粘性流体力学课件

合集下载

工程流体力学-粘性流体的一维定常流动

工程流体力学-粘性流体的一维定常流动
总结词
动量守恒方程是流体运动的基本方程之一,表示流体在运动过程中动量的增加或减少等于作用在流体 上的外力之和。
详细描述
动量守恒方程的数学表达式为ρdudt=−p+ρg+τx+F,其中p表示流体的压强,g表示重力加速度,τx表示 由于粘性作用在x方向上的应力,F表示作用在流体上的外力。
能量守恒方程
总结词
化提供了重要支持。
能源利用
能源领域如火力发电、 水力发电等涉及到大量 的流体流动问题。通过 一维定常流动理论,可 以深入理解流体在涡轮 机内的流动规律,提高
能源利用效率。
生物医学
在生物医学领域,血液 、淋巴液等生物流体也 存在着一维定常流动的 现象。研究这些流动有 助于深入了解人体生理 机制,为疾病诊断和治
边界层。
边界层的分离
当流体经过弯曲的壁面或突然扩大 的区域时,边界层可能会与壁面分 离。分离后的边界层会形成涡旋, 影响流体的流动特性。
边界层的厚度
边界层的厚度与流体的粘性、流速 和壁面的粗糙度有关。了解边界层 的厚度对于控制流体流动和减小阻 力具有重要意义。
射流流动的实例分析
射流的定义
射流是指流体从一定口径的喷嘴喷出后形成的流动。射流的特性与 喷嘴的口径、流体性质和出口压力有关。
一维定常流动的特性
01
流体参数不随时间变化而变化,只与空间位置有关。
02
流体参数沿流程方向不发生变化,只与流程位置有 关。
03
流体参数在垂直方向上均匀分布,不随高度变化而 变化。
05
粘性流体的一维定常流动 的实例分析
管道流动的实例分析
管道流动的特点
在管道中,流体受到壁面的限制,呈现出一定的流动规律。 由于粘性作用,流体的速度在靠近管壁处较小,而在中心 区域较大。

工程流体力学 第4章 粘性流体动力学基础

工程流体力学 第4章 粘性流体动力学基础

沿程损失水头 (hf):
hf

LV2 D 2g
达西(Darcy)公式
λ:为沿程损失系数,与流动状态、管壁的粗糙度等有关
hf不仅与管段长度成正比,还与管道直径成反比
2020年1月10日
FESTO气动中心
局部阻力水头损失 :当流体在运动中遇到局部障 碍(半开阀门、管道弯头、粗细管接口、滤网等)时, 流线会发生局部变形,并且由于流动分离、二次流等 原因产生漩涡运动,从而耗散一部分机械能,造成水 头损失。
2020年1月10日
FESTO气动中心
解 :(1)求管中心最大流速 umax 2V 2 6.35 12.7cm/s
(2)离管中心 r=20mm 处的流速
u

umax

p
4L
r2
当r=50mm时,管轴处u=0,则有
0 12.7 p 52
4L
p 0.51
4L
则r=20mm在处的流速 u 12.7 0.51 22 10.7cm/s
LV2
d 2g

64 / Re
2020年1月10日
FESTO气动中心
克服沿程阻力而消耗的功率
W

ghf Q

pQ

128 LQ 2 d 4
动能修正系数


1
R2
R u 32rdr 2
0 V
2020年1月10日
FESTO气动中心
例: 设有一恒定有压均匀管流,已知管径d=20mm,管长l=20m, 管 中 水 流 流 速 V=0.12m/s , 水 温 t=10℃ 时 水 的 运 动 粘 度 ν=1.306×10-6m2/s。求沿程阻力损失

