八年级上册上海数学知识点

合集下载

八年级上数学知识点沪科

八年级上数学知识点沪科

八年级上数学知识点沪科
八年级上数学知识点概述
数学是一门重要的学科,它广泛应用于各个领域。

在初中数学中,掌握数学知识点是学生学习的基础。

本文旨在概述八年级上
数学知识点,帮助学生快速了解数学知识的主要内容。

第一章:代数表达式
代数表达式是数学中的一项重要内容。

在八年级上,代数表达
式包括单项式、多项式、同类项、合并同类项、分解因式等内容。

掌握代数表达式对于学习后续的代数知识具有重要的作用。

第二章:方程
方程是解决问题的一种重要方法。

在八年级上,学生将学习一
元一次方程及其应用,如简单的解题应用、方程的破解、实际应
用问题的解答等。

第三章:几何
几何是数学中一个极为重要的分支,八年级上的几何知识点主要包括图形的分类、角的概念、三角形的性质和应用、相似三角形及其应用、勾股定理等内容。

第四章:概率
概率是一个重要的数学概念,涉及到随机事件的计算和分析。

在八年级上,学生将学习概率相关的定义、公式、实际应用等。

第五章:统计
统计学是数学中的一个分支,涉及到数据的收集、整理、描述和分析。

在八年级上,学生将学习各种数据的表示方式、频数分布表、分组频数分布表、直方图、折线图、带来图等。

第六章:线性函数
线性函数是代数和几何的重要概念。

在八年级上,学生将了解直线的一般式和点斜式,掌握解直线方程和应用直线的知识。

结语
本文概述了八年级上的数学知识点,从代数表达式到线性函数,每个知识点都是数学学习的基础。

学生们应该认真学习,并及时
进行复习和巩固,从而为学习后续课程打下坚实的基础。

八年级上沪教版数学知识点

八年级上沪教版数学知识点

八年级上沪教版数学知识点一、有理数1. 有理数的定义:有理数指可以表示为两个整数比的数,包括正整数、负整数、零以及分数。

2. 有理数的表示方法:可以表示为分数形式或者小数形式。

3. 有理数的运算法则:加减乘除的运算法则与整数相同,需要注意的是,分数相加减时需要先通分再进行运算。

二、代数式1. 代数式的定义:代数式指由数字、字母或者符号构成的式子,可以进行加减乘除等运算。

2. 代数式的分类:单项式、多项式、恒等式、方程式等。

3. 代数式的基本运算:合并同类项、乘法公式、配方法等。

三、方程式1. 方程式的定义:方程式指带有未知数的等式,可以用来求解未知数的值。

2. 方程式的解法:常见的求解方法有加减消元法、代入法、配方法、公式法等。

3. 方程式的应用:方程式在生活中有很多应用,比如物理中的牛顿第二定律、经济学中的成本收益分析等。

四、三角形1. 三角形的定义:三角形指由三条线段构成的一个图形。

2. 三角形的分类:按照角度可以分为锐角三角形、直角三角形以及钝角三角形;按照边长可以分为等边三角形、等腰三角形以及普通三角形。

3. 三角形的性质:三角形有很多基本性质,比如内角和为180度、等角的三角形对应边长成比例等。

五、解直角三角形1. 正弦、余弦、正切函数的定义:用直角三角形的角所对应的边长比来表示三角函数。

2. 直角三角形的解法:利用三角函数定义中的正弦、余弦、正切函数,可以求解直角三角形的任意一条边长。

3. 应用举例:利用三角函数可以解决很多实际问题,比如高空抛物、导弹轨迹等。

以上是八年级上沪教版数学的主要知识点,掌握好这些知识对于后续学习和实际生活应用都有帮助。

同时,在学习过程中,需要掌握好基本的计算技巧和思维方法,勤于练习,不断提高自己的数学水平。

2024年沪科版八年级数学上册知识点总结

2024年沪科版八年级数学上册知识点总结

2024年沪科版八年级数学上册知识点总结一、有理数的加减乘除运算1. 有理数的加法运算:同号相加,异号相减。

将分子分母化为最简整数形式,要注意约分。

2. 有理数的减法运算:减去一个数等于加上这个数的相反数。

3. 有理数的乘法运算:同号得正,异号得负。

将分子分母化为最简整数形式,要注意约分。

4. 有理数的除法运算:除以一个数等于乘以这个数的倒数。

5. 有理数的四则运算综合运用。

