【学习课件】第二章传输线理论

合集下载

第2章传输线理论

第2章传输线理论

j z
1 2Z0
(U1
I1Z0 )e
j z
(2―2―14)
同样可以写成三角函数表达式
U (z)
U1 cos z
jZ0
sin z
I
(
z)
j
U1 Z0
sin
z
I1
cos
z
(2―2―15)
第2章 传输线理论
三、入射波和反射波的叠加 由式(2―2―5)和式(2―2―6)两式可以看出,传输线 上任意位置的复数电压和电流均有两部分组成,即有
U (z)
A1e j z
A2e j z
Ui(z) Ur(z)
I
(z)ຫໍສະໝຸດ 1 Z0A1e j z
1 Z0
A2e j z
Ii(z)
Ir(z)
(2―2―16)
第2章 传输线理论
根据复数值与瞬时值的关系,并假设A1、A2为实数, 则沿线电压的瞬时值为
u(z,t) Re[U (Z )e ji ] A1 cos(t z) A2 cos(t z)
式中v0为光速。由此可见,双线和同轴线上行波电
压和行波电流的相速度等于传输线周围介质中的光速,
它和频率无关,只决定周围介质特性参量ε,这种波称为
无色散波。
第2章 传输线理论
(三) 相波长λp
相波长λp是指同一个时刻传输线上电磁波的相位相 差2π的距离,即有
p
2
vp f
vpT
0 r
(2―3―5)
第2章 传输线理论
这种路的分析方法,又称为长线理论。事实上,“场” 的理论和“路”的理论既是紧密相关的,又是相互补充 的。有些传输线宜用“场”的理论去处理,而有些传输 线在满足一定条件下可以归结为“路”的问题来处理, 这样就可借用熟知的电路理论和现成方法,使问题的处 理大为简化。

第二章-传输线理论

第二章-传输线理论

第二章 传输线理论
根据传输线上的分布参数是否均匀分布,可将其分为 均匀传输线和不均匀传输线。我们可以把均匀传输线分割
成许多小的微元段dz (dz<<λ),这样每个微元段可看作集 中参数电路,用一个Γ型网络来等效。于是整个传输线可
等效成无穷多个Γ型网络的级联
第二章 传输线理论
2 - 2 无耗传输线方程及其解 一、传输线方程
即:
( ) I (z) = Ii2e jβ z + Ir2e- jβ z = Ii2 e jβ z + e- jβ z = 2Ii2 cos β z
( ) u(z,t) =
2Ui2
sin
β
z cos ω t
+
φ 2

2
i(z,t) =
2
Ii2
cos β
z cos(ω t
+
φ) 2
第二章 传输线理论
=
-
Ur (z) Ir (z)
=
R0 + jωL1 G0 + jωC1
对于无耗传输线( R0 = 0, G0 = 0 ),则
Z0 =
L1 C1
对于微波传输线 ,也符合。
平行双线 同轴线 特性阻抗
在无耗或低耗情况下,传输线的特性阻抗为一实数, 它仅决定于分布参数L1和C1,与频率无关。
第二章 传输线理论
l = (2n +1) λ (n = 0,1,2,)
4
1.传输线上距负载为半波长整数倍的各点的输入阻抗等于负载阻抗;
2.距负载为四分之一波长奇数倍的各点的输入阻抗等于特性阻抗的
平方与负载阻抗的比值;
3.当Z0为实数,ZL为复数负载时,四分之一波长的传输线具有变换阻 抗性质的作用。

传输线理论

传输线理论

u(z,t) → U (z) i(z,t) → I(z)
∂ → jω, ∂ → d
∂t
∂z dz
∂2 → ( jω )2 = −ω 2
∂t 2
⎧ ⎪⎪ ⎨ ⎪ ⎪⎩
∂u ∂z ∂i ∂z
= =
− R0 −G0

i

L0

∂i ∂t

u

C0dz
`
C0dz
G0dz
dz
z
z + dz
dz
,
t
)
dz → 0
⎧ ⎪⎪ ⎨ ⎪ ⎪⎩
∂u(z,
∂z
t
)
=
− R0
∂i(z,
∂z
t
)
=
−G0
⋅ i(z, t ) ⋅ u(z, t )
− −
L0 C0
⋅ ⋅
∂i(z, t
∂t
∂u(z,
∂t
)
t
)
称为时域传输线方程或电报方程
时域 → 频域
[ ] ⎪⎧u(z,t) = Re U (z)e jωt [ ] ⎪⎩⎨i(z,t) = Re I(z)e jωt
输送市电的电力传输线(f=50Hz, λ = 6000 km),长达6千 米, l /λ=0.001,为短线;对远距离电力传输线,线路可 能长达几百或几千千米时,则又应视为长线。
在微波技术中,所讨论的传输线都属于长线范畴。
长线和短线有何不同?
l < 0.05λ
“短线”是集总参数电路结构 l ≥ 0.05λ
u(z,t) → U (z), i(z,t) → I(z),∂ → jω, ∂ → d
∂t

