冲点都是突变的点,排序以后输出中值,那么那些最大点和最小点就可以去掉了。
中值滤波对高斯噪音效果较差。
椒盐噪声:对于椒盐采用中值滤波可以很好的去除。
用均值也可以取得一定的效果,但是会引起边缘的模糊。
高斯白噪声:白噪音在整个频域的都有分布,好像比较困难。
7.图像增强有时候感觉图像增强与图像去噪是一对矛盾的过程,图像增强经常是需要增强图像的边缘,以获得更好的显示效果,这就需要增加图像的高频分量。
而图像去噪是为了消除图像的噪音,也就是需要抑制高频分量。
有时候这两个又是指类似的事情。
比如说,消除噪音的同时图像的显示效果显著的提升了,那么,这时候就是同样的意思了。
常见的图像增强方法有对比度拉伸,直方图均衡化,图像锐化等。
前面两个是在空域进行基于像素点的变换,后面一个是在频域处理。
我理解的锐化就是直接在图像上加上图像高通滤波后的分量,也就是图像的边缘效果。
对比度拉伸和直方图均衡化都是为了提高图像的对比度,也就是使图像看起来差异更明显一些,我想,经过这样的处理以后,图像也应该增强了图像的高频分量,使得图像的细节上差异更大。
同时也引入了一些噪音。
最后讨论一下图像傅立叶变换的物理意义图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。
如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。
傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。
从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。
从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。
换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。
最后附上傅里叶变换的一个例子。
通过上面的DFT变换可以看到:图像信号能量将集中在系数矩阵的四个角上。
这是由二维傅立叶变换本身性质决定的。
同时也表明一股图像能量集中低频区域。
经过变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大。
傅立叶变换在图像处理中有非常非常的作用。
因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。
印象中,傅立叶变换在图像处理以下几个话题都有重要作用:1.图像增强与图像去噪绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;2.图像分割之边缘检测提取图像高频分量3.图像特征提取:形状特征:傅里叶描述子纹理特征:直接通过傅里叶系数来计算纹理特征其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性4.图像压缩可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换;傅立叶变换傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。
连续情况下要求原始信号在一个周期内满足绝对可积条件。
离散情况下,傅里叶变换一定存在。
冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。
棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。
傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。
当我们考虑光时,讨论它的光谱或频率谱。
同样,傅立叶变换使我们能通过频率成分来分析一个函数。
傅立叶变换有很多优良的性质。
比如线性,对称性(可以用在计算信号的傅里叶变换里面);时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变;频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。
这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输);卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。
(图像处理里面这个是个重点)信号在频率域的表现在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。
当频率为0时,表示直流信号,没有变化。
因此,频率的大小反应了信号的变化快慢。
高频分量解释信号的突变部分,而低频分量决定信号的整体形象。