二、平方根与立方根1. 平方根:给定一个非负实数a,且a≥0,开根号的结果称为a的平方根。

记作√a。

2. 整数的平方根:如果一个整数的平方等于一个非负整数,那么这个非负整数就是该整数的平方根;否则,这个整数没有平方根。

3. 立方根:给定一个实数a,开立方根的结果称为a的立方根。

记作3√a。

三、带有根号的计算1. 同底数的相加相减:进行根号运算时,同底数的根号可以相加相减,底数不变。

2. 同底数的乘方:进行根号运算时,同底数的根号可以进行乘方运算,即合并同底数的指数。

3. 分数的根号运算:分子分母同时进行根号运算,然后约分,也可以先约分再进行根号运算。

四、代数式1. 代数式的定义:用字母表示数的式子,包含一个或多个字母和常数、运算符号组成。

2. 代数式的值:为了求代数式的值,需要给字母赋予特定的数值,将字母用数代替,然后进行计算。

3. 代数式的运算:常用的代数式运算有加法、减法、乘法和除法。

五、线性方程与方程的解1. 线性方程:只含有一次幂的方程称为线性方程。

2. 化简与解方程:对于方程要进行化简,恢复原来的形式,再解方程。

3. 解方程的方法:常用的解方程的方法有相加相减法、代入法、等式交换法和系数分离法。

六、百分数1. 百分数的概念:以分号“%”表示,百分数等于百分数的百分之一。

2. 百分数与小数的互相转化:将百分数转化为小数,就是将百分号去掉,除以100;将小数转化为百分数,就是乘以100再加上百分号。

3. 百分数的应用:常用的百分数应用有百分数的简化、比较大小和求百分数。

上海初二八年级(上)数学知识点详细总结,推荐文档

上海初二八年级(上)数学知识点详细总结,推荐文档

叫做 a 的算术平方根。特别地,0 的算术平方根是 0。
表示方法:记作“ a ”,读作根号 a。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数 x 的平方等于 a,即 x2=a,那么这个数 x 就叫做 a 的
平方根(或二次方根)。
表示方法:正数 a 的平方根记做“ a ”,读作“正、负根号 a”。
我去人1、一也正般比地就例,函若有数两和个人一变次量!函x,数为y的间概U的念R关扼系可腕以表入示成站y 内kx信 b (不k,存b 为在常数向,k你 0)偶的 同意调剖沙
4
形式,则称 y 是 x 的一次函数(x 为自变量,y 为因变量)。
特别地,当一次函数 y kx b 中的 b=0 时(即 y kx )(k 为常数,k 0),称 y 是
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数 a 的平方根的运算,叫做开平方。
a 0
注意: a 的双重非负性: a 0
3、立方根 一般地,如果一个数 x 的立方等于 a,即 x3=a 那么这个数 x 就叫做 a 的立方根(或三
我去次人方根也)。 就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
建议收藏下载本文,以便随时学习! 总件数、利润率=
利润
进价(或成本)
100
0
0
、售价=标价×打折数等;
注意:解应用题时一定不要忘记检验所求的根是否符合实际问题的要求。 第三章 一次函数
一、函数: 一般地,在某一变化过程中有两个变量 x 与 y,如果给定一个 x 值,相应地就确定了
一个 y 值,那么我们称 y 是 x 的函数,其中 x 是自变量,y 是因变量。 二、自变量取值范围

上海八年级上数学知识点汇总

上海八年级上数学知识点汇总

《数学》(八年级上册)知识点总结第十六章二次根式、二次根式计算1、 含有二次根号“、厂”;被开方数a 必须是非负数。

2、 性质:(1) ( a )2 a (a 0)0(a 0)(2) 好 |a 彳 0(a 0)匕 a (a 0)(3) - ab - a ? , b (a 0,b 0) (、a?.b . ab (a 0,b 0))(—b,b(a 0,b 0)(,'b川 °,b 0))3、 化简二次根式:把二次根式被开方数的完全平方因式移到根号外。

