同余问题知识点讲解

合集下载

同余法解题完整版

同余法解题完整版

同余法解题集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]五年级奥数培训资料第六讲同余法解题一、同余这个概念最初是由德国数学家高斯发明的。

同余的定义是这样的:两个整数,a,b,如果他们同时除以一个自然数m,所得的余数相同,则称a,b对于模m同余。

记作a≡b(mod.m)。

读作:a同余于b模m。

同余的性质也比较多,主要有以下一些:1..对于同一个除数,两个数的乘积与它们余数的乘积同余。

例如201×95的乘积对于除数7,与201÷7的余数5和95÷7的余数4的乘积20对于7同余。

2..对于同一个除数,如果有两个整数同余,那么它们的差就一定能被这个除数整除。

例如519和399对于一个除数同余,那么这个除数一定是519与399的差的因数,即519与399的差一定能被这个除数整除。

3..对于同一个除数,如果两个数同余,那么他们的乘方仍然同余。

例如20和29对于一个除数同余,那么20的任何次方都和29的相同次方对于这个除数同余,当然余数大小随次方变化。

4.对于同一个除数,若三个数a≡b(mod m),b≡c(mod m),那么a,b,c三个数对于除数m都同余(传递性)例如60和76同余于模8,76和204同余于模8,那么60,76,204都同余于模8。

5. 对于同一个除数,若四个数a≡b(mod m),c≡d(mod m),那么a±c≡c±d (mod m),(可加减性)6. 对于同一个除数,若四个数a≡b(mod m),c≡d(mod m),那么ac≡cd(mod m),(可乘性)二、中国剩余定理解法一个数被3除余1,被4除余2,被5除余4,这个数最小是几?解法:求3个数:第一个:能同时被3和4整除,但除以5余4,即12X2=24第二个:能同时被4和5整除,但除以3余1,即20X2=40第三个:能同时被3和5整除,但除以4余2,即15x2=30这3个数的最小公倍数为60,所以满足条件的最小数字为24+40+30-60=3412X2=24 20X2=40 15x2=30中2的来历。

七年级数学同余理论知识点

七年级数学同余理论知识点

七年级数学同余理论知识点同余理论是一种在数学上十分重要的概念,也是七年级数学中的重要知识点。

同余理论涉及到了数学运算、数论、代数和计算机科学等众多领域。

了解同余理论可以帮助我们更好地理解数学中的很多概念,而这些概念同样也会在我们的日常生活中用到。

本文将为大家详细介绍七年级数学同余理论知识点。

一、同余符号同余符号被表示为≡,表示两个整数的差可以被某个整数整除。

例如,a ≡ b(mod n),表示 a和 b 的差是n 的倍数。

同余符号可以表示为:a ≡ b(mod n) 表示 a和 b 对模n 同余。

二、同余的基本定理基本定理:若a ≡ b(mod n),则:a + c ≡ b + c(mod n);a × c ≡b × c(mod n)对于同模运算,我们可以将其认为是模n的“等价关系”。

如果我们在计算时需要代入变量n,可以类比“等价类”的概念。

同余的基本定理的应用非常广泛,比如说计算机科学中的哈希函数就是基于同余的理论进行设计的。

三、余数另一个和同余概念相关的概念是余数。

余数通常用于表示在将一个整数除以另一个整数时所得的余数。

余数可以表示为 R(n) = a(mod n),其中,a是被除数,n是除数,R是余数.例如,当我们用4除以15时,可以得到商为3,余数为3,记作15≡3(mod 4)。

四、同余类同余类是指在模运算下,所有的同余数组成的等价类。

例如,在模12运算下,2和14就属于同一个同余类,因为它们两个的差是12的倍数。

同余类在数学上是一个非常重要的概念,在计算机科学中也有广泛的应用,比如说整数哈希函数、证明算法的正确性等等。

五、同余的扩展性同余的扩张性是指对于同余的模重写,仍然可以得到相同的结果。

这个概念证实了我们可以选择一个更小的模数进行计算,这样可以减少计算复杂度,提高计算速度。

例如,当我们计算2538 + 4916 ≡ x(mod 10) 时,我们可以通过将x进行模变换,将模数改为1,从而简化计算。

(完整版)同余问题知识点讲解

(完整版)同余问题知识点讲解

数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。

许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。

知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。

这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

二、三大余数定理:1.【余数的加法定理】a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.【余数的乘法定理】a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

