3.4 平面简谐波 波的能量和强度
平面简谐波的能量

大学物理波动学基础第4讲平面简谐波的能量平面简谐波的能量在波的传播过程中, 介质中各质元的能量如何变化?遵循怎样的规律?平面简谐波的能量波动的过程是能量传播的过程.介质中各质点在各自平衡位置附近振动动能介质间相互作用产生弹性形变势能一、平面简谐波传播时媒质中体积元的能量(一)能量设平面简谐波在密度为ρ的弹性介质中沿 x 正方向传播: ϕ = 0⎟⎠⎞⎜⎝⎛−=u x t A y ωcos 在 x 处取体积元 ΔV ,质量为Vx S m ∆==∆ρρd当波传到此 ΔV 时, 有⎟⎠⎞⎜⎝⎛−−=∂∂=u x t A t y ωωsin v 所以体积元动能为()()⎟⎠⎞⎜⎝⎛−∆=∆=∆u x t A V m E ωωρ2222k sin 2121v 经推导(略), 体积元弹性形变势能也为()⎟⎠⎞⎜⎝⎛−∆=∆u x t A V E ωωρ222p sin 21体积元的总能量为()⎟⎠⎞⎜⎝⎛−∆=∆+∆=∆u x t A V E E E ωωρ222pk sin (1)能量的传播 (2)(2)周期性的变化(二)能量变化同相位形变最大、振速最大(势能最大、动能最大)形变最小、振速为零(势能为零、动能为零)Oxyab(三)振动与波动中能量变化的区别振动: 能量守恒波动: 能量传播过程——时大时小, 不守恒 ——(一)能量密度单位体积内波的能量————能量密度 w :()⎟⎠⎞⎜⎝⎛−=∆∆==u x t A V E t x ωωρ222sin ,w w 能量密度的平均值:22021d 1ωρA t T T ==∫w w 机械波的能量与振幅平方, 频率平方以及介质密度成正比.二、波的能量密度 能流密度(二)能流和能流密度能流: 单位时间内垂直于波线方向流过某一面积的能量.uSP w =平均能流:uSP w = 能流密度: 在单位时间内垂直于波线方向的单位面积上通过的平均波的能量.SP I =()u SuS I ⋅=⋅=w w (1)大小:(2)方向:(3)单位:2mW −⋅(4)能流密度也称为波的强度。
10章机械波平面简谐波课件

机械波:机械振动在弹性介质中的传播.
一、机械波的形成:
1、弹性介质和波源——(机械波产生的条件)
弹性介质——由弹性力组合的连续介质。 波源——波源处质点的振动通过弹性介 质中的弹性力,将振动传播出去,从而形成 机械波。波动是振动状态的传播,是能量的 传播,而不是质点的传播。
2.传播
2 k 2
T
0
-
π 2
t 0 x 0 y 0, v y 0
t
y 1.0 cos[t - x - ] m
2
O
y
A
2)求 t 1.0s波形图.