例: 、、18 、2 32 3 2。

(字母 因式由根号内移到根号外时,必须考虑字母因式隐含的符号)4、 最简二次根式:化简后的二次根式需同时符合以下两个条件:⑴被开方数中各因式的指数都为 1;⑵被 开方数不含分母。

这样的二次根式叫做最简二次根式。

将一个二次根式化成最简二次根式,有以下两种情况:⑴如果被开方数是分式或分数(包括小数) ,先利用商的自述平方根的性质把它写成分式的形式, 然后再分母有理化;⑵如果被开方数是整式或整数,先将它分解因式或分解质因数,然后把能开方的因式或因数开出来,从而 将式子化简。

化二次根式为最简二次根式的步骤: ⑴把被开方数分解质因数,化为积的形式; ⑵把根号内能开方的的因数移到根号外;⑶化去根号内的分母,若被开方数的因数中有带分数要化成假分数,小数化成分数。

5、 同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二 次根式。

例:•• 18、2 .一 2、1、2。

(判断是不是同类二次根式:首先,要看它们是不是最简二次根式;其次,2看这些最简二次根式的被开方数是否相同)6、 二次根式的加法、减法:⑴化简,化成最简二次根式;⑵合并同类二次根(即将被开方数相同的二次根式的系数进行合并)7、二次根式的乘法、除法:⑴先完成根号内乘除,再化简二次根式;⑵小数化分数,带分数化假分数;⑶ 字母需考虑取值范围(不要忽视隐含条件)。

八上数学知识点总结归纳沪科版

八上数学知识点总结归纳沪科版

八上数学知识点总结归纳沪科版数学,就像一座神秘的城堡,八年级上册的沪科版数学知识,那可是开启城堡深处大门的钥匙!咱们先来说说全等三角形。

全等三角形就像是一对双胞胎,不仅长得一模一样,各个部分的尺寸也完全相同。

要判断两个三角形全等,那可得有一双火眼金睛。

比如“边边边”,三条边都相等,它们就全等啦,这就好比你有三把一样长的尺子,那能做出一模一样的图形不是?还有“边角边”,两边及其夹角相等,这俩三角形也全等。

你想想,要是给你两条同样长的绳子和一个固定的夹角,是不是也只能画出一样的形状?再聊聊一次函数。

这一次函数啊,就像是一辆行驶中的汽车。

k 是斜率,决定了车爬坡的陡峭程度,b 是截距,就像是车出发的起始位置。

当 k 大于 0 时,车是向上爬坡,图像从左到右上升;k 小于 0 呢,车就开始下坡啦,图像从左到右下降。

这不就跟咱们生活中开车的感觉很像吗?整式的乘法与因式分解也很有趣。

乘法就像是盖房子,把一个个小砖块组合在一起,变得越来越大。

而因式分解呢,则是把大房子拆成一个个小砖块。

比如说,(a + b)(a - b) = a² - b²,这不就像是把一个大拼图拆成了两块嘛!还有分式,分式就像是分蛋糕。

分子是你能拿到的那份,分母是整个蛋糕。

要是分母为 0 ,那不就相当于没有蛋糕可分,这可不行!在学习这些知识的时候,可别像小猴子掰玉米,学一个丢一个。

要多做练习题,就像练武要多打拳一样,把知识练得滚瓜烂熟。

遇到难题别退缩,要像勇士一样勇往直前。

每次解决一个难题,都像是登上了一个小山峰,那种成就感,别提多棒啦!总之,八年级上册沪科版的数学知识丰富多彩,只要咱们用心去学,就能在数学的城堡里畅游,发现更多的奇妙之处!。