第十一节 同余问题

第十一节  同余问题

第三章第十一节同余问题093数教黄欢01号在整数除法运算中,被除数与除数可能是整除关系,也可能不是整除关系。

而许多问题,只需要知道余数。

由此形成了专门研究余数的问题,即同余问题。

一、带余除法的定义如果a,b是两个整数,b>0,那么一定有而且只有两个整数q,r使a=bq+r,(0≤r<b).我们称r为a除以b的余数,q为a除以b的不完全商。

整数集合是可按余数分类。

一个整数被正整数b除时,余数只有0,1,2,…,b-1这b种情况。

我们把被b除同时都余r (0≤r<b)的一类数,叫做b的剩余类。

因此,数b的剩余类共有b个。

这样整数就被分成b类。

比如,一个整数被2除时的余数只能是0和1,所以整数可分为两类,即余数为0的偶数,记为2k,余数为1的奇数,记为2k+1,其中k为任意整数。

一个整数被3除时的余数只能是0和1,2,所以整数可分为三类,即被3整除的一类,记为3k,被3除余1的一类,记为3k+1,被3除余2的一类,记为3k+2,其中k取任意整数。

二、同余的概念两个整数a与b除以整数m(m>0),如果余数相同,则称a与b关于模m同余。

并用下面的同余式表示a≡b(mod m).a≡b(mod m) ⇔a=b+km,(k∈N) ⇔m|(a-b).同余的概念和记号都是德国数学家高斯在他的名著《算术研究》(1801年)中引进的,是研究数论的重要工具。

三、同余的性质1.(反身性)a≡a(mod m);2.(对称性) 如果a≡b(mod m);那么b≡a(mod m);3.(传递性)如果a≡b(mod m),b≡c(mod m),那么a≡c(mod m);4.如果a≡b(mod m),c≡d(mod m),那么a±b≡c±d(mod m);5.a+b≡c(mod m)当且仅当a≡c-b(mod m);6.如果a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m),a n≡b n(mod m),(n为正整数),ak≡bk(mod m) (k为正整数)。

同余定理知识点总结

同余定理知识点总结

同余定理知识点总结同余定理通常被描述为以下形式:如果整数a和b对于模m同余,即a ≡ b (mod m),那么a和b除以模m的余数是相等的。

同余定理可以改写为a mod m = b mod m。

同余定理有两个基本的性质。

首先,它是一种等价关系,具有自反性、对称性和传递性。

其次,同余定理具有乘法和加法性质。

首先,我们来讨论同余定理的基本性质。

同余关系是一种等价关系,即它具有自反性、对称性和传递性。

自反性指的是对于任意的整数a,a ≡ a (mod m)。

这意味着任意整数都与自己对模m同余。

对称性指的是如果a ≡ b (mod m),那么b ≡ a (mod m)。

传递性指的是如果a ≡ b (mod m)且b ≡ c (mod m),那么a ≡ c (mod m)。

这三种性质构成了同余关系的一个等价关系,可以将整数划分为同余类,使得具有相同除模m余数的整数在同一个同余类中。

其次,同余定理具有乘法和加法性质。

对于任意的整数a、b、c和模m,如果a ≡ b (mod m)和c ≡ d (mod m),那么有以下性质:a + c ≡ b + d (mod m)和a * c ≡ b * d (mod m)。

