苏科版七年级数学下册单项式乘多项式练习作业
苏科版数学七年级下册_2021最新同步训练:单项式乘多项式

初中数学苏科版七年级下册9.2 单项式乘多项式同步训练一、单选题(本大题共10题,每题3分,共30分)1.下列说法正确的是()A. 多项式乘以单项式,积可以是多项式也可以是单项式B. 多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C. 多项式乘以单项式,积的系数是多项式系数与单项式系数的和D. 多项式乘以单项式,积的项数与多项式的项数相等2.下列运算正确的是()A. B.C. D.3.现有下列算式:(1)2a-a=2;(2)2a·3a=5a²;(3)ax(-1-a²-x)=ax-a³x-ax²;(4) ·x²=x³其中错误的有( )A. 1个B. 2个C. 3个D. 4个4.下列计算正确的是()A. (﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB. (2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C. (abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D. (ab)2•(3ab2﹣c)=3a3b4﹣a2b2c5.一个长方体的长、宽、高分别为x,2x,3x﹣4,则它的体积等于()A. 3x3﹣8x2B. 6x3_4C. ﹣2x3﹣8x2D. 6x3﹣8x26.若整式A与单项式﹣a2b的乘积为a(ab3﹣a3b),则整式A为()A. a2﹣b2B. b2﹣a2C. a2+b2D. ﹣a2﹣b27.今天数学课上,老师讲了单项式乘以多项式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题;﹣3xy•(4y﹣2x﹣1)=﹣12xy2+6x2y+__________,空格的地方被钢笔水弄污了,你认为横线上应填写()A. 3xyB. ﹣3xyC. ﹣1D. 18.已知:(x4﹣n+y m+3)•x n=x4+x2y7,则m+n的值是()A. 3B. 4C. 5D. 69.要使(x3+ax2﹣x)•(﹣8x4)的运算结果中不含x6的项,则a的值应为()A. 8B. ﹣8C. 18D. 010.如图,边长为(m + 3)的正方形纸片剪去一个边长为m 的正方形之后,余下部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则此长方形的周长是( )A. 2m + 6B. 4m + 6C. 4m + 12D. 2m + 12二、填空题(本大题共8题,每题2分,共16分)11.计算:(﹣3xy2)2(2x﹣y2)=________.12.当a=﹣2时,求a2(2a+1)=________.13.若﹣2x2y(﹣x m y+3xy3)=2x5y2﹣6x3y n,则m=________,n=________.14.A、B为单项式,且5x(A﹣2y)=30x2y3+B,则A=________,B=________.15.如果B是一个单项式,且B(2x2y+3xy2)=﹣6x3y2﹣9x2y3,则B为________.16.有一块三角形的铁板,其中一边的长为2(a+b),这边上的高为a,那么此三角形板的面积是________.17.对于任意的x、y,若存在a、b使得8x+y(a﹣2b)=ax﹣2b(x﹣2y)恒成立,则a+b=________.18.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据图写出一个代数恒等式是:________ .三、解答题(本大题共7题,共84分)19.①3a(2a﹣1)②(x2﹣2y)(xy2)3③(a2b2)(a2+ab﹣0.6b2)④12ab[2a+ (a﹣b)+ b]⑤(﹣a)3•(﹣2ab2)3﹣4ab2(7a5b4+ ab3﹣5)20.已知有理数a、b、c满足|a﹣b﹣3|+(b+1)2+|c﹣1|=0,求(﹣3ab)•(a2c﹣6b2c)的值.21.某中学扩建教学楼,测量地基时,量得地基长为2a m,宽为(2a﹣24)m,试用a表示地基的面积,并计算当a=25时地基的面积.22.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高a米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长600米,那么这段防洪堤坝的体积是多少立方米23.如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.24.一块长方形硬纸片,长为(5a2+4b2)m,宽为6a4m,在它的四个角上分别剪去一个边长为m的小正方形,然后折成一个无盖的盒子,请你求这个无盖盒子的表面积.25.王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?答案解析部分一、单选题1.