传输线理论ppt课件

传输线理论ppt课件

i(z,t) z
Gl v(z,t) Cl
v(z,t) t
15
2)时谐均匀传输线方程
精选ppt课件
a)时谐传输线方程 电压和电流随时间作正弦变化或时谐变化,则 电压电流的瞬时值可用复数来表示:
v (z,t) V 0c o s(t v(z)) R eV 0 ejtejv(z) R eV (z)ejt i(z,t) I0c o s(t I(z)) R eI0 ejtejI(z) R eI(z)ejt
如传输线上无损耗,则为无耗传输线。即R=0, G=0。
有耗线
无耗线
11
精选ppt课件
对于铜材料的同轴线(0.8cm—2cm),其所填充介质为
r 2 .5 ,
则其各分布参数为:
1 8 0 S/m
Rl 0.32 10 2 / m Ll 1.83 10 7 H / m C l 0.15 10 9 F / m G l 6.8 10 8 S / m
第二章 传输线理论
精选ppt课件
§2.1 传输线方程 §2.2 传输线上的基本传输特性 §2.3 无耗线工作状态分析 §2.4 有耗线 §2.5 史密斯圆图 §2.6 阻抗匹配
1
§2.1 传输线方程
精选ppt课件
传输线 传输高频或微波能量的装置
(Transmission line)
天线

传输线

终端
2Z0
2Z0
23
精选ppt课件
令d = l - z,d为由终点算起的坐标,则线上任一点上有
V(d) VL Z0IL ed VL Z0IL ed
2
2
I(d) VL Z0IL ed VL Z0IL ed
2Z0

微波工程 第2章 传输线理论-1 PPT课件

微波工程 第2章 传输线理论-1 PPT课件

移项,取Δz→0时极限
Microwave Technique
电报方程(传输线方程)
传输线方程(电报方程)
v ( z , t ) i ( z , t ) Ri ( z , t ) L z t 时域形式 i ( z , t ) v ( z , t ) Gv( z , t ) C z t
Microwave Technique
特性阻抗
根据式(2.3a)和(2.6a)可得线上电流:
I( z )

R
V jL

0
e z V0 e z
R jL G jC

(2.7)
定义特性阻抗
Z0
R jL

与传输线上电压、 电流的关系
V0 V0 Z0 I0 I0
量或信号的导行系统。
特点:横向尺寸<< 工作波长λ。 结构:平行双导线 同轴线 带状线 微带线(准TEM模) 广义传输线:各种传输TE模TM模或其混合模的波导都可以认为
是广义传输线。
Microwave Technique
Microwave Technique
常用的传输线
同轴线:由同轴的管状外导体和柱状内导体构成。
Z0
R j L G j C

Microwave Technique
电报方程解的讨论
2、低频大损耗情况(工频传输线)
j
R jLG jC
RG ,
R 0, Z 0 G
L R, C G
传输线上不呈现波动过程,只带来一定衰减,衰减 α为常数。
§ 2 传输线理论
传输线的集总元件电路模型

Chap2_传输线理论

Chap2_传输线理论

参量 R L G C
双线传输线
1
a cond
a
cosh
D 2a
diel
a coshD / 2a
a coshD / 2a
同轴传输线
1 1 1
2 cond a b
2
ln
b a
2 diel
lnb / a
2
lnb / a
平行板传输线
2
w cond
d
w
diel
w d
w
d
单位 Ω/m H/m S/m F/m
因为p有一个正的实数分量,为了满足导体条件,在下平板向负 x方向的磁场幅度必是衰减的,故A应为零;同理在上平板B=0。
故在下平板内:H y Bepx H0e px H0e1 jx/
B=H0是待定常数
射频电路设计Chap2 # 21
其电流密度:J z
传导电流密度
Ez
H y x
1 j
H 0 e1 j x /
dVz R jLIz
dz
I z
V ez V ez
R jL
定义特性阻抗:
Z0
R jL
R jL G jC
I z
V ez V ez I ez I ez
R jL
Z0
V I
V I
特性阻抗不是常规电路意义上的阻抗,其定义基 于正向和反向行进的电压波和电流波!
射频电路设计Chap2 # 29
设导线方向与z 轴方向一致,长度为1.5cm, 忽略其电阻,在f=1MHz时电压空间变化不明显。
射频电路设计Chap2 # 7
当 f =10GHz时,λ =0.949cm,与导线长度相似,测量结果如图