流体力学D课件 第五章

流体力学D课件 第五章
Re
hf
Vd
对数形式为
lg 1.806 lg Re
在尼古拉兹图中为一条斜直线。
(2) 过渡区 (2300 Re 4000) (3) 湍流完全光滑管区
情况复杂,无单一计算公式。
布拉修斯公式 (4000 Re 105 )
0.3164 Re0.25 基于湍流速度分布导出。
水头损失的两种形式
2 p1 v12 p2 v2 z1 1 z2 2 hw g 2g g 2g
hf hj
沿程损失
局部损失
流体克服粘性阻力 而损失的能量,流 程越长,损失越大
流体克服边界形状改变 所产生的阻力而损失的 能量,发生在局部范围
直圆管流动的沿程损失 1 达西公式 不可压缩粘性流体在内壁粗糙的直圆管中作定常流动时,压 强降低(损失)的表达式(可用量纲分析方法确定)
V12 V2 2 1 1 1 2 2 hm ( p1 p2 ) (V1 V2 ) V2 (V2 V1 ) 1 ( ) g 2g g 2g V1
V12 d12 2 V12 (1 2 ) K e1 2g 2g d2
d K e1 1 d
2. 等效粗糙度 穆迪引入等效粗糙度概念 。对实际商用管,粗糙度呈随机分 布,可通过与尼古拉兹实验曲线作对比,确定其等效粗糙度。 材料(新) 铆钉钢 ε(mm) 0.9~9.0
常用商用管的 等效粗糙度列于 右表中。
水泥 木板
铸铁 镀锌铁 镀锌钢 无缝钢
0.3~3.0 0.18~0.9
0.26 0.15 0.25 ~0.50 0.012 ~0.2
1 2
1
(
Re1=4.22×104,查Mooddy图得λ2=0.027 ,重新计算速度

不可压缩粘性流体内流_流体力学

不可压缩粘性流体内流_流体力学

1 ( r vz ) 1 dp r r r dz
(d)
(d)式左边仅是r 的函数,右边仅是z 的函数,只有均等于常数才能相等, dp/dz保持常数。(d)式积分两次可得
vz 1 dp r 2 C1lnr C2 4 dz
(e)
[例C3.4.1] 圆管定常层流:N-S方程精确解(3-3) 当r =0时,管轴上的速度为有限值,由物理上可判断C1=0;当r =R时,vz=0; 可得
上式称为不可压缩流体湍流时均值运动方程或雷诺方程。与层流 N-S方程相比多了三项 。湍流中的应力矩阵为
0 x xy xz uu uv uw p 0 P 0 p 0 yx y yz vu vv vw 0 0 p zx zy z wu wv ww
(c)
[例C3.4.1] 圆管定常层流:N-S方程精确解(3-2) 由(a)式积分得
p g r sin f ( ,z)
上式中f 为任意函数,将上式代入(b)式得
0 g cos gcos 1 f , f 0 r
dp 可见 f 仅是z 的函数,取截面平均压强,其梯度可写成 dz。由(c)式
(2) 轴功率。
(1)由于b << d 可将轴承间隙内的周向流 动简化为无限大平行平板间的流动。
轴承固定, 而轴以线速度U=ωd /2运动, 带动润滑油作纯剪切流动, 即简 单库埃特流动。间隙内速度分布为
U u y b
[例C3.3.2] 圆柱环形缝隙中的流动:库埃特流(2-2) (1) 作用在轴表面的粘性切应力为
C3.4.2

工程流体力学(粘性流体动力学基础公式推导)

工程流体力学(粘性流体动力学基础公式推导)

2h
u
x
vw0
U 0
不可压连方
u v w 0, u 0, u u( y)
x y z
x
运动方程
u t
u
u x
v
u y
w
u z
1
p x
2u ( x 2
2u y 2
2u z2 )
26
运动方程
u t
u
u x
v
u y
w
u z
1
p x
2u ( x 2
2u y2
2u z 2
)
简化为
2u y 2
1
p x
13
px
py
pz
3 p
2 ( vx
x
vy y
vz z
)
(8--9)
问题:上式括号内表示什么?
对于不可压缩流体,故有:
p
1 3
(
px
py
pz
)
(8-10)
即对于粘性不可压缩流体,三个互相垂直的法
向应力的算术平均值恰好等于理想流体的压力。
14
将切向应力和法向应力关系式代入(8--5)式得
vx t
vx
Dt
x
y
z
DVz Z 1 ( zx zy pzz )
Dt
x
y
z
(8-5)
单位质量流体的惯性力
单位质量流体的应力
单位质量流体的质量力
这就是应力形式的粘性流体运动微分方程 8
讨论
1.式(8-5)中未知函数:三个速度分量和六个 应力分量;加上连续性方程,只有四个方程,
2.若要求解,需补充方程。
将(d)式代入(a)式,经移项后可得