上海八年级上数学知识点

上海八年级上数学知识点一、有理数1. 有理数的概念有理数包括整数、分数、正小数和负小数。

2. 有理数的比较大小相同符号的比较绝对值大小,不同符号的比较符号。

二、分式1. 分式的概念分式是指一个数被表示为两个整数的比值的形式,其中分母不能为0。

2. 分式的化简利用分式的基本性质和等式的性质来简化分式。

3. 分式的加减法将分母化为相同的整数,再加减分子。

三、代数式1. 代数式的概念代数式是指用数或字母表示的表示式。

2. 代数式的加减法将同类项的系数相加减即可。

四、方程1. 方程的概念方程是指一个等式两边都是代数式的式子。

2. 方程的解法化简方程式,通过加减乘除等运算,将方程的未知量解出来。

五、三角形1. 三角形的分类三角形可以根据边长和角度分为等边三角形、等腰三角形、直角三角形、钝角三角形、锐角三角形。

2. 三角形的性质三角形的内角和为180度,直角三角形两条直角边平方和等于斜边平方。

六、平面直角坐标系1. 平面直角坐标系的概念平面直角坐标系是一个由两个互相垂直的坐标轴组成的图形系统。

2. 平面直角坐标系上的图形关系利用坐标轴可以表示出图形在坐标系内的位置,并且可以计算出图形的相关数据。

七、函数1. 函数的概念函数是一组有序数对,其中每个输入值都对应唯一的输出值。

2. 函数的图象函数可以通过输入值和输出值在坐标轴上的位置确定一个图象。

综上所述,上海八年级上数学主要包括有理数、分式、代数式、方程、三角形、平面直角坐标系和函数等知识点。

通过学习这些知识点,可以为学生们提供代数思维的基础,并为他们在高中数学学习和数学竞赛中打下坚实的基础。

最新上海八年级上数学知识点

最新上海八年级上数学知识点第十六章 二次根式一、二次根式计算1、含有二次根号“”;被开方数a 必须是非负数.2、性质:(1))0()(2≥=a a a)0(0=a(2)==a a 2)0(<-a a(3))0,0(≥≥•=b a b a ab ()0,0(≥≥=•b a ab b a )(4))0,0(>≥=b a bab a ()0,0(>≥=b a baba ) 3、化简二次根式:把二次根式被开方数的完全平方因式移到根号外.例:2332182=⨯=.(字母因式由根号内移到根号外时,必须考虑字母因式隐含的符号)4、最简二次根式:化简后的二次根式需同时符合以下两个条件:⑴被开方数中各因式的指数都为1;⑵被开方数不含分母.这样的二次根式叫做最简二次根式.将一个二次根式化成最简二次根式,有以下两种情况:⑴如果被开方数是分式或分数(包括小数),先利用商的自述平方根的性质把它写成分式的形式,然后再分母有理化;⑵如果被开方数是整式或整数,先将它分解因式或分解质因数,然后把能开方的因式或因数开出来,从而将式子化简.化二次根式为最简二次根式的步骤: ⑴把被开方数分解质因数,化为积的形式; ⑵把根号内能开方的的因数移到根号外;⑶化去根号内的分母,若被开方数的因数中有带分数要化成假分数,小数化成分数.5、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式.例:18、22、221.(判断是不是同类二次根式:首先,要看它们是不是最简二次根式;其次,看这些最简二次根式的被开方数是否相同))0(0=a6、二次根式的加法、减法:⑴化简,化成最简二次根式;⑵合并同类二次根(即将被开方数相同的二次根式的系数进行合并)7、二次根式的乘法、除法:⑴先完成根号内乘除,再化简二次根式;⑵小数化分数,带分数化假分数;⑶字母需考虑取值范围(不要忽视隐含条件).8、分母有理化:把分子和分母都乘以一个适当的代数式,使分母不含根号,这种计算叫做分母有理化.第十七章 一元二次方程一、定义:只含有一个未知数,且未知数最高次数是二次的整式方程. 二、一般式:)0(02≠=++a c bX aX 三、一元二次方程的解法:1、开平方法:一般来说,形如d X =2、)0(02≠=+a c aX 的一元二次方程可以用开平方法.(三种情况:有两个不相等的实数根,等于0,没有实数根)2、因式分解法:提取公因式、公式法(平方差、完全平方公式)、十字相乘法、分组分解法.3、配方法:⑴移常数项;⑵化二次项系数为1;⑶配方,在方程的左右两边同时加上一次项系数一半的平方;⑷用开平方法求解;⑸结论.4、公式法:⑴先把方程化为一般形式;⑵写出方程各项的系数a 、b 、c 的值(要注意它们的符号);⑶计算ac b 42-;⑷当042≥-ac b 时,将a 、b 、c 的值代入求根公式,求出方程的两个根;⑸当ac b 42-<0时,方程没有实数根,就不必解了.(开平方法、因式分解法一般适用于特殊形式的方程,而配方法、公式法是使用最普遍的方法,适用任意方程,其中:公式法计算较繁琐.) 四、一元二次议程根的判别式1、定义:ac b 42-叫做一元二次方程)0(02≠=++a c bX aX 的根的判别式,通常用符号“△”来表示,即△=ac b 42-.2、一元二次方程)0(02≠=++a c bX aX 的根的情况与△的关系: ⑴△=⇔〉-042ac b 方程有两个不相等的实数根. ⑵△=⇔=-042ac b 方程有两个相等的实数根. ⑶△=⇔〈-042ac b 方程没有实数根. 3、由方程的情况求字母系数的值或取值范围⑴如果说方程有实数根,那么042≥-ac b ;⑵注意:因为是一元二次方程,不要遗漏隐含条件0≠a . 五、一元二次议程的应用1、二次三项式的概念:形如(a 、b 、c 都不为0)的多项式称为二次三项式.2、二次三项式的因式分解:⑴首先考虑能否提取公因式;⑵能否运用十字相乘法;⑶最后考虑用公式法. 3、列一元二次方程解应用题的一般步骤: ⑴审题⑵设元⑶列方程⑷解方程⑸检验⑹写答案 4、根据题意列方程时,必须同时满足以下四个条件:⑴方程两边意义相同;⑵方程两边单位一致;⑶方程两边数值相等;⑷方程全面地反映了题中所有数量之间的关系.5、列一元二次方程解题的类型:⑴几何类问题(利用几何定理、面积公式等作解题依据,列出一元两次方程,解题);⑵增长(降低)率问题:如设基数为a ,平均增长率为x ,则第一次增长后为a(1+x),第二次增长后为a(1+x)2; ⑶利润(销售)问题:常用等量关系有:利润=售价-进价(成本)、总利润=每件的利润×总件数、利润率=00100⨯进价(或成本)利润、售价=标价×打折数等;注意:解应用题时一定不要忘记检验所求的根是否符合实际问题的要求.第十八章 正比例函数和反比例函数一、函数:一般地,在某一变化过程中有两个变量x 与y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量. 二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围.一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑. (1).用整式表示的函数,自变量的取值范围是全体实数.(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数.(3)用奇次根式表示的函数,自变量的取值范围是全体实数. 用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数.