这两个性质表明了同余定理在乘法和加法下的保持性。

同余定理在数论和代数中有广泛的应用。

首先,同余定理常常被用来简化计算。

通过使用同余定理,我们可以将复杂的计算转化为求余数的简单计算,从而节省时间和精力。

其次,同余定理在代数方程的求解中有着广泛的应用。

例如,对于一个模线性方程a * x ≡ b (mod m),我们可以通过同余定理将其转化为x的一元一次同余方程,从而求解出x的取值范围。

此外,同余定理在密码学领域也有着重要的应用。

加密算法中常常使用同余定理来进行模运算,从而实现数据的加密和解密。

在数论中,同余定理还有一些重要的推论。

首先,费马小定理和欧拉定理是同余定理的重要推论。

费马小定理描述了素数模意义下的幂运算规律,欧拉定理描述了任意模意义下的幂运算规律。

同余的基本概念和性质

同余的基本概念和性质
4 16,28 256,216 154,232 1 (mod 641)。
例3 说明 是否被641整除。
因此 0 (mod 641),
即641 。
第一节 同余的基本性质
第一节 同余的基本性质
设式(4)对于n = k成立,则有 1 (mod 2k + 2) = 1 q2k + 2, 其中qZ,所以
=(1 q2k + 2)2=1 q 2k + 31(mod 2k + 3), 其中q 是某个整数。这说明式(4)当n = k 1也成立。 由归纳法知式(4)对所有正整数n成立。
第一节 同余的基本性质
a2 1 (mod p) pa2 1 = (a 1)(a 1),
证明 由
pa 1或pa 1,
所以必是
a 1或a 1 (mod p)。
例8 设p是素数,a是整数,则由a2 1(mod p)可以推出
即a 1 (mod p)或a 1 (mod p)。
解 因为792 = 8911,故 792n 8n,9n及11n。 我们有 8n 8 z = 6,
证明 留作习题。
定理5 下面的结论成立: (ⅰ) a b (mod m), dm, d>0 a b (mod d); (ⅱ) a b (mod m), k > 0, kN ak bk (mod mk); (ⅲ) a b (mod mi ),1 i k a b (mod [m1, m2, , mk]); (ⅳ) a b (mod m) (a, m) = (b, m); (ⅴ) ac bc(modm), (c, m) =1 a b (mod m).
定义1 给定正整数m,如果整数a与b之差被m整除,则称a与b对于模m同余,或称a与b同余,模m,记为 a b (mod m), 此时也称b是a对模m的同余

同余问题口诀的原理

同余问题口诀的原理(实用版)目录1.同余问题的定义与基本概念2.同余问题口诀的原理3.同余问题的解法及应用举例4.总结与拓展正文一、同余问题的定义与基本概念同余问题是指在模运算下,两个或多个整数之间的关系。

若整数 a、b 除以整数 m,所得的余数相同,则称 a、b 对模 m 同余。

同余关系用符号“≡”表示,如 a≡b(mod m),读作“a 同余于 b 模 m”。

二、同余问题口诀的原理同余问题口诀,也被称为“同余定理”或“欧拉定理”,是数论中解决同余问题的重要方法。

其原理如下:若 a≡b(mod m),则 a^φ(m)≡b^φ(m)(mod m),其中φ(m) 表示模 m 的欧拉函数值,即小于等于 m 的与 m 互质的正整数的个数。

三、同余问题的解法及应用举例利用同余问题口诀,我们可以轻松地解决许多同余问题。

下面举一个典型的例子:问题:有一个自然数,用它分别去除 63、90、103,都有余数,且三个余数的和是 25。

这三个余数中最大的一个是多少?解:设这个自然数为 x,则根据题意可列出以下三个同余式:x ≡ 1 (mod 63)x ≡ 1 (mod 90)x ≡ 23 (mod 103)由同余问题口诀,我们有:x ≡ 1^φ(63) (mod 63)x ≡ 1^φ(90) (mod 90)x ≡ 23^φ(103) (mod 103)其中,φ(63) = 17,φ(90) = 18,φ(103) = 19。

因此,我们可以将原问题转化为求解以下三个同余式:x ≡ 1 (mod 63)x ≡ 1 (mod 90)x ≡ 23^19 (mod 103)解得 x = 63k + 1 = 90m + 1 = 103n + 23^19,其中 k、m、n 均为整数。

由于三个余数的和是 25,我们有:1 + 1 + 23^19 ≡ 25 (mod 103)即 23^19 ≡ 23 (mod 103)因此,最大的余数为 23。

第16讲 应用同余问题

第16讲应用同余问题一、知识要点同余这个概念最初是由伟大的德国数学家高斯发现的。

同余的定义是这样的:两个整数a,b,如果它们除以同一自然数m所得的余数想同,则称a,b对于模m同余。

记作:a≡b(mod m)。

读做:a同余于b模m。

比如,12除以5,47除以5,它们有相同的余数2,这时我们就说,对于除数5,12和47同余,记做12≡47(mod 5)。

同余的性质比较多,主要有以下一些:性质(1):对于同一个除数,两个数之和(或差)与它们的余数之和(或差)同余。

比如:32除以5余数是2,19除以5余数是4,两个余数的和是2+4=6。

“32+19”除以5的余数就恰好等于它们的余数和6除以5的余数。

也就是说,对于除数5,“32+19”与它们的余数和“2+4”同余,用符号表示就是:32≡2(mod 5),19≡4(mod 5),32+19≡2+4≡1(mod 5)性质(2):对于同一个除数,两个数的乘积与它们余数的乘积同余。