5-粘性流体力学基础

5-粘性流体力学基础

fm
1
p v2u
v ( u) 3
式(7—5d)是在 Const 条件下对一切牛顿流体都普遍
适用的运动微分方程式,亦称之为纳维—斯托克斯方程。
14
方程的物理意义:
左边 du 为流体质点加速度(单位质量流体的惯性力); dt
右边
f
为作用在流体微团上单位质量的质量力;
m
- 1 p为作用在流体微团上单位质量流体的压强合力;
0.3
将已知数据代入前式得 Q 0.016 cm2 s ,与按同心环形缝隙
流动计算结果相同。
29
§7-5 绕流圆球的小雷诺数流动
在工程实际中,我们经常要研究固体微粒和液体细滴在流体
中的缓慢运动,这里,圆球是经常遇到的几何形状。如炉膛空气
流中的煤粉颗粒,油滴,烟道烟气中的灰尘,水蒸气中的水滴以
及水中沉降的泥砂等,都可以近似看作小圆球。对这些小圆球的
2 z
u y x
ux y
yz
zy
2 x
uz y
u y z
(7—3)
zx
xz
2 y
ux
z
uz x
式(7—3)称为广义牛顿内摩擦定律。
8
在粘性流体中,与角变形速度产生切应力一样,线变形 速度产生附加切应力。根据牛顿内摩擦定律
xx
2
ux x
yy
2
u y y
zz
2
uz z
(7—4)
式(7—3)、(7—4)为本构方程。
2 r2
ur
2 r2
u
2 r2
u
cos
2
r 2 cos
u
ur t
ur
ur r

流体力学ppt课件

6
三、特例 ❖ 火箭在高空非常稀薄的气体中飞行以及高真空技术中,如真空泵,其分子距与设备
尺寸可以比拟,不再是可以忽略不计了。这时不能再把流体看成是连续介质来研究。 ❖ 流体性质有局部突变时,如汽化。 ❖ 研究区域很小时。
7
第三节 作用在流体表面上的力 表面力 质量力
两类作用在流体上的力:表面力和质量力
M V d M V d d V 0
V dV d
E1 pd1V 1d d p0.0 1% 25 140 2.5 18P 0 a
Vdp
13
二、流体的膨胀性 当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性,膨胀性的大小用
温度膨胀系数来表示。 1.膨胀系数
单位温度增加所引起的体积相对变化量
17
三种圆板的衰减时间均相等。 库仑得出结论:衰减的原因,不是圆板与液体之间的相互摩擦 ,而是液体内部的摩擦 。
18
2.牛顿内摩擦定律
(1) 牛顿平板实验
当h和u不是很大时,两平板间沿y方向的流速呈线性分布,
uUy 或duUdy
h
h
h
dy
y U
uu+du
y
dudt
Aa
Bb
o
dy
d
d(dud)/tdtdu
3
第二节 流体作为连续介质的假设 问题的引出:
微观:流体是由大量做无规则热运动的分子所组成, 分子间存有空隙,在空间是不连续的。 宏观:一般工程中,所研究流体的空间尺度要比分子 距离大得多。
4
一、流体的连续介质假设 定义:不考虑流体分子间的间隙,把流体视为由
无数连续分布的流体微团组成的连续介质。这就是1755年欧拉提出的“连续介质 假设模型”。

《流体力学》 第七章 不可压缩粘性流体的流动


应力与应变的关系--------本构关系
du
dy
对照牛顿实验
pyx
斯托克斯假设
(1). 应力与变形速率之间为线性关系(小变 形(各向同性假设) (3). 趋于零时, 应力状态退化为理想流体 的应力状态(当流体处于静止状态时,符合 静止流体的应力特征)
pyz pzy
pzx pxz
pyx
p y x y
dy 2
pyy

p y y y
dy 2
pxx

pxx x
dx 2
pxy

pxy x
dx 2
y x
pxx

pxx x
dx 2
pxy

pxy x
dx 2
pyx

p y x y
dy 2
pyy

p y y y
dy 2

p y x y

pzx z
)
将pxx pyx pzx 的表达式代入, 设不可压, 则有
同理有
ax

fx

1

p x


(
2u x 2

2u y 2

2u z 2
)
ay

fy

1

p y


(
2v x 2

2v y 2

2v z 2 )
az

fz

1

p z
pzz

p

2
w z
相 加
1 3
(
pxx

pyy

粘性流体力学讲解


z
-px
、v、px、p y、pz、f
牛顿第二定律:
x -py
z
M
z
y
py

p y y
y
ma F
x
y
px

p x x
x
-pz
Dv Dt

x
y
z

f
x
y
z

p x
y
z

(p x

p x x

x)
y
z

p y
x
z

(p
y

p y y

y)
x
z

Dv Dt

fy

1

p y
2v


Dw Dt

fz

1

p z
2w
Discussion:
Dv f 1 p 2 v v
Dt

3
1. 物理意义:单位质量流体惯性力、质量力、压力合力和 粘性力平衡。粘性力包括剪应力与附加法向应力。
0
du
dy
yh

dp h dx
y
h
o -h
umax x
dp 0 dx
压力梯度使速度剖面为抛物型——层流运动的特征。
7.3.2往复振荡平板引起的层流流动
平板运动引起粘性效应的扩散。 流场速度分布:
y o u=Ucos t
u U eky cosky t ——粘性扰动波。 y 2
dp 0 dx
速度分布: (Couette流动)