【答案】A【考点】单项式乘多项式解:A、多项式乘以单项式,单项式不为0,积一定是多项式,单项式为0,积是单项式,故本选项正确;B、多项式乘以单项式,积的次数等于多项式的次数与单项式次数的和,故本选项错误;C、多项式乘以单项式,积的系数是多项式系数与单项式系数的积,故本选项错误;D、由选项A知错误.故选A.【分析】根据单项式乘以多项式的有关知识作答.2.【答案】B【考点】单项式乘多项式解:A、,故A选项错误;B、,故B选项正确;C、,故C选项错误;D、,故D选项错误.故答案为:B.【分析】利用单项式与多项式的乘法及去括号法则逐项计算,所得结果与题目中选项对比即可得到正确的一项.3.【答案】D【考点】单项式乘单项式,单项式乘多项式,合并同类项法则及应用解:(1)应为2a-a=a,故原计算不符合题意;(2)应为2a·3a=6a²,故原计算不符合题意;(3)应为ax(-1-a²-x)=-ax-a³x-ax²故原计算不符合题意;(4)应为(x4-x3) ·x2=x6-x5,故原计算不符合题意. 所以错误的有4个.故答案为:D【分析】根据合并同类项、单项式乘以单项式、单项式乘以多项式法则计算进行选择.4.【答案】D【考点】单项式乘多项式解:A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误,不符合题意;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误,不符合题意;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误,不符合题意;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确,符合题意.故答案为:D.【分析】单项式乘多项式是依据分配律将单项式与多项式相乘,在计算时需特别注意先确定每一项的符号.5.【答案】D【考点】单项式乘多项式解:根据题意得:长方体的体积为2x•x(3x﹣4)=6x3﹣8x2,故答案为:D【分析】长方体的体积为长乘宽再乘高,然后对列出的式子利用单项式乘多项式的法则进行求解.6.【答案】A【考点】单项式乘多项式解:A=a(ab3﹣a3b)÷(﹣a2b)=﹣a2b(b2﹣a2)÷(a2b)=a2﹣b2,故选A.【分析】根据A=积÷单项式﹣a2b,列式后进行计算,把积式进行分解因式后,再约分即可.7.【答案】A【考点】单项式乘多项式解:﹣3xy•(4y﹣2x﹣1)=﹣3xy•4y+(﹣3xy)•(﹣2x)+(﹣3xy)•(﹣1)=﹣12xy2+6x2y+3xy.所以应填写:3xy.故答案为:A.【分析】利用单项式乘多项式的法则求得结果与所给结果即可求得结果所缺失的部分.8.【答案】D【考点】单项式乘多项式解:(x4﹣n+y m+3)•x n=x4+x n y m+3=x4+x2y7,∴n=2,m+3=7,即m=4,n=2,则m+n=4+2=6.故选D【分析】已知等式左边利用单项式乘以多项式法则计算,利用多项式相等的条件求出m与n 的值,即可确定出m+n的值.9.【答案】D【考点】单项式乘多项式解:(x3+ax2﹣x)•(﹣8x4)=﹣8x7﹣8ax6+8x5,∵运算结果中不含x6的项,∴﹣8a=0,解得:a=0.故选D.【分析】原式利用单项式乘多项式法则计算,根据结果中不含x6的项,即可求出a的值.10.【答案】C【考点】单项式乘多项式解:根据题意得:2(2m+3+3)=4m+12.故答案为:C.【分析】长方形的周长=2(长+宽)分析得,长:m+3+m=2m+3宽:3带入到周长公式,化简即得二、填空题11.【答案】【考点】单项式乘多项式解:原式=(9x2y4)(2x﹣y2)=18x3y4﹣9x2y6.故答案为:18x3y4﹣9x2y6.【分析】先算乘方,然后利用单项式乘多项式将括号去掉即可.12.【答案】﹣12【考点】代数式求值,单项式乘多项式解:∵a2(2a+1)=2a3+a2,∴当a=﹣2时,原式=2×(﹣2)3+(﹣2)2=﹣16+4=﹣12.故答案为:﹣12.【分析】直接利用单项式乘以多项式运算法则计算,进而把a的值代入即可.13.【答案】3;4【考点】单项式乘多项式解:原式=2x m+2y2﹣6x3y4=2x5y2﹣6x3y n,∴m+2=5,n=4,∴m=3,n=4,故答案为:3,4.【分析】按照多项式乘以单项式的法则展开后即可求得m、n的值.14.【答案】6xy3;﹣10xy【考点】单项式乘多项式解:∵5x(A﹣2y)=5Ax﹣10xy=30x2y3+B,∴A=6xy3;B=﹣10xy.故答案为:6xy3;﹣10xy.【分析】已知等式左边利用单项式乘以多项式法则计算,利用多项式相等的条件即可求出A 与B的值.15.【答案】﹣3xy【考点】单项式乘多项式解:∵B(2x2y+3xy2)=﹣6x3y2﹣9x2y3,∴B= =﹣3xy;故答案为:﹣3xy.【分析】根据单项式乘多项式的运算法则,先把﹣6x3y2﹣9x2y3与2x2y+3xy2分别提取公因式,再进行约分即可求出答案.16.【答案】a2+ab【考点】单项式乘多项式解:根据三角形的面积公式得:×2(a+b)•a=a2+ab;故答案为:a2+ab.