性质(3):对于同一个除数,如果有两个整数同余,那么它们的差就一定能被这个除数整除。

性质(4):对于同一个除数,如果两个整数同余,那么它们的乘方仍然同余。

应用同余性质几萼体的关键是要在正确理解的基础上灵活运用同余性质。

把求一个较大的数除以某数的余数问题转化为求一个较小的数除以这个数的余数,使复杂的题变简单,使困难的题变容易。

二、精讲精练【例题1】求1992×59除以7的余数。

应用同余性质(2)可将1992×59转化为求1992除以7和59除以7的余数的乘积,使计算简化。

1992除以7余4,59除以7余3。

根据同余性质,“4×3”除以7的余数与“1992×59”除以7的余数应该是相同的,通过求“4×3”除以7的余数就可知道1992×59除以7的余数了。

因为1992×59≡4×3≡5(mod 7)所以1992×59除以7的余数是5。

小学奥数 同余问题 精选练习例题 含答案解析(附知识点拨及考点)

1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a 同余于b ,模m 。

2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。

第36讲 同 余

第 17 讲 同 余同余是数论中的重要概念,同余理论是研究整数问题的重要工具之一。

设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模同余,记作)(mod m b a ≡,否则,就说a 与b 对模m 不 同余,记作)(mod m b a ≡,显然,)(|)(,)(mod b a m Z k b km a m b a -⇔∈+=⇔≡;1、 同余是一种等价关系,即有自反性、对称性、传递性1).反身性:)(mod m a a ≡;2).对称性:)(mod )(mod m a b m b a ≡⇔≡;3). 传递性:若)(mod m b a ≡,)(mod m c b ≡则)(mod m c a ≡;2、加、减、乘、乘方运算若 a b ≡(mod m ) c d ≡(mod m )则 a c b d ±≡±(mod m ),ac bd ≡(mod m ),n na b ≡(mod m ) 3、除法 设 ac bd ≡(mod m )则 a b ≡(mod (,)m c m )。

A 类例题例1.证明: 一个数的各位数字的和被9除的余数等于这个数被9除的余数。

分析 20≡2(mod9),500≡5(mod9),7000≡7(mod9),……,由于10n-1=9M ,则10n ≡1(mod9),故a n ×10n ≡a n (mod9)。

可以考虑把此数变为多项式表示a n ×10n + a n-1×10n-1+…+ a 1×10+a 0后处理。

证明 设a=110n n a a a a =a n ×10n + a n-1×10n-1+…+ a 1×10+a 0,∵10≡1(mod9),∴10n ≡1(mod9),∴a n ×10n + a n-1×10n-1+…+ a 1×10+a 0≡a n + a n-1+…+ a 1+a 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同余问题知识点讲解
数论中的同余问题
同余问题是数论中的一个重要知识点,也是各大数学竞赛和小升初考试必考的奥数知识点。

因此,学好同余问题对学生来说非常重要。

许多孩子都接触过同余问题,但也有不少孩子说“遇到同
余问题就基本晕菜了!”。

同余问题主要包括带余除法的定义,三大余数定理(加法余数定理、乘法余数定理和同余定理),以及中国剩余定理和弃九法原理的应用。

带余除法的定义及性质
一般地,如果a是整数,b是整数(b≠0),若有
a÷b=q……r,也就是a=b×q+r,且0≤r<b,我们称上面的除
法算式为一个带余除法算式。