第2章 传输线理论 (1)

第2章 传输线理论 (1)


也可用矩阵形式表示 cosh( z )
Z0 sinh( z ) U L U ( z ) I ( z ) 1 sinh( z ) cosh( z ) I Z L 0
§2.3 均匀传输线的传输特性
一、均匀传输线的传输特性
第二章 均匀传输线理论
§2.1 均匀传输线
一、基本概念

传输线 引导电磁波能量向一定方向传输的传输系统
均匀传输线 截面尺寸、形状、媒质分布、材料及边界条件 均不变的导波系统。

§2.1 均匀传输线

传输线的分析方法 场的方法 从麦克斯韦方程出发,得到满足边界条件的电 场和磁场的解 路的方法 从传输线方程出发,得到满足边界条件的电压 和电流的解 路的方法,只是一种近似分析方法,在微波的 低频段能满足实际工程的需要;但在微波的高 频段,只能用场的方法来分析

A,B为待定系数,由边界条件确定
( R0 j L0 ) Z 为特性阻抗 Z0 Y (G0 jC0 )
ZY ( R0 j L0 )(G0 jC0 ) j 为传播常数


§2.2 均匀传输线方程及其解
2°解的物理意义
U ( z ) U i ( z ) U r ( z ) Ae z Be z 1 z z I ( z ) I ( z ) I ( z ) Ae Be i r Z0
§2.1 均匀传输线
2°分布参数模型 由于电流流过导线路使导线发热这表明导线本身具 有分布电阻; 由于导线间绝缘不完善而存在漏电流这表明导线间 处处有分布漏电导; 由于导线中通过电流,周围将有磁场因而导线上存 在分布电感的效应; 由于导线间有电压,导线间便有电场,于是导线间 存在分布电容的效应。 分别用R0,G0,L0,C0表示单位长度上的分布电阻,分 布漏电导,分布电感和分布电容

电磁场课件第二章传输线的基本理论

电磁场课件第二章传输线的基本理论

1正弦时变条件下传输线方程
令信源角频率已知 ,线上的电压、电流皆为正弦时变规律(或称为谐变),这样具有普遍性意义。
2 方程的通解
典型波动方程的解 传播常数和波阻抗
3 已知信源端电压和电流时的解
求待定系数
边界条件
解的具体形式
用到的数学公式
4 已知负载端电压和电流时的解
边界条件 求待定系数
信号各频率成分的幅值传输过程中无变化(衰减常数)。
均匀无损耗传输线无频率失真,即为无色散系统。
一般情况,衰减常数及相移常数与频率关系复杂,是色散系统。
均匀无损耗传输特性
行波,没有反射波
驻波,反射波和入射波振幅相同
混合波
相向两列行波叠加结果
3 传输线上任一位置处的输入阻抗
传输线上任一位置处的输入阻抗定义为该点电压和电流的比值。
传输线是用以传输电磁波信息和能量的各种形式的传输系统的总称。
微波传输线是用以传输微波信息和能量的各种形式的传输系统的总称,它的作用是引导电磁波沿一定方向传输, 因此又称为导波系统, 其所导引的电磁波被称为导行波。
一、传输线的概念
1
一般将截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统称为规则导波系统, 又称为均匀传输线。
考察点位置,实际上和传输线长度有关,
在线电磁波的频率,
外接负载阻抗的阻抗,
传输线的波阻抗(特征阻抗)。
输入阻抗决定因素
输入阻抗和传输线相对长度关系
四分之一波长线:阻抗变换性 二分之一波长线:阻抗不变性 是无损耗传输线的一个重要特性
例2–1 均匀无损耗传输线的波阻抗75Ω,终端接50Ω纯阻负载,求距负载端0.25λ、0.5λ位置处的输入阻抗。若信源频率分别为50MHz、100MHz,求计算输入阻抗点的具体位置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档