【分析】根据三角形的面积公式底×高,列出算式,再根据单项式乘多项式的运算法则进行计算即可.17.【答案】12【考点】单项式乘多项式解:∵8x+y(a﹣2b)=ax﹣2b(x﹣2y)恒成立,∴8x+y(a﹣2b)=(a﹣2b)x+4by,∴,解得,a+b=12+2=14.故答案为:14.【分析】将已知等式右边变形,再比较等式左右两边对应项系数即可.18.【答案】2a(a+b)=2a2+2ab【考点】单项式乘多项式【解析】解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故答案为:2a(a+b)=2a2+2ab【分析】由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系.三、解答题19.【答案】解:①原式=6a2﹣3a;②原式=(x2﹣2y)(x3y6)=x5y6﹣2x3y7;③原式=2a4b2+ a3b3﹣a2b4;④原式=12ab(﹣b)=33a2b﹣ab2;⑤原式=8a6b6﹣28a6b6﹣2a2b5+20ab2=﹣20a6b6﹣2a2b5+20ab2【考点】单项式乘多项式【分析】单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.20.【答案】解;由|a﹣b﹣3|+(b+1)2+|c﹣1|=0,得.解得.(﹣3ab)•(a2c﹣6b2c)=﹣3a3bc+18ab3c,当时,原式=﹣3×23×(﹣1)×1+18×2×(﹣1)3×1=24﹣36=﹣12【考点】单项式乘多项式【分析】根据非负数的和等于零,可得方程组,根据解方程组,可得a、b、c的值,根据单项式乘多项式,可得整式,根据代数式求值.21.【答案】解:根据题意得:地基的面积是:2a•(2a﹣24)=(4a2﹣48a)m2;当a=25时,4a2﹣48a=4×252﹣48×25=1300m2【考点】单项式乘多项式【分析】根据地基的面积=长乘以宽列出算式,再根据单项式与多项式相乘的法则进行计算,然后把a=25代入即可求出答案.22.【答案】(1)解:防洪堤坝的横断面积为:[a+(a+2b)]·a= a(2a+2b)= a2+ ab(平方米)(2)解:堤坝的体积为:( a2+ ab)×600=300a2+300ab(立方米)【考点】单项式乘多项式,整式的混合运算【分析】根据梯形的面积公式计算防洪堤坝的横断面积;再根据根据单项式乘以多项式,就是用单项式乘以多项式的每一项,再把它们的积相加;把防洪堤坝长的值乘以横断面积,得到堤坝的体积.23.【答案】解:长方形地块的长为:(3a+2b)+(2a-b),宽为4a,这块地的面积为:4a·[(3a+2b)+(2a-b)]=4a·(5a+b)=4a·5a+4a·b=20a2+4ab.答:这块地的面积为20a2+4ab.【考点】单项式乘多项式【分析】根据图形得到长方形地块的长和宽,由长方形的面积公式得到单项式乘以多项式;化简整式.24.【答案】解:纸片的面积是:(5a2+4b2)•6a4=30a6+24a4b2;小正方形的面积是:(a3)2= a6,则无盖盒子的表面积是:30a6+24a4b2﹣4×a6=21a6+24a4b2【考点】单项式乘多项式【分析】利用纸片的面积减去剪去的4个小正方形的面积就是盒子的表面积.25.【答案】(1)解:卧室的面积是2b(4a-2a)=4ab(m2).厨房、卫生间、客厅的面积和是b·(4a-2a-a)+a·(4b-2b)+2a·4b=ab+2ab+8ab=11ab(m2),即木地板需要4ab m2,地砖需要11ab m2.(2)解:11ab·x+4ab·3x=11abx+12abx=23abx(元).即王老师需要花23abx元【考点】单项式乘单项式,单项式乘多项式【分析】(1)根据题意以及图形利用面积公式即可得出答案.(2)利用(1)中木地板和地砖的面积乘以每平方米的价格即可得出答案.。
数学:9.2单项式乘多项式同步练习2(苏科版七年级下)

数学:9.2单项式乘多项式同步练习(苏科版七年级下)【基础演练】一、填空题1.计算:_____________)(32=+y x xy x .2. ·c b a c ab 532243—=.3.计算:)164(4)164(24242++-++a a a a a =________.4.计算)2()(22y x x xy +-=____ ____.5.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.二、选择题6. 化简)1()1(a a a a --+的结果是( )A .2a ;B . 22a ;C .0 ;D .a a 222-.7. 适合12)52()1(2=---x x x x 的x 的值是( )A .2 ;B . 1;C .0 ;D .4.8.下列计算中正确的是 ( )A.()a a a a +=+236222 ;B.()x x y x xy +=+23222;C.a a a +=10919 ;D.()a a =336.9. 一个长方体的长、宽、高分别是x x -342、和x ,它的体积等于 ( ) A.x x -3234; B.x 2 ; C.x x -3268; D.x x -268.10. 