(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围.(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义. 三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法.(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法. (3)图象法用图象表示函数关系的方法叫做图象法. 四、函数图像函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象. 用描点法画函数的图象的一般步骤 :1、列表(表中给出一些自变量的值及其对应的函数值.) 注意:列表时自变量由小到大,相差一样,有时需对称.2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点.3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来). 五、正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,若两个变量x ,y 间的关系可以表示成b kx y +=(k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量).特别地,当一次函数b kx y +=中的b=0时(即kx y =)(k 为常数,k ≠0),称y 是x 的正比例函数,是一次函数的特例.2、一次函数的图像: 所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线.4、正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小. 5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k.确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法. (1) 一次函数与一元一次方程:从“数”的角度看x 为何值时函数y= ax+b 的值为0.(2) 求ax+b=0(a , b 是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b 与 x 轴交点的横坐标. (3) 一次函数与一元一次不等式:解不等式ax+b >0(a ,b 是常数,a≠0) .从“数”的角度看,x 为何值时函数y= ax+b 的值大于0.(4)解不等式ax+b >0(a ,b 是常数,a≠0). 从“形”的角度看,求直线y= ax+b 在 x 轴上方的部分(射线)所对应的的横坐标的取值范围.7、一次函数与一元一次方程的关系:任何一个一元一次方程都可转化为:kx+b=0(k 、b 为常数,k ≠0)的形式. 而一次函数解析式形式正是y=kx+b (k 、b 为常数,k ≠0).当函数值为0时,•即kx+b=0就与一元一次方程完全相同.结论:由于任何一元一次方程都可转化为kx+b=0(k 、b 为常数,k ≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.从图象上看,这相当于已知直线y=kx+b 确定它与x 轴交点的横坐标值. 7、反比例函数定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数.x ky =还可以写成kx y =1- 反比例函数解析式的特征:⑴等号左边是函数y ,等号右边是一个分式.分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k⑶自变量x 的取值为一切非零实数.⑷函数y 的取值是一切非零实数. 反比例函数的图像 ⑴图像的画法:描点法① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) ③ 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交.⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=). ⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k .反比例函数性质如下表:k 的取值 图像所在象限 函数的增减性 o k > 一、三象限 在每个象限内,y 值随x 的增大而减小 o k <二、四象限在每个象限内,y 值随x 的增大而增大反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出k )“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数x ky =中的两个变量必成反比例关系.第十九章 几何证明一、几何证明中常用的证明方法:1、证明两直线平行——利用平行线的性质和判定,利用平行线的判断定理及其推论来证明,这是证明两直线平行最基本的方法,关键是找出同位角、内错角的相等关系或同旁内角的互补关系.2、证明两线段相等——利用三角形全等的性质和判定、利用等腰三角形的性质和判定(1)如果两线段分别在两个三角形中,那么可证这两个三角形全等,有时可能缺少直接条件,要证明两次全等;(2)有时两线段分别在两个三角形中,但这两个三角形不全等,那么可添辅助线构造全等三角形来证.常添的辅助线有:平行线、垂线、中线、连结线段等.(3)如果两线段是一个三角形的两边,可证它们所对的角相等、等角对等边;(4)证明两条线段都等于第三条线段,即以第三条线段为媒介.3、证明两角相等——利用三角形全等的性质和判定、利用等腰三角形的性质和判定.4、证明两直线互相垂直——利用垂直的定义、利用等腰三角形三线合一的性质. *5、证一线段等于另一线段的2倍或一半——利用加倍法或拆分法常常要作辅助线.添辅助线:由于证明的需要,可以在原来的图上添画一些线,即添加辅助线来完成一些几何证明,辅助线通常画成虚线. 三角形证明题中常见在辅助线做法:利用三角形的主要线段构造全等三角形 .二、勾股定理 1、勾股定理的定义直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形. 3、勾股数:满足222c b a =+的三个正整数,称为勾股数.垂线的性质:①过一点有且只有一条直线与已知直线垂直;②直线外一点有与直线上各点连结的所有线段中,垂线段最短;线段的垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线.定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等. 逆定理:和一条线段两个端点的距离相等的点,在这条线段的垂直平分线上. 角的平分线定理:在角的平分线上的点到这个角的两边的距离相等.逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上.。