y 1.0 cos[t - x - ] m
2
t 1.0s
波形方程
y 1.0 cos[ π - π x] 2
sin( x)
y/m
-
x) u
0 ]
a
2 y t 2
-2 Acos[(t
-
x) u
0]
二、 波函数的物理意义
y
A cos[ (t
-
x) u
0 ]
Acos[2π( t T
-
x
)
0 ]
1、 当 x 固定时,
波函数表示该点的简谐振动方程
波线上各点的简谐运动图
y(x,t) y(x,t T ) (波具有时间的周期性)
y
-
x) u
0 ]
y
A cos[ (t
x) u
0
]
u 沿 x 轴正向
u 沿x 轴负向
波函数的特征量
y
A cos
(t
-
x) u
0
相速度:单位时间内波传播过的距离
大学物理习题册答案

xO 1A22练习 十三(简谐振动、旋转矢量、简谐振动的合成)一、选择题1. 一弹簧振子,水平放置时,它作简谐振动。
若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 (C )(A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。
解:(C) 竖直弹簧振子:kx mg l x k dt x d m )(22(mg kl ),0222 x dt xd弹簧置于光滑斜面上:kx mg l x k dt x d m sin )(22 (mg kl ),0222 x dtxd2. 两个简谐振动的振动曲线如图所示,则有 (A ) (A )A 超前2π; (B )A 落后2π;(C )A 超前π; (D )A 落后π。
解:(A)t A x A cos ,)2/cos( t A x B3. 一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: (B ) (A )4T ; (B )12T ; (C )6T ; (D )8T 。
解:(B)振幅矢量转过的角度6/ ,所需时间12/26/T T t , 4. 分振动表式分别为)π25.0π50cos(31 t x 和)π75.0π50cos(42 t x (SI 制)则它们的合振动表达式为: (C )(A ))π25.0π50cos(2 t x ; (B ))π50cos(5t x ;(C )π15cos(50πarctan )27x t; (D )7 x 。
解:(C)作旋转矢量图或根据下面公式计算)cos(21020212221A A A A A 5)25.075.0cos(4324322712)75.0cos(4)25.0cos(3)75.0sin(4)25.0sin(3cos cos sin sin 1120210120210110 tg tg A A A A tg5. 两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l 和2l ,且212l l ,则两弹簧振子的周期之比21:T T 为 (B )(A )2; (B )2; (C )2/1; (D )2/1。
平面简谐波

二. 波函数的物理意义
(1) 振动状态的空间周期性 说明波线上振动状态的空间周期性
(2) 波形传播的时间周期性
说明波形传播的时间周期性
(3) x 给定,y = y (t) 是 x 处振动方程
(4) t 给定,y = y(x) 表示 t 时刻的波形图
(5) y 给定, x和 t 都
在变化,表明波 形传播和分布的 时空周期性。
二. 横波和纵波
横波:介质质点的振动方向与波传播方向相互垂直的波; 如柔绳上传播的波。
纵波:介质质点的振动方向和波传播方向相互平行的波; 如空气中传播的声波。
1 2 3 4 5 6 7 8 9101112131415161718
1 2 3 4 5 6 7 8 9101112131415161718
结论
横波
纵波
(1) 波动中各质点并不随波前进; yy
(2) 各个质点的相位依次落后,波
t
动是相位的传播;
x
(3) 波动曲线与振动曲线不同。
振波动动曲曲线线
三. 波面和波线
波面 在波传播过程中,任一时刻媒质中 振动相位相同的点联结成的面。
波线 沿波的传播方向作的有方向的线。
波前 在某一时刻,波传播到的最前面的波面。 z
y
原点振动方程
O x
t =t’ 时的相位(非初相位)为
即
原点振动方程为 波动方程为
三. 平面波的波动微分方程
由 知
说明 (1) 上式是一切平面波所满足的微分方程(正、反传播); (2) 不仅适用于机械波,也广泛地适用于电磁波、热传导、
化学中的扩散等过程; (3) 若物理量是在三维空间中以波
的形式传播,波动方程为右式
大学物理学课件-平面简谐波规律

y 波形曲线
0
t = t0
x
大学物理学
章目录 节目录 上一页 下一页
5.2 平面简谐波规律
3、如x、t 均变化,波函数表示波形沿传播方向
的运动情况
t 时刻,x处质点的相位
(t x )
u
t 时t 刻, x 处 质Δx点的相位
dWk
1 2
A2 2
sin
2
(t
x u
)dV
2) 介质元的弹性势能:
dW p
1 2
k(dy
)2
dW p1 2来自A2 2sin2(t
x u
) dV
dWk
3) 介质元的总能量:
dW
dWk
dWp
A2 2
sin2
(t
x u
)
dV
大学物理学
章目录 节目录 上一页 下一页
5.2 平面简谐波规律
dW
dWk
dWp
(t
1)] 8
在下列情况下试求波函数(设波速为u):
(1) 以 A 为原点; (2) 以 B 为原点;
x1
x
BA
(3) 若u沿x 轴负向,以上两种情况又如何?