计算:ab b a ab 3)46(22∙-的结果是( )A.23321218b a b a -;B.2331218b a ab -;C.22321218b a b a -;D.23221218b a b a -.三、解答题11.计算: (1) )2(222ab b a ab -∙; (2))12()3161(23xy y x x -∙-;(3))13()4(32-+∙-b a ab a ; (4) )84)(21(323xy y y x +-;(5))()(a b b b a a ---; (6) )1(2)12(322--+-x x x x x .12.先化简,再求值:)22(32)231(2x x x x ----,其中2=x13.解方程: )153(18)7(3--=-y y y y .【能力提升】14.某同学在计算一个多项式乘以-3x 2时,因抄错符号,算成了加上-3x 2,得到的答案是x 2-0.5x+1,那么正确的计算结果是多少?15.已知:(),,A ab B ab a b C a b ab =-=+=-222323,且a b 、 异号,a 是绝对值最小的负整数,b =12,求3A ·B-21A ·C 的值.参考答案1.y x y x 3233+;2. 328b a -;3. 646-a ; 4. 34232y x y x +; 5.-4.6.B ;7.D ;8.B ;9.C ;10.A.11.(1) 322342b a b a -; (2)23442y x y x +-; (3)a b a b a 4124422+--; (4) 543342y x y x --; (5)22b a -; (6) x x x 3423+-.12.x x 38232+-,314. 13.3.14. 23431512x x x -+-.15.解:由题意得11,2a b =-=,原式=32231621a b a b --,当11,2a b =-=时,原式=118.。
9.2单项式乘多项式++练习+2023—2024学年苏科版数学七年级下册

9.2 单项式乘以多项式一、选择题1.通过计算几何图形的面积可表示一些代数恒等式,下图可表示的代数恒等式是( )A .222()2a b a ab b -=-+B .22()22a a b a ab +=+C .222()2a b a ab b +=++D .22()()a b a b a b +-=-2.在一次数学课上,学习了单项式乘多项式,小明回家后,拿出课堂笔记本复习,发现这样一道题:()23323163x x x x x --+-=++,“□”的地方被墨水污染了,你认为“□”内应填写( )A .29xB .29x -C .9xD .9x -3.计算﹣3x 2(4x ﹣3)等于( )A .﹣12x 3+9x 2B .﹣12x 3﹣9x 2C .﹣12x 2+9x 2D .﹣12x 2﹣9x 2 4.计算:()22528105xy y x xy x y -+-=--□,□内应填写( )A .-10xyB .25x y -C .+40D .+40xy5.若2m 2n 2•B=14m 4n 3﹣8m 3n 3,那么B=( )A .7mn 2﹣4mnB .28m 2n ﹣16nC .7m 2n ﹣4mnD .7m 2﹣4n 6.已知(-2x )·(5-3x +mx 2-nx 3)的结果中不含x 3项,则m 的值为( )A .1B .-1C .-12D .07.下列运算正确的是( )A .()325a a =B .2333a a a +=C .()5230a a a a ÷=≠D .()211a a a +=+ 8.若220x x +-=,则3222016x x x +-+等于( )A .2020B .2019C .2018D .-2020二、填空题1.2232()(5241)61120x x x x x x x x +--+=-+.( )2.计算 ()()36x y x --= _______.3.若长方形的面积是2226a ab a -+,一边长为2a ,则此长方形的周长为________.4一个长方体的长、宽、高分别是3x -2、2x 和x ,它的体积等于__________. 5.已知x(x +3)=1,则代数式2x 2+6x -5的值为________.三、简答题1.计算:(1) (−43a2b2)(32a2+ab−0.6b2);(2) −2a2(12ab+b2)−5a(a2b−ab2)(3) −5x2(x2−2x−4)+5x(x3−2x2−4x−1)+4x2.计算:-2a(4a2-a+3).3.计算:3x(x2-2x+1)-2x2(x-1).4.如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=,c=;(2)将2a(a-b)+b(2a-b-c)化简,并代入求值.5一块长方形硬纸片,长为(5a2+4b2)m,宽为6a4m,在它的四个角上分别剪去一个边长为32a2 m的小正方形,然后折成一个无盖的盒子,请你求这个无盖盒子的表面积.。
2021年苏科新版七年级数学下册《9.2单项式乘多项式》自主学习同步训练题(附答案)