上海沪教版八年级数学上下册知识点梳理完整版

上海沪教版八年级数学上下册知识点梳理 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】上海市沪教版八年级数学上下册知识点梳理第十六章 二次根式第一节 二次根式的概念和性质二次根式1.二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或0。

2.二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a ba b a 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a3.二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:(c ≥0)=a ≥0,b>0)n =≥0)第十七章 一元二次方程一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2.一般形式y=ax2+bx+c (a ≠0),称为一元二次方程的一般式,ax 叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式2b x a -±=:1222b b x x a a-+--= , = ; △=24b ac -≥0一元二次方程的判别式1.一元二次方程20(0)ax bx c a ++=≠:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也是成立的一元二次方程的应用1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得2ax bx c ++=12()()a x x x x --;1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的根2.把二次三项式分解因式时;如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3.实际问题:设,列,解,答第十八章 正比例函数和反比例函数.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学是自称为函数解析式()y f x =4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值正比例函数1. 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2.正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数3.对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4.一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =5. 正比例函数y kx =(0)k k ≠是常数且有如下性质:(1)当k <0时,正比例函数的图像经过一、三象限,自变量x 的值逐渐增大时,y 的值也随着逐渐增大(2)当k <0时 ,正比例函数的图像经过二、四象限,自变量x 的值逐渐增大时,y 的值则随着逐渐减小反比例函数1.如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2.解析式形如(0)k y k k x=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数反比例函数的定义域是不等于零的一切实数3.反比例函数(0)k y k k x=≠是常数,有如下性质: (1)当k >0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x 的值逐渐增大时,y 的值则随着逐渐减小(2)当k <0时 ,函数图像的两支分别在第二、四象限,在每一个象限内。