解: (1)在x轴上任取一点P ,
该点振动方程为:
yp
Acos[4π
(t
x u
1)] 8
x1
u
x
BA P
波函数为: y(x,t) Acos[4π (t x 1)] u8
y Acos[t kx ]
k 2
大学物理学
章目录 节目录 上一页 下一页
第五章 振动与波 基本知识点

o受迫振动振动系统在周期性驱动力的持续作用下产生的振动。
受迫振动的频率等于驱动力的频率cos()d A t ψωϕ=+tF F d ωcos 0=当驱动力的频率与系统的固有频率相等时,受迫振动振幅最大。
这种现象称为共振。
共振2)若两分振动反相(位相 相反或相差的奇数倍)x即 φ2φ1=(2k+1) (k=0,1,2,…)ox2x1T 2T合成振动3T 22T则A=|A1-A2|, 两分振动相 互减弱, 合振幅最小; 如果 A1=A2,则 A=0t11同方向不同频率简谐振动的合成1、分振动为简单起见,令A1 A2 Ay1 A cos(1t ),y2 A0 cos(2t )2、 合振动y y1 y2 1 2 1 2 y 2 A cos t t cos 2 2 合振动不是简谐振动12当1 、2很大且接近时, 2 1 2 1 令:y A(t )cos t2 1 )t 式中 A(t ) 2 A0 cos( 2 2 1 cos t cos( )t 2随t 缓慢变化 随t 快速变化合振动可看作振幅缓慢变化的简谐振动 当频率 1 和 2 相近时,两个简谐振动的叠加,使得 合振幅时而加强、时而减弱,形成所谓拍现象。
13ψ1 t ψ2 t ψ t拍 拍: 合振动忽强忽弱的现象。
拍频 :单位时间内强弱变化的次数。
1 拍 2 2 2 1 2 2 1 2 1 2 2 14波的产生与传播1、波的产生 波:振动在媒质中的传播,形成波。
产生条件:1) 波源—振动物体; 2) 媒质—传播振动的弹性物质.2、机械波的传播机理(1) 波的传播不是媒质中质点的运输, 而是“上游” 的质点依次带动“下游”的质点振动 (2) 某时刻某质点的振动状态将在较晚时刻于“下游” 某处出现——波是振动状态的传播153、机械波的传播特征 波传播的只是振动状态,媒质中各质点并未 “随波逐流”。
振动、波动部分答案(新)

大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。
*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。
练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。
若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。
2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。
3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。
已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。
5-2 平面简谐波的波函数及能量

= (3 ×10 m) cos[4 π t + π] x −2 y = (3 ×10 m) cos[4π(t - ) + π] x 20 −2 = (3 ×10 m) cos(4 πt - π + π) 5
u
8m C
5m A
9m D
oB
x22Leabharlann 第五章 波动物理学
第五版
5-2 平面简谐波的波函数
(3) 写出传播方向上点 、D的运动方程 ) 写出传播方向上点C 的运动方程 的相位比点A 点C 的相位比点 超前 t x −2 y = (3 × 10 m ) cos 2π ( − ) 0 .5s 10 m AC −2 −1 yC = (3 × 10 m ) cos[( 4 π s )t + 2 π ]
yO = Acos(ω +ϕ) t
x P 点振动比O点超前了 ∆t = u
y
A
u
P x