2021年苏科新版七年级数学下册《9.2单项式乘多项式》自主学习同步训练题(附答案)1.计算x(1+x)﹣x(1﹣x)等于()A.2x B.2x2C.0D.﹣2x+2x22.一个长方体的长、宽、高分别是3m﹣4,2m和m,则它的体积是()A.3m3﹣4m2B.3m2﹣4m3C.6m3﹣8m2D.6m2﹣8m33.已知,a+b=2,b﹣c=﹣3,则代数式ac+b(c﹣a﹣b)的值是()A.5B.﹣5C.6D.﹣64.要使﹣x3(x2+ax+1)+2x4中不含有x的四次项,则a等于()A.1B.2C.3D.45.要使(﹣6x3)(x2+ax﹣3)的展开式中不含x4项,则a=()A.1B.0C.﹣1D.6.已知x2﹣4x﹣1=0,则代数式x(x﹣4)+1的值为()A.2B.1C.0D.﹣17.若﹣x2y=2,则﹣xy(x5y2﹣x3y+2x)的值为()A.16B.12C.8D.08.化简5a•(2a2﹣ab),结果正确的是()A.﹣10a3﹣5ab B.10a3﹣5a2b C.﹣10a2+5a2b D.﹣10a3+5a2b 9.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.﹣3xy C.﹣1D.110.下列运算中,正确的是()A.﹣2x(3x2y﹣2xy)=﹣6x3y﹣4x2yB.2xy2(﹣x2+2y2+1)=﹣4x3y4C.(3ab2﹣2ab)•abc=3a2b3﹣2a2b2D.(ab)2(2ab2﹣c)=2a3b4﹣a2b2c11.计算:(x﹣2y)(﹣5x)=.12.计算a(a﹣b)+b(a﹣b)的结果是.13.计算()•()=.14.计算:﹣3x•(2x2y﹣xy)=.15.一个长方形的长、宽分别是3x﹣4和x,它的面积等于.16.已知a﹣2b=﹣2,则代数式a(b﹣2)﹣b(a﹣4)的值为.17.﹣2xy(x2y﹣3xy2)=.18.一个长方体的长、宽、高分别是3x﹣4、2x、x,它的体积等于.19.计算:•ab=.20.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记本复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被墨水弄污了,你认为□处应填写.21.计算:(x﹣2y)(﹣xy2).22.计算:(﹣2a)2•(3a2﹣a﹣1).23.计算:(3x2﹣y+)•6xy.24.[xy(x2﹣xy)﹣x2y(x﹣y)]•3xy2.25.计算:2x(x﹣1)﹣3x(x﹣)26.计算:.27.计算:(1)5a2•(﹣3a3)2 (2)3a•(a2+2a)﹣2a2(a﹣3)28.计算:a•a2+(﹣2a2b)2+2a2(a﹣a2b2)29.计算:6m•(3m2﹣m﹣1)30.解方程:2x(x﹣1)﹣x(2x+3)=15.参考答案1.解:原式=x+x2﹣x+x2=2x2.故选:B.2.解:根据长方体体积的计算公式得,(3m﹣4)•2m•m=6m3﹣8m2,故选:C.3.解:ac+b(c﹣a﹣b)=ac+bc﹣ab﹣b2=c(a+b)﹣b(a+b)=(a+b)(c﹣b),把a+b=2,b﹣c=﹣3代入(a+b)(c﹣b)=2×3=6,故选:C.4.解:原式=﹣x5﹣ax4﹣x3+2x4=﹣x5+(2﹣a)x4﹣x3∵﹣x3(x2+ax+1)+2x4中不含有x的四次项,∴2﹣a=0,解得,a=2.故选:B.5.解:原式=﹣6x5﹣6ax4+18x3,由展开式不含x4项,得到a=0,故选:B.6.解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,x(x﹣4)+1=x2﹣4x+1=1+1=2,故选:A.7.解:原式=﹣x6y3+x4y2﹣2x2y,当﹣x2y=2时,原式=﹣(﹣2)3+(﹣2)2﹣2×(﹣2)=16,故选:A.8.解:5a•(2a2﹣ab)=10a3﹣5a2b,故选:B.9.解:∵左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,∴□内上应填写3xy.故选:A.10.解:A、﹣2x(3x2y﹣2xy)=﹣6x3y+4x2y,故本选项错误;B、2xy2(﹣x2+2y2+1)=﹣4x3y2+4xy4+2xy2,故本选项错误;C、(3ab2﹣2ab)•abc=3a2b3c﹣2a2b2c,故本选项错误;D、(ab)2•(2ab2﹣c)=a2b2•(2ab2﹣c)=2a3b4﹣a2b2c,故本选项正确;故选:D.11.解:(x﹣2y)(﹣5x)=﹣5x2+10xy.故答案为:﹣5x2+10xy.12.解:a(a﹣b)+b(a﹣b)=a2﹣ab+ab﹣b2=a2﹣b2.故答案为:a2﹣b2.13.解:()•()=x2y•()﹣6xy•(﹣xy2)=﹣x3y3+3x2y3.故答案为:﹣x3y3+3x2y3.14.解:﹣3x•(2x2y﹣xy)=﹣6x3y+3x2y.故答案为:﹣6x3y+3x2y.15.解:长方形的面积是(3x﹣4)•x=3x2﹣4x,故答案为:3x2﹣4x.16.