西北工大875流体力学讲义7-第七章 粘性流体动力学基础

西北工大875流体力学讲义 第七章 粘性流体动力学基础第一节 粘性流体运动的基本方程采用流体力学微元体平衡分析方法可以推导出粘性流体运动的基本方程组,该方法可参考本书的第二章和第三章。

本节将直接由两大守恒定律(质量守恒定律和动量守恒定律)来建立控制流体运动的基本方程组。

首先需要给出空间某点物理量的随体时间导数表达式、雷诺输运方程以及本构关系。

一、随体导数描述流体运动规律有拉格朗日和欧拉两种基本方法。

拉格朗日法着眼于确定的流体质点,观察它的位置随时间的变化规律。

欧拉法着眼于从空间坐标去研究流体流动,它的描述对象是流场。

随体导数的物理意义是:将流体质点物理量q 的拉格朗日变化率以欧拉导数的形式表示出来。

随体时间导数的数学表达式为:()q V tqdt dq ∇⋅+= ∂∂(7-1)式中右边第一项代表由时间的变化所引起的变化率,也就是由于场的时间不定性所造成的变化率,叫做当地导数。

第二项代表假定时间不变时,流体质点在流场中的位置变化所引起的变化率。

这是由于场的不均匀性造成的,叫做迁移导数。

二、雷诺输运方程雷诺输运方程描述了积分形式的拉格朗日法和欧拉法的时间导数的变换关系。

设封闭系统在t 时刻占有体积()t Ω,如图7-1所示。

其中关于物理量q 的总量的随体时间导数有图7-1 封闭系统输运示意图()()()⎰⎰⎰⎰⎰⎰⎰⎰⋅+Ω=ΩΩΩt S t t dS n V q d t qd q dt d ∂∂ (7-2)其中()t S 为封闭体积的曲面,n为曲面的法向向量。

上式表明:封闭系统中,某物理量总和的随体导数等于该瞬间与该系统重合的控制域中该物理量总和的当地时间导数(非定常效应)和通过控制面流出的该物理量的流量(对流效应)之和,此即为流体的雷诺输运方程。

