定积分在几何上的应用(面积)
定积分在几何学上的应用研究报告

8 2a 3
2 sin2 udu
0
0
4 3a 3
8 2a 3
1 2
2
6 3a 3
第六章 定积分的应用
16
说明:Vy 也可按柱壳法求出
Vy
2a 2 xydx 2 2 a t sin t
0
0
a2 1 cost 2 dt
8 a3
2 0
t
sint
sin4 t dt 2
16 a3 2u 0
23
例 13 求阿基米德螺线 a a 0相应于0 2 一段的弧长。
解:
弧长元素为
从而,所求弧长
ds 2 2 d
a 2 2 a 2d a 1 2d
s 2 a 1 2d 0
a
2
1 2
1 2
ln
1
2
2 0
a
2
2
1 4 2
ln
2
1
4 2
第六章 定积分的应用
x t y t
给出时,按顺时针方向规定起点和终点的参数值t1 和t2 。
Y
t 1
对应
x
a
Y a
O
bX
O
a
bX
则曲边梯形面积 A
t2
t1
t t dt
t1 对应x b
第六章 定积分的应用
5
例 求由摆线x a t sint ,y a 1 cost a 0 的一拱与x 轴所围
s b 1 y 2dx b 1 f 2 x dx
a
a
第六章 定积分的应用
20
2.曲线弧由参数方程
x y
t t
t
给出
弧长元素(即弧微分)为ds 2 t 2 t dt ,因此
定积分在几何中的应用

变式 1:变速直线运动的物体速度为 v(t ) 1 t 2 ,ห้องสมุดไป่ตู้初 始位置为 x0 1, 求它在前 2 s 内所走的位移及 2 s 末 所在的位置.
知识要点2
如果物体在变力 F ( x) 的作用下做直线运动,并且物 体沿着与 F ( x) 相同方向从 x a 移动到 x b(a b), 则变力 F ( x) 所作的功 b W= F ( x )dx .
a
例 2 在弹性限度内,将一弹簧从平衡位置拉到离平 衡位置 lm 处,求克服弹力所作的功.
o
x x
定积分在几何中的应用
例 3:直线 y=kx 分抛物线 y=x-x 与 x 轴 所围成图形为面积相等的两部分, 求 k 的值.
y
2
x
O
定积分在物理中的应用 如图:以 x 为积分变量,积分区间为 [a , b].
知识要点1
作变速直线运动的物体在时间区间 a , b 上所经过的 路程 S ,等于其速度函数 v v(t )(v(t ) 0) 在时间区 b 间 a , b 上的 定积分 ,即 S v ( t )dt
a
例 1 已知一辆汽车的速度——时间的曲线如图所示 30
求(1)汽车 10 s 行驶的路程; (2)汽车 50 s 行驶的路程; (3)汽车 1 min 行驶的路程.
A B
P
本节 知识 引入 本节 目的 与要 求
在区间 [a , b] 内任取一小区间[ x , x dx ], 功的微元数 dW F ( x )dx 所以
o a
x
x dx
F ( x)
b
x
本节 重点 与难 点
本节 复习 指导
定积分几何意义求圆面积

定积分几何意义求圆面积
圆面积的积分几何意义:
一、定义:
1. 圆面积是指圆的表面积的大小。
2. 它是指圆的周长除以2π的值。
二、概念:
1. 圆面积是指圆的表面积的大小,它可以理解为圆形表面上组成这个圆形表面的基本细胞(即每个细胞的单位长度乘以其宽度)的总和。
2. 积分几何意义:圆面积等于圆的周长除以2π的值,即A=2πR / 2π,其中A表示圆面积,R表示圆的半径。
三、计算圆面积的方法:
1. 直接计算法:直接计算圆面积的方法是一种最简单、普遍适用的方法,即A=πr²,其中r表示圆的半径。
2. 差商计算法:差商计算法是指把圆分割成若干小矩形,计算每个矩形的面积,然后把所有矩形的面积总合就得到圆的面积。
3. 积分计算法:积分计算法是根据“积分几何意义”圆面积等于圆的周长除以2π的值来计算的,即A=2πR / 2π=R,其中R表示圆的半径。
四、圆面积积分几何意义的应用:
1. 圆面积积分几何意义可以用来计算圆形物体的面积,比如圆形池塘、圆形地面等。
2. 圆面积积分几何意义可以用来估计椭圆、圆弧等物体的面积。
3. 圆面积积分几何意义可以用来计算不规则多边形物体的周长和面积,比如计算一个多边形的周长除以2π的值即可得到面积。
4. 圆面积积分几何意义可以用来分析空间物体的几何关系,比如分析
边角关系等。
高中数学-定积分在几何中的应用-课件

求由一条曲线 y=f(x)和直线 x=a,x=b(a<b)及 y=0 所围成平面图形的面积 S.