解:a(b﹣2)﹣b(a﹣4)=ab﹣2a﹣ab+4b=﹣2a+4b=﹣2(a﹣2b),∵a﹣2b=﹣2,∴原式=﹣2×(﹣2)=4.故答案为:4.17.解:﹣2xy(x2y﹣3xy2)=﹣2xy•x2y+2xy•3xy2=﹣2x3y2+6x2y3.故答案为:﹣2x3y2+6x2y3.18.解:由题意可得,(3x﹣4)×2x×x=(3x﹣4)×2x2=6x3﹣8x2.故答案为:6x3﹣8x2.19.解:•ab=ab2•ab﹣2ab•ab=a2b3﹣a2b2.故答案为:a2b3﹣a2b2.20.解:根据题意得:﹣3xy(4y﹣2x﹣1)+12xy2﹣6x2y=﹣12xy2+6x2y+3xy+12xy2﹣6x2y=3xy.故答案为:3xy.21.解:原式=﹣x2y2+xy3.22.解:原式=4a2•(3a2﹣a﹣1)=12a4﹣4a3﹣4a2.23.解:原式=(3x2)•6xy+(﹣y)•6xy+•6xy=18x3y﹣8xy2+3xy.24.解:[xy(x2﹣xy)﹣x2y(x﹣y)]•3xy2=(x3y﹣x2y2﹣x3y+x2y2)•3xy2=0.28.解:原式=x2﹣2x﹣x2+5x=3x.26.解:原式=9x2y2﹣6xy3﹣9x2y2=﹣6xy3.27.解:(1)原式=5a2•9a6=45a8;(2)原式=3a3+6a2﹣2a3+6a2=a3+12a2.28.解:原式=a3+4a4b2+2a3﹣2a4b2=3a3+2a4b229.解:6m•(3m2﹣m﹣1)=18m3﹣4m2﹣6m.30.解:2x(x﹣1)﹣x(2x+3)=152x2﹣2x﹣2x2﹣3x=15,整理得:﹣5x=15,解得:x=﹣3.。
七年级数学下册《单项式乘以多项式》典型例题.课时训练(含答案)

《单项式乘以多项式》典型例题例1 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--. 例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。
例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。
例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-。
例10 设012=-+m m ,求2000223++m m 的值。
参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x 24433412x x x -+-= (2)ab ab b a ab m m 3232)1353(11+⋅++-- .322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式.例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。
苏科版七年级数学下册9.3 多项式乘多项式 同步练习(包含答案解析)

9.3多项式乘多项式一、选择题1.计算的结果为( )A. B. C. D.2.若,则( )A. B.C. D.3.若,则的值是( )A. B. C. D. 14.已知,,那么的值为( )A. B. C. 0 D. 55.设,,则A、B的大小关系为( )A. B. C. D. 无法确定6.下列各式中,计算正确的是( )A. B.C. D.7.若与的乘积中不含x的一次项,则n的值为( )A. B. 2 C. 0 D. 18.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为,宽为的大长方形,则需要A类、B类和C类卡片的张数分别为( )A. 2,3,7B. 3,7,2C. 2,5,3D. 2,5,79.如图,边长为的正方形纸片剪出一个边长为的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为( )A. B. C. D.10.若a,b,k均为整数,则满足等式的所有k值有( )个.A. 2B. 3C. 6D. 8二、填空题11.计算:_________________.12.若矩形的面积为,长为,则宽为______.13.已知,则c的值为_____________.14.把化成的形式后为__________.15.已知多项式恰等于两个多项式和的积,则______.16.已知,则代数式的值为______ .17.小青和小红分别计算同一道整式乘法题:,小青由于抄错了一个多项式中a的符号,得到的结果为,小红由于抄错了第二个多项式中的x的系数,得到的结果为,则这道题的正确结果是______.18.若,那么________.三、计算题19.计算:四、解答题20.欢欢与乐乐两人共同计算,欢欢抄错为,得到的结果为;乐乐抄错为,得到的结果为.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.21.某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是米的正方形雕像.(1)请用含a,b的代数式表示绿化面积S;(2)当,时,求绿化面积.22.