x
−A
O
第五章 波动
14
物理学
第五版
5-2 平面简谐波的波函数
故P点的振动方程(波动方程)为: 点的振动方程(波动方程)
x y = y (t + ∆t ) = A ωt + +ϕ cos o u
t π t π π y 0 = Acos(2π − ) = Acos(2π − ) = A cos(100t − ) T 2 T 2 2
2
18
例2
(m)
4.0 ×10 −2
=20m/s
0.1
0.3
0.5
0.7 (m)
所以波动方程
2π x π = 4.0 ×10-2 cos[100π t + 5π x − π ] y = Acos[ ( t + ) − ] 2 T µ 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x B
1 y 2 Ek l x( ) 2 t
第8章 机械振动
3.4 平面简谐波
波的能量和强度
2. 线元Δx的形变势能
线元的长度从静止时的 Δx 变为:
x 2
2 1 2 1 2
o
1 2
2 2 y + y x 1 + x 1 2
3.4 平面简谐波
波的能量和强度
3) 固体中的横波波速
u
G
G为切变弹性模量。 F切
S
切变
F切 ∵固体中 G < Y u横波<u纵波
F切 x tg S h F切 G S
震中
*
地震时纵波先到达
第8章 机械振动
3.4 平面简谐波
波的能量和强度
4)气体和液体中的波速 液体和气体内只能传播纵波,不能传播横波。
第8章 机械振动
3.4 平面简谐波
波的能量和强度
t π (2)A,B两点的相位差 2π T 2 π B点比A点的振动相位落后 2
(3)质点振动速度的最大值
vm A 1103 3000 2π 18.8m/ s
第8章 机械振动
3.4 平面简谐波
波的能量和强度
结论:波速由弹性媒质性质决定,频率(或周期) 则由波源的振动特性决定。
第8章 机械振动
3.4 平面简谐波
波的能量和强度
二 平面简谐波的波动式
问题: yo=y(0, t) & u 给定, 求 y=y(x, t)
(假设:媒质无吸收,所有质元振幅均为A) O点的振动方程:
A
y
yo A cost +
第8章 机械振动
3.4 平面简谐波
波的能量和强度
yB A cos (t t ) + A0 2 π 0.01cos(200πt 200π ) 400 2 3 0.01cos(200πt π)m 2 3 式中 π B 为B点振动的初相 2 x x 3 y A cos (t ) + 0.01cos 200π(t ) π m u 400 2 1 3 π π (2)C 200 π 400 2 3 π B C π ( π) 2 2
u
K
p
K体积弹性模量,为密度。
p
p
V ® V¢
体 变 V
p
第8章 机械振动
V p K V
3.4 平面简谐波
波的能量和强度
可以证明声波在空气中的速度
u
证:
p
RT
= Cp/Cv , 摩尔质量
由于声振动的频率较高 (20~20000Hz) ,可 以将空气的疏密过程看成绝热过程,把空气当 作理想气体。
例 一平面简谐波以400m/s的波速在均匀介质中沿一直线 从A点向B点方向传播。已知直线上质点A的振动周期为 0.01s,振幅A=0.01m。设以质点A的振动经过平衡位置向 正方向运动时作为计时起点,求 (1)以距A点2m处的B点为坐标原点写出波动式;(2) B点和距A点1m的C点间的振动相位差。
y 0 解 (1)由 y A0 0, vA0 π t 可得 A0 2 A点的振动表达式为 2π π y A A cos( t + A0 ) 0.01cos(200 πt )m T 2
第8章 机械振动
3.4 平面简谐波
波的能量和强度
讨论
(1)当 x 给定时:若x=x1, 波动式成为x1 处质元的振动式.
初相:
结论:随着x值的增大,即在传播方向上,各质点的 位相依次落后。这是波动的一个基本特征。
第8章 机械振动
3.4 平面简谐波
波的能量和强度
(2)当 t 给定时:若t=t1, 波动式表示t1 处的波形.