①如图 1 所示,f(x)>0, bf(x)dx>0. a
∴S= bf(x)dx. a
②如图 2 所示,f(x)<0, bf(x)dx<0, a
∴S=| bf(x)dx|=- bf(x)dx.
a
a
2×23x32
|
2 0
=136,
8
S2=2 [4-x-(- 2x)]dx
=4x-12x2+2
3
2x32|
8 2
=338,
于是 S=136+338=18.
方法二:选y作为积分变量,
将曲线方程写为x=y22及x=4-y.
则S=2-44-y-y22dy
=4y-y22-y63|
2 -4
=18.
变式训练 1:由曲线 y= x,直线 y=x-2 及 y 轴所围成
解.
由方程组
y2=2x y=4-x
解出抛物线和直线的交
点为(2,2)及(8,-4).
方法一:选 x 作为积分变量,由图可看出 S=S1+S2,
由于抛物线在 x 轴上方的方程为 y= 2x,
在 x 轴下方的方程为 y=- 2x,
2
所以 S1=0 [ 2x-(- 2x)]dx
=2
2 1
20x2 dx=2
❖1.7 定积分的简单应用
❖1.7.1 定积分在几何中的应用
自主学习 新知突破
❖ 1.理解定积分的几何意义.
❖ 2.会通过定积分求由两条或多条曲线 围成的平面图形的面积.
复习回顾
[问题 1]定积分的几何意义.
由三条直线 x=a,x=b(a<b),x 轴及 一条曲线 y=f(x)(f(x)≥0)围成的曲边 梯形的面积 S=________.
1.定积分的应用(面积)

y = x2
A = ∫0 ( x − x 2 )dx
2 3 x 1 = x2 − = . 3 0 3 3
3 1
1
x
x+dx
求面积的一般步骤: 求面积的一般步骤: 1.作图(如果需要求出交点). 作图(如果需要求出交点) 作图 微元法 2.用定积分表示面积 用定积分表示面积. 用定积分表示面积 公式法
2)求出一个元素(如 f ( x )dx 称为量U 的元素 )求出一个元素( 且记作 dU ,即 dU = f ( x )dx );
3)化 为 定 积 分 U =
∫
b
a
du
定积分在几何 几何上的应用 第二节 定积分在几何上的应用
一、平面图形的面积 1.直角坐标系情形 直角坐标系情形
y
y = f ( x)
π
π
3
o π
6
x
3 0
6 0
= − ∫ π sin xdx + ∫ 6 sin xdx
− 3 0
π
= cos x − π + ( − cos x ) 06
3
0
π
3− 3 = 2
说明:注意各积分区间上被积函数的形式. 说明:注意各积分区间上被积函数的形式. 问题: 问题:积分变量只能选 x 吗?