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证恒等式成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式______;(2)试将等式______补充完整,并用上述拼图的方法说明它的正确性.答案和解析1.【答案】B【解析】【分析】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.了多项式乘多项式,熟练掌握运算法则是解本题的关键.原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式,故选:B.2.【答案】D【解析】解:,而,,,,,.故选D.首先根据多项式的乘法法则展开,然后利用根据对应项的系数相等列式求解即可.此题主要考查了多项式的乘法法则,利用多项式的乘法法则展开多项式,再利用对应项的系数相等就可以解决问题.3.【答案】A【解析】解:,,解得:,,.故选:A.直接利用多项式乘以多项式运算法则计算得出m,n,再代入计算可得答案.此题主要考查了多项式乘以多项式运算,正确掌握运算法则是解题关键.4.【答案】C【解析】【分析】此题考查了整式的混合运算化简求值,涉及的知识有:多项式乘多项式,去括号合并,以及合并同类项法则,熟练掌握法则是解本题的关键.所求式子利用多项式乘多项式法则计算,整理后将与xy的值代入计算即可求出值.【解答】解:当、时,,故选C.5.【答案】A【解析】解:,,,;故选:A.根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案.本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.6.【答案】B【解析】【分析】本题考查了单项式与多项式相乘的法则、平方差公式、完全平方公式、多项式乘以多项式法则;熟记公式和法则是解决问题的关键.根据单项式与多项式相乘的法则得出选项A不正确;根据平方差公式得出选项B正确;根据完全平方公式得出选项C不正确;根据多项式乘以多项式法则得出选项D不正确;即可得出结论.【解答】解:,选项A不正确;B.,选项B正确;C.,选项C不正确;D.,选项D不正确;故选B.7.【答案】A【解析】解:,又与的乘积中不含x的一次项,,;故选:A.根据多项式乘以多项式的法则,可表示为,再根据与的乘积中不含x的一次项,得出,求出n的值即可.本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.8.【答案】A【解析】解:长为,宽为的长方形的面积为:,类卡片的面积为,B类卡片的面积为,C类卡片的面积为ab,需要A类卡片2张,B类卡片3张,C类卡片7张.故选:A.根据长方形的面积长宽,求出长为,宽为的大长方形的面积是多少,判断出需要A类、B类、C类卡片各多少张即可.此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.9.【答案】B【解析】【分析】此题主要考查了多项式乘法,正确利用图形面积关系是解题关键.首先求出大正方形面积,进而利用图形总面积不变得出等式求出答案.【解答】解:,拼成的长方形一边长为m,.故另一边长为:.故选:B.10.【答案】C【解析】解:,,,,,b,k均为整数,,,;,,;,,;故k的值共有6个,故选:C.先把等式左边展开,由对应相等得出,;再由a,b,k均为整数,求出k的值即可.本题考查了多项式乘以多项式,是基础知识要熟练掌握.11.【答案】【解析】【分析】此题主要考查多项式乘多项式直接利用平方差公式计算解答即可.【解答】解:,故答案为.12.【答案】a【解析】解:矩形的宽,故答案为:a.根据多项式除以多项式的运算法则计算即可.本题考查的是整式的除法,掌握多项式除以多项式的运算法则、因式分解是解题的关键.13.【答案】【解析】【分析】本题考查了多项式乘多项式,已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出c的值即可【解答】解:已知等式整理得:,则,故答案为.14.【答案】【解析】【分析】本题考查了二次函数的三种形式:一般式:b,c是常数,,该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是;顶点式:h,k是常数,,其中为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为,熟练掌握二次函数的一般式是解题的关键,根据二次函数的一般式形式把整理即可.【解答】解:,把化成的形式后为.故答案为.15.【答案】【解析】解:,由题意知,,则,所以,故答案为:.先计算出,根据得出n、a的值,代入计算可得.本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则.16.【答案】【解析】【分析】此题主要考查了多项式乘以多项式以及代数式求值,正确利用整体思想代入是解题关键.直接利用已知得出,再利用多项式乘法去括号进而求出答案.【解答】解:,,.