用广义的高斯公式将面积分转换成体积分,上式也可以写成()()()Ω∂∂ΩΩΩd V q tqd q dt d t t ⎰⎰⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡⋅∇+=(7-3)三、连续方程连续性方程反映了流体在运动过程中必须满足质量守恒定律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dx 0
J 2u2rdru02b02
0
Q 0 2urdr
ve
1 d be dx
0rudr21be ddQ x
(8-5b) (8-6a)
(8-6b) (8-7a) (8-7b)
三、自由平面层流射流的相似解法
对平面层流射流方程和边界条件引入流函数:
u, v
y
x
(8-8)
y
2 xy x
2 y2
2 x y
x
2
2
)
y
A 3 3 2
3
3
y
J A 2 3 2 ( ) 2 d y c o n s t
y
2
y
0, x
0:
x
0, 2 y
0
y , x 0 : 0 y
(8-11)
232132220322
2 3 21,3 1 31
绝对不变量:
y
2
y
2
,
11
x3 x3 x3 x3
(d0:孔口直径,V0:出流速度),就处于湍流状态。
不过为了简单本章首先介绍层流情况。
a) 边界射流 b)自由射流 图8-1 射流
射流可以分为边界射流(图8-1a)和自由射流(图 8-1b)。在射流中,射流中的流体与周围流体之间相 互渗混,流体质量间发生动量传递,形成-自由剪切 层,同时周围的流体也不断被卷进这一剪切层中,这 样射流体的宽度不断增加,射流体中的流量不断加大, 但是射流的动量是不变化的。
f f 2 1
(8-17)
f df 0 1 f 2
1 ln 1 f 2 1 f
tanh1 f
f
tanh
1 e2 1 e2
(8-18)
积分常数q可以根据 J / =常数而决定。
u2q2x13(1tanh2)
3
J u2dy4 q3 (1tanh2)d16 q3
由于外部流动是均匀的,压力沿x方向的梯度为零,
所以流动是有相似性的。
第一节 层流射流和尾迹
一、射流的结构
图8-3 射流的结构
图8-3是从宽度2b0的窄缝或直径为2b0的圆形管 咀中以速度U0喷出的平板射流或圆形射流。
具有均匀速度U0区域由于与周围流体的混合,速 度沿流动方向会小下去。具有均匀速度U0 的区域称为
u y
2q2 3
f ()
x1/3
v
x
2 3
q
x2/3
[
f
()2f
()]
方程与边界条件变换成:
f 2( f 2 ff ) 0
0 : f 0, f 0 : f 0
积分方程,代入 0 边界条件: f2ff0
(8-14) (8-15) (8-16)
再积分一次,并取积分常数为1,即认为:f (0) =1,则得:
0 x
0 y
d
1 dQ
ve dx
udy
0
2
dx
圆形射流基本方程:
u
u x
v
u r
1
1 r
( r
r
)
(8-4) (8-5a)
边界条件:
r0 : uum ax,v0, u r0,0
r :u 0 ,rv b e v e, u r 0 , 0
d
u2rdr 0
x y
y 0:uumax, v0,
u 0, 0
y
(8-1b)
y:u0, vve,
u 0, 0
y
式中,ve称为卷吸速度,表示周围流体向x轴方向的
射流补充流体。 根据式(8-1a)有:
uudyvudydy
0 x
0 y 0y
(8-2a)
| 1du 2 d y(u v u v d y )( )(0 )
无量纲相似变量:
qy , f()
3 x2/3
2qx1/3
2q x1/3 f
(8-12)
x
2q
3
x2/3
[ f ( ) 2 f ( )]
f y
3
q x2/3
f
(
);
2 y
f
2
( 3
q )2 f ( ) x2/3
3 f y3
( 3
q )3 f ( ) x2/3
(8-13)
射流内的速度分布:
a 尖端尾迹 b 方形端尾迹 c 圆形端尾迹 图 8-2 尾迹
尾迹可以分为尖锐后缘的尾迹和钝体后缘的尾迹。
在尖锐绕流体的后缘,上下表面的发达的边界层 在后缘点汇合成一体,流向下游,形成尾迹。由于流 体质点间的动量交换,使流体的最小速度,随着向下 游的流动而加大,尾迹也加宽,出现了速度的平均化。
在有角钝体的后缘,流体与钝体后的死水区之间 形成剪切层,由于剪切层与死水区流体间的相互卷吸, 在层流情况下,会形成稳定卡门涡街,在湍流情况下 形成不稳定的湍流涡团。同时在死水区形成回流。在 离开后缘一段距离后,在上下剪切层中形成湍流(图 8-2b、c)。但不论是层流还是湍流的射流和尾迹,
位势流核心区,具有势流核心区的射流部分是未发达
区,未发达区的长度依管咀的收缩部分的几何形状而
异,在二维射流的情况下约为12b0, 在圆形射流的情 况下约为10b0左右。
未发达区后面为发达区,在此区动量交换的影响
达到射流的中心。在射流中各截面的最大速度随x的增
大而减小,同时宽度b增大。
二、射流的基本方程
2 d x0
0 0 y
d u2dy 0
dx 0
(8-2b)
证明了单位时间通过任何截面的总动量J沿x轴不变:
J u 2 d y 20 u 2 d y 2U 0 2 b 0
(8-2c)
射流中通过任意截面的流量为Q:
Q udy2 udy
0
由连续方程可以得到:
u dy v dy 0
图8-3所示取射流的中心轴为x轴,垂直于流动的 方向为y轴,对N-S方程各项的大小作量阶估计,便可
与边界层方程同样的得到关于射流的基本方程式,而且 由于自由射流的压力与周围流体压力相等,为 p 0 , 因此在定常、二维射流的情况下得到下式: x
u
u x
v
u y
1
y
u
v
0
(8-1a)
边界条件为:
3 y3
J
(
)2 d y
const
y
y
0,
x
0
:
x
0 , 2 = 0 y2
y
, x 0 : y
0
(8-9)
由于边界条件的外部势流速度Ue(x)与x无关,可
以判断存在相似性解。为此引入线性变换群:
xA 1x, yA 2y, A 3 (8-10)
A ( 2 3 1 2 2 y
第八章 射流和尾迹
第一节 层流射流和尾迹 第二节 自由湍流射流 第三节 湍流尾迹
射流与尾迹是自然界和工程中经常遇到的问题, 属于自由剪切层中的流动,这种剪切层中,流体质 点间的动量交换不受壁面的限制,所以非常不稳定。 在绝大多数的情况下都处于湍流状况,例如孔口喷 出的射流,只要雷诺数
Re d0V0 30
相关文档
最新文档