例 3
相当于定积分的换元) 连续. y = ψ (t )连续 (相当于定积分的换元)
x2 y2 的面积. 例 5 求椭圆 2 + 2 = 1的面积 a b x = a cos t 解 椭圆的参数方程 y = b sin t
由对称性知总面积等于4倍第一象限部分面积. 由对称性知总面积等于 倍第一象限部分面积. 倍第一象限部分面积
高数课件第六章定积分的应用:第二节定积分的几何应用

y
c
b O
x
bx
x
x x 1 sh dx ch dx c c b x xb s 2 ch dx 2c sh 0 c c 0 x b 1 x 2c sh ( c ch ) c sh c c c c
2
e e ch x 2 x x e e sh x 2 (ch x) sh x
Hale Waihona Puke 2 (t ) 2 (t ) d t
因此所求弧长
s
2 (t ) 2 (t ) d t
(3) 曲线弧由极坐标方程给出:
令 x r ( ) cos , y r ( ) sin , 则得
dx [r ( ) cos r ( ) sin ]d dy [r ( ) sin r ( ) cos ]d
2
选 x 为积分变量 (1) x [2, 0], dA1 ( x 3 6 x x 2 )dx 于是所求面积 A A1 A2
特别注意:
各积分区间 A ( x 3 6 x x 2 )dx 0 (x x 6 x)dx 上被积函数的 2 253 形式不同. . 12
0
3
2
3
x2 1 练习:1.求曲线 y , y 与直线 x 3 2 1 x 2
x 3 所围成的图形的面积。
2.求曲线 xy 1 与直线
x y 0 y 2
x y 2
P1
2
所围成的图形的面积。 2014考研题
提示:1
P2
y
1
32 1 0 2 1 1 3 x 1 x 1 1 s 2[ ( )d x ( ( 3 3 2) ) d x ] 2 0 1 x 1 3 2 2 1 x2
定积分的几何应用

定积分的几何应用定积分是微积分中的重要概念,它有着广泛的应用。
其中之一就是在几何学中的应用。
本文将探讨定积分在几何学中的具体应用,并解释其背后的原理和意义。
一、平面图形的面积通过定积分,我们可以计算出复杂平面图形的面积。
假设有一个曲线方程y=f(x),该曲线与x轴所围成的图形为A。
我们可以将A分解成无限个极小的矩形条,然后通过求和的方式来逼近A的面积。
具体而言,我们可以将横轴x划分为n个小区间,每个小区间的宽度为Δx。
然后,在每个小区间中,选择一个x值作为代表点,记作xi。
根据代表点xi和函数f(x)的值,我们可以计算出相应小矩形的高度为f(xi)。
由于每个小矩形的宽度Δx非常小,因此在计算总面积时,可以通过求和的方式逼近。
即可以得到如下的定积分表达式:A = ∫[a,b] f(x) dx其中[a,b]表示x的取值范围。
通过对上述定积分进行求解,即可得到图形A的面积。
二、曲线的弧长除了计算平面图形的面积外,定积分还可以用来计算曲线的弧长。
假设有一个曲线L,其方程为y=f(x)。
我们希望计算出曲线L的弧长。
与计算面积类似,我们同样可以将曲线L分解为无限个极小的线段,然后通过求和的方式来逼近曲线L的弧长。
具体而言,我们可以将横轴x划分为n个小区间,每个小区间的宽度为Δx。
然后,在每个小区间中,选择一个x值作为代表点,记作xi。
根据代表点xi和函数f(x)的值,我们可以计算出相应线段的长度为Δs。
同样地,由于每个小线段的长度Δs非常小,因此在计算总弧长时,可以通过求和的方式逼近。
即可以得到如下的定积分表达式:L = ∫[a,b] √(1 + [f'(x)]^2) dx其中[a,b]表示x的取值范围,f'(x)表示函数f(x)的导数。
通过对上述定积分进行求解,即可得到曲线L的弧长。
三、体积与质量除了平面图形的面积和曲线的弧长外,定积分还可以用来计算体积和质量。
当我们需要计算一个曲线绕某个轴旋转一周所形成的立体的体积时,定积分就派上用场了。
1.7定积分的几何应用

2
2
围成图形的面积.
解:作出y2=x,y=x2的图象如图所示:
解方程组 x 0 x 1 y x 或 2 y 0 y 1 y x
y
y
y xx
2
B
2
即两曲线的交点为(0,0),(1,1)
S = S曲 边 梯 形 OABC - S曲 边 梯 形 OABD
B(1,- 1). ∴围成图形 (阴影部分 )面积为
S=
-2
1
(- x2- x+ 2)dx 9 = . 2
1 3 1 2 = (- x - x + 2x) 3 2
9 答案: (1) 2
例 2 计算由曲线 y 围成的图形的面积.