r —— 场点到波源的距离
第8章 机械振动
柱面波
3.4 平面简谐波
波的能量和强度
例:点波源,各向同性媒质中的波速为 u ,媒质无
吸收,求球面简谐波的波函数 y(r, t) 解:能量守恒
1 I1 2 A12u 2
2 1
1 I 2 2 A2 2u 2
2
S1 r1
o
A1
I1 4πr I 2 4πr2
x y ( x, t ) A cos (t ) + u
y
平面简谐波的波函数
u p
x x
o
第8章 机械振动
3.4 平面简谐波
波的能量和强度
2π 2 πν 和 uT 利用 T 可得波动方程的几种不同形式:
x y A cos t + u t x A cos 2 π + T 2 πx A cos t +
A
x B
2 y x 1 + x
线元Δx的形变势能近似等于在形 变过程中(弦静止)张力F做的功:
F
F
1 2 2 2 y 1 y E p F x 1 + x F x x 2 x
l 1 Ek E p x l 2 A2 sin 2 t kx 2
k
第8章 机械振动
u
F
l Fk
2
2
3.4 平面简谐波
波的能量和强度
2 2
4. 波的能量密度
E l x A sin t kx
2
l S
p + k
3.4 平面简谐波
波的能量和强度
一 波长、频率和波速 波长:沿波的传播方向两 相邻同位相点之间 的距离 1 波数: k
角波数: k 2 π
周期T :波前进一个波长的 距离所需的时间。 频率 =1/T, 角频 率 ω=2π
第8章 机械振动
3.4 平面简谐波
波的能量和强度
波速:振动状态(或位相)在空间的传播速度。
y
x y ( x, t1 ) A cos[ (t1 ) + ] f ( x ) u
u
t2 t1 + t
u t x
t1
结论: t1 时刻,x 处质点的振动状态经t 时间传到了 x + ut 处, 表达式反映了波是振动状态的传播.
第8章 机械振动
3.4 平面简谐波
波的能量和强度
y
原因:同步的原因 速度大时形变亦大
a
b x
第8章 机械振动
3.4 平面简谐波
波的能量和强度
二 波的强度
1. 能量的传播
e 2 A2 sin2 t kx
1 1 x 2 2 2 2 A A cos 2 t 2 2 u
ε 的圆频率为 2, 传播速度也是波速u. ε
(1/2)2A2
o
第8章 机械振动
x
3.4 平面简谐波
波的能量和强度
2. 能流密度 S面的能流:
u
P uS
能流密度:
S x u
P J u S
J u
第8章 机械振动
3.4 平面简谐波
波的能量和强度
3. 波的强度 波的强度:能流密度的时间平均值
u
1 IJ T
T
0
u Jd t T
第8章 机械振动
3.4 平面简谐波
波的能量和强度
例 频率为3000Hz的声波,以1560m/s的传播速度沿一波 线传播,经过波线上的A点后,再经13cm而传至B点。求 (1)B点的振动比A点落后的时间。 (2)波在A,B两点振动时的相位差是多少? (3)设声波使介质中的质点作简谐运动,振幅为1mm, 求质点振动的最大速度是否与波的传播速度相等? 1 1 s 解 (1)波的周期 T 3000 u 1.56 103 波长 0.52m 52cm 3000 x 0.13 1 B点比A点落后的时间 t s 3 u 1.56 10 12000 1 即 T 4
1 p k 2
T
E 2 A 2 sin 2 t kx S x 1 2 2 2 A sin t kx 2
1 1 2 2 dt A T 0 2
第8章 机械振动
3.4 平面简谐波
波的能量和强度
讨论 1.时间变化:
2 1 2 1 2
A 4πr A2 4πr2
A1 r2 A2 r1
2
S2
r2
A2
点波源 各向同性介质
第8章 机械振动
T
0
dt u
S x u
平面简谐波:
I
2,I
A2
SI : W m2
第8章 机械振动
3.4 平面简谐波
波的能量和强度
1 2 2 I A 和能量守恒 例:对无吸收媒质:利用 2 可以证明:
平面波 球面波
A const .
1 Ar const .,A r
1 A r const .,A r
P
u
x
A
O
x
P点的振动状态在时间上落后于O点:
第8章 机械振动
x t u
3.4 平面简谐波
波的能量和强度
或:在 t 时刻 x 点的振动状态 与O点在(t-x/u) 时刻的振动状态相同