其中,当r=0时,我们称a可以
被b整除,q称为a除以b的商或完全商;当r≠0时,我们称
a不可以被b整除,q称为a除以b的商或不完全商。

一个完美的带余除法讲解模型
可以将带余除法的概念用一个图形化的模型来解释。

假设有一堆书,共有a本,这个a可以理解为被除数。

现在要求按照b本一捆打包,那么b就是除数的角色。

经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系,并且可以看出余数一定要比除数小。

三大余数定理
1.余数的加法定理
a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.
2.余数的乘法定理
a与b的乘积除以c的余数,等于a,b分别除以c的余数
的积,或者这个积除以c所得的余数。

例如:23,16除以5
的余数分别是3和1,所以23×16除以5的余数等于3×1=3.当
余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除
以5的余数等于3×4除以5的余数,即2.
3.同余定理
若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子
叫做同余式。

同余式读作:a同余于b,模m。

由同余的性质,我们可以得到一个非常重要的推论:
若两个数a和b除以同一个数m得到的余数相同,则a和
b的差一定能被m整除。

这可以用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,其中k是整数,即m|(a-b)。

三、弃九法原理:
在公元前9世纪,印度数学家XXX写有一本《花拉子米
算术》。

他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确。

他们的检验方式是这样进行的:例如,检验算式
1234+1898+++=.1234除以9的余数为1,1898除以9的余数
为8,除以9的余数为4,除以9的余数为7,除以9的余数为。

这些余数的和除以9的余数为2,而等式右边和除以9的
余数为3,那么上面这个算式一定是错的。

上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。

我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9
的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。

因此,我们总结出弃九法原理:任何一个整数模9同余于它的各数位上数字之和。

以后我们求一个整数被9除的余数,只要先计算这个整数各数位
上数字之和,再求这个和被9除的余数即可。

利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用。

需要注意的是,弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。

例如,检验算式9+9=9时,等
式两边的除以9的余数都是,但是显然算式是错误的。

但是反过来,如果一个算式一定是正确的,那么它的等式两端一定满足弃九法的规律。

这个思想往往可以帮助我们解决一些较复杂的算式迷问题。

四、中国剩余定理:
中国古代数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

我们可以计算2703212457233得到所求。

XXX点兵,又称中国剩余定理,传说中XXX询问大将军XXX统领的士兵数量,XXX回答每3人一排余1人、5人一
排余2人、7人一排余4人、13人一排余6人 (XXX)
脸茫然,不知道答案。

现在我们考虑这个问题:如果士兵不足一万人,每5人一排、9人一排、13人一排、17人一排都剩3人,那么士兵数量是多少呢?
首先,我们需要求出5、9、13、17的最小公倍数,即9945(注:因为5、9、13、17是两两互质的整数,所以它们的最小公倍数是它们的乘积)。

然后加上3,得到9948人。

孙子算经》的作者和确切的著作年代都无法考证,但是根据考证,它的著作年代不会晚于晋朝。

中国人比西方人更早地发现了这种问题的解法,因此这个问题的推广和解法被称为中国剩余定理。

在现代的抽象代数学中,中国剩余定理占有非常重要的地位。

2.核心思想和方法:
对于这类问题,我们有一套看似繁琐但实际上非常实用的方法。

以下以《孙子算经》中的问题为例,分析这种方法:
假设有一个自然数,分别除以3、5、7后得到三个余数,分别为2、3、2.我们首先需要构造一个数字,使得这个数字除以3余1,同时又是5和7的公倍数。

我们从5和7的最小公倍数35开始,看35除以3余2,不符合要求,那么我们就继续看5和7的“下一个”倍数70是否可以,很显然70除以3余1.
接下来,我们需要构造一个数字,使得它除以5余1,同时又是3和7的公倍数。

显然,21可以满足要求。

最后,我们需要构造一个数字,使得它除以7余1,同时又是3和5的公倍数。

45符合要求。

那么,所求自然数可以这样计算:
其中k是从1开始的自然数。

270321245k[3,5,7]233k[3,5,7]。

也就是说,满足上述关系的数有无穷多个。

如果我们根据实际情况限制数的范围,那么我们就能找到所求的数。

例如,如果我们加上限制条件“满足上述条件的最小自然数”,那么我们可以计算
2703212452[3,5,7]23,得到所求结果。

如果我们加上限制条件“满足上述条件的最小三位自然数”,那么我们可以计算2703212457233,得到所求
结果。

相关文档
最新文档