2x
,直线 y
x 4 以及
y 2x
x 轴所
解:
两曲线的交点
2
|0 8
8
X型求解法
40 3
x 1 2 y
2
16 2 8
1 2
3
2
[( 4 y )
y ]d y
4
(4 y
44
1 2 1
2
y
2
2
1 6
x 4 y
y ) |0
1 6
3
4
4
40 3
Y型求解法
练习 1(例 2 变式题) : 计算由曲线 y 2 x 和直线 y x 4 所围成的图形的面积
2π 4 A. B. 5 3 3 π C. D. 2 2 解析:选 B.由图象可知二次函数的表达式为 f(x)= 1- x2,∴ S= 1 3 1 1 4 1 2 = (1- )-(- 1+ )= . -1 (1- x )dx= (x-3x ) 3 3 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面 积 微 元
dA
y f (x)
于是 A f ( x)dx
b
o a x x dxb x
A lim f ( x)dx a f ( x)dx.
这种简化以后的定积分方法叫“微元法”
微元法的一般步骤:
1)根据问题的具体情况,选取一个变量例如 x
为积分变量,并确定它的变化区间[a, b];
与 x 轴和曲线 y f ( x) 围成的面积是另一条平 行线与y 轴和曲线 y f (x) 围成的面积的两 倍,请求曲列线出方f(程x)所. 满足的关系式
y O
x
y x4
-2 A
选 x为积分变量 x [0,2 ] [2,8]
2
8
A 0 [ 2x ( 2x )]dx 2 [ 2x ( x 4)]dx 18.
选 y 为积分变量 y [2, 4]
dA
y4
y2 2
dy
y+dy
y x4
第五章 定积分及其应用
§6 定积分在几何上的应用
§5.6 定积分在几何上的应用
若能把某个量表示 成定积分,我们就可以 计算了.
一、定积分应用的微元法
问题的提出
回顾 曲边梯形求面积的问题
曲边梯形由连续曲线 y
y f (x)
y f ( x)( f ( x) 0) 、
A
x 轴与两条直线x a 、
n
(3) 求和,得A的近似值 A f (i )xi .
(4) 求极限,得A的精确值 i1
n
A
lim
0
i 1
f (i )xi
b f ( x)dx
a
对以上过程进行简化:
提示 若用A 表示任一小区间 [ x, x x]上的窄曲边梯形的面积,y
则 A A,并取A f ( x)dx,
a
a
曲边梯形的面积 A t2 (t) (t)dt. t1
(其中t1和t2 对应曲线起点与终点的参数值)
在[t1,t2 ](或[t2 ,t1 ])上x (t )具有连续导数, y (t)连续. (相当于定积分的换元)
例5
求椭圆 x 2 a2
y2 b2
1的面积.
解
椭圆的参数方程
公式法 3.求出定积分的值.
例2
求由曲线y sin x与直线x , x
36
及x轴围成的平面图形的面积.
解
由公式得:A
6
sin x dx
0
3
sin x dx 6 sin x dx
0
3
y y=sinx
3
o x
6
0
可直接从几何
sin xdx 6 sin xdx
0
意义上得到
3
cos
x
0
3
( cos x) 6 0
3 2
3
说明:注意各积分区间上被积函数的形式. 问题: 积分变量只能选x 吗?
例 3 计算由曲线y2 2x 和直线 y x 4所围
成的图形的面积.
y
解 两曲线的交点
y+dy4
B
y2 2x
(2,2), (8,4).
a2
(1 2cos cos2 )d
0
a
2
3 2
2 sin
1 sin 2
4
0
3 2
a2 .
总结
★微元法
★求在直角坐标系下、参数方程形 式下、极坐标系下平面图形的面积.