(完整word版)上海市沪教版八年级数学上下册知识点梳理

上海市沪教版八年级数学上册知识点梳理第十六章 二次根式第一节 二次根式的概念和性质16.1 二次根式1. 二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或0。

2. 二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a b a b a 16.2 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a3.二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:≥0) ).0,0(≥≥=⋅b a ab b a=a ≥0,b>0) n ≥0)第十七章 一元二次方程17.1 一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2.一般形式y=ax ²+bx+c (a ≠0),称为一元二次方程的一般式,ax 叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项17.2 一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式2b x a -±=:1222b b x x a a---= , = ;△=24b ac -≥0 17.3 一元二次方程的判别式1.一元二次方程20(0)ax bx c a ++=≠:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也是成立的17.4 一元二次方程的应用1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得2ax bx c ++=12()()a x x x x --;1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的根2.把二次三项式分解因式时;如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3. 实际问题:设,列,解,答第十八章 正比例函数和反比例函数18.1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学是自称为函数解析式()y f x =4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值18.2 正比例函数1. 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2.正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数3.对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4.一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =5. 正比例函数y kx =(0)k k ≠是常数且有如下性质:(1)当k <0时,正比例函数的图像经过一、三象限,自变量x 的值逐渐增大时,y 的值也随着逐渐增大(2)当k <0时 ,正比例函数的图像经过二、四象限,自变量x 的值逐渐增大时,y 的值则随着逐渐减小18.3 反比例函数1.如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2.解析式形如(0)k y k k x=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数 反比例函数的定义域是不等于零的一切实数 3.反比例函数(0)k y k k x =≠是常数,有如下性质: (1)当k >0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x 的值逐渐增大时,y 的值则随着逐渐减小(2)当k <0时 ,函数图像的两支分别在第二、四象限,在每一个象限内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册上海数学知识点在上海的八年级数学教学中,有一些重要的知识点需要我们掌握。

下面我们一起来回顾一下这些知识点。

1. 三角形的基本元素
三角形的基本元素包括边、角和高。

在计算三角形的各种属性时,我们需要熟悉这些基本元素的定义和性质。

例如,对于一个直角三角形而言,我们可以通过勾股定理来计算其斜边的长度。

2. 直线和角的关系
直线和角之间有着密切的关系。

例如,对于两条平行线,它们所形成的角度是相等的。

而对于两条相交的直线,它们所形成的垂直角是相等的。

此外,我们还需要熟悉多边形的内角和外角的定义和性质。

3. 坐标系和直线的方程
在数学中,坐标系是一个很重要的工具。

我们可以通过在坐标系中画出图形来解决许多几何问题。

同时,我们也需要掌握直线的方程,以便对直线做出更加精确的描述。

4. 函数的概念和性质
函数是数学中一个非常重要的概念。

我们需要了解函数的定义和性质,掌握函数的图像和表格表示法,以及函数的基本运算和复合函数的概念。

5. 圆的基本元素和性质
圆是几何中的一个重要问题,我们需要了解圆的基本元素和性质,例如圆的半径、直径、周长和面积的计算方法等。

6. 平面向量的概念和性质
平面向量是数学中一个非常重要的概念,我们需要了解向量的定义和性质,熟悉向量的加法和减法,以及向量的数量积和向量积等概念。

总之,在掌握以上知识点的基础上,我们就可以更好地应对数学教学中的各种问题。

相信只要我们认真学习掌握这些知识点,就能够在数学学习中取得更好的成绩。

相关文档
最新文档