(注意恰当的选择积分变量有助于 简化积分运算)
y
y
y x
yx 1
A 0 ( x x)dx
2 1
[(1
y2 )
5 y 2 ]dy
2
x 1 y2
2
1
2 [(1
0
y 2 ) 5 y 2 ]dy
[y
4 3
1
y 3 ]02
2 3
如果曲边梯形的曲边为参数方程
x y
(t) (t)
b
b
由 A f ( x) dx y dx 知
一象限部分面积
y x
A 4A1
A 4 4 0
1 a2 cos 2d
2
a2.
A1
2 a2 cos 2
例 7 求心形线r a(1 cos )所围平面图形的
面积(a 0).
解 dA 1 a2(1 cos )2 d
d
2
利用对称性知
A 2 1 a2 (1 cos )2 d 20
2)设想把区间[a, b]分成 n个小区间,取其中任一小
区间并记为[ x, x dx],求出相应于这小区间的部分
量 F 的近似值.如果F 能近似地表示为[a, b]上的一
个连续函数在 x处的值 f ( x)与dx 的乘积,就把
f ( x)dx称为量 F 的微元且记作dF ,即
dF f ( x)dx ;
就可以考虑用定积分来表达这个量 F
二、用定积分求平面图形的面积
1.直角坐标系情形
y y f (x)
y
y f2(x)
o a x x x b x
oa
y f1( x)
x
x b x
曲边梯形的面积
曲边梯形的面积
A
b
a
f
(
x)dx
b
A a[ f2( x) f1( x)]dx
上曲线 下曲线
x b所围成。
oa
bx
b
A a f ( x)dx
面积表示为定积分的步骤Байду номын сангаас下
(1)把区间[a, b]分成n 个长度为xi 的小区间,
相应的曲边梯形被分为n 个小窄曲边梯形,i第
n
小窄曲边梯形的面积为Ai ,则A Ai .
i 1
(2)计算Ai 的近似值 Ai f (i )xi i xi
4
A dA 2
y
4
y2
y2 2x
( y 4 )dy 18.
2
2
说明:合理选择积分变量会使计算简单.
一般地:
y d y+dy y
c
o
x ( y)
x
y d
y+dy y
c o
x 2( y)
x 1( y)
x
d
A c ( y)dy
d
c xdy
d
A c [1 ( y) 2 ( y)]dy
右曲线 左曲线
例4 求抛物线x 5 y2和x 1 y2所围成的
平面图形的面积.
y
解 如图求得交点为
B1
(
5 4
,
1 2
)和B2
(
5 4
,
1 2
)
取y为积分变量
y
[
1 2
,
1] 2
1
x 5y2
B1
oA
B2
x
s
图形的面积.
解 两曲线的交点 (0,0) (1,1) 选 x 为积分变量 x [0,1]
x y2 y x2
面积微元 dA ( x x2 )dx
A
1
0 (
x
x2 )dx
2 3
3
x2
x3 3
1 0
1. 3
x
可直接由公式得到
x+dx
求面积的一般步骤:
1.作图求交点. 微元法 2.用定积分表示面积.
o
x
ye
e
A ln ydy
y ex
1
o
x
y y 2x 3
y
y1
y x2
o
x
A 3 (2x 3 x2 )dx 1
y 2x2 y x2
o
x1
y
A 0 (
y
)dy 2
思考题
设曲线 y f ( x)过原点及点(2,3) ,且 f ( x)
为单调函数,并具有连续导数,今在曲线上任 取一点作两坐标轴的平行线,其中一条平行线
r ( )
d
面积元素 dA 1[ ( )]2 d
2
曲边扇形的面积为:
o
x
A 1[ ( )]2d . 2
圆扇形的面积为A 1 r 2
2
例 6 求双纽线 2 a2 cos 2 所围平面图形
的面积.
解 由对称性知总面积=4倍第
f ( x)在[a, b]上有正有负.
1. f ( x)>0时 dA f ( x)dx 2. f ( x)<0时
y
y f (x)
x oax
dA f ( x) dx
x+dx
总之 dA f ( x) dx
b
b
A a f ( x) dx a y dx
x+dx bx
例 1 计算由两条抛物线y2 x 和y x2 所围成的
b
(3)F a f ( x)dx
两边积分
说明:当所求量 F 符合下列条件
(1)F 是与一个变量x 的变化区间a, b 有关