故答案为.17.【答案】【解析】解:根据题意可知小青由于抄错了一个多项式中a的符号,得到的结果为,那么,可得,小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知,即,可得,解关于的方程组,可得,,.故答案为:.根据小青由于抄错了一个多项式中a的符号,得到的结果为,可知,根据等于号的性质可得;再根据小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得,解关于的方程组即可求a、b的值,进而可求一次项系数.本题考查了多项式乘以多项式的法则、解方程组,解题的关键是理解题目表达的意思.18.【答案】1【解析】【分析】本题考查了多项式的乘法,完全平方公式等有关知识,先用完全平方公式计算出,再确定,、、、的值,得结论.【解答】解:,,,,,.故答案为1.19.【答案】解:原式;原式【解析】原式利用多项式乘以多项式法则计算,去括号合并即可得到结果;原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以多项式法则计算即可得到结果.此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.20.【答案】解:根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为,那么,可得乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知即,可得,解关于的方程组,可得,;正确的式子:【解析】根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为,可知,于是;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得到,解关于的方程组即可求出a、b的值;把a、b的值代入原式求出整式乘法的正确结果.本题主要是考查多项式的乘法,正确利用法则是正确解决问题的关键.21.【答案】解:根据题意得:长方形地块的面积,正方形雕像的面积为:,则绿化面积,即用含a,b的代数式表示绿化面积,把,代入,得,即绿化面积为87平方米.【解析】本题考查多项式乘多项式,正确掌握整式乘法法则是解题的关键.根据绿化面积长方形地块的面积正方形雕像的面积,列式计算即可,把,带入所求结果,计算后可得到答案.22.【答案】;;如图所示:恒等式是.故答案为:.【解析】【分析】本题主要考查对多项式乘多项式的理解和掌握,能表示各部分的面积是解此题的关键.根据图形是一个长方形求出长和宽,相乘即可;正方形的面积是2个长方形的面积加上2个正方形的面积,代入求出即可.【解答】解:观察图乙得知:长方形的长为:,宽为,面积为:;故答案为:.见答案.。
乘法公式同步练习

初中数学苏科版七年级下册9.4 乘法公式同步训练一、单选题(本大题共10题,每题3分,共30分)1.在计算( x+2y) ( −2y+x)时,最佳的方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式2.下列整式运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+2)(a﹣2)=a2﹣2C.(a+2)(a﹣2)=a2﹣4D.(a+2b)2= a2+2ab+4b23.若a+b=100,ab=48,那么a2+b2值等于()A.5200B.1484C.5804D.99044.如果x2+x=3,那么代数式(x+1)(x−1)+x(x+2)的值是()A.2B.3C.5D.65.如果(a+b)2=16,(a﹣b)2=4,且a、b是长方形的长和宽,则这个长方形的面积是()A.3B.4C.5D.66.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b27.定义新运算:a*b=ab+a2﹣b2,则(x+y)*(x﹣y)=()A.x2﹣y2B.x2﹣y2﹣2xyC.x2﹣y2﹣4xyD.x2﹣y2+4xy8.计算(x+1)(x2+1)(x﹣1)的结果正确的是()A.x4+1B.(x+1)4C.x4﹣1D.(x﹣1)49.已知a−b=b−c=25,且a2+b2+c2=1,则ab+bc+ac的值()A.1325B.−225C.1925D.182510.如图,有A,B,C三种不同型号的卡片,每种各10张.A型卡片是边长为a的正方形,B型卡片是相邻两边长分别为a、b的长方形,C型卡片是边长为b的正方形.从中取出若干张卡片(每种卡片至少一张),把取出的这些卡片拼成一个正方形,所有符合要求的正方形的个数是()A.4B.5C.6D.7二、填空题(本大题共8题,每题2分,共16分)11.计算:2021×2019−20202=________12.已知x=y+4,则代数式x2−2xy+y2−25的值为________.13.若x2+2(m-3)x+16是完全平方式,则m表示的数是________.14.若(2a﹣3b)2=(2a+3b)2+N,则表示N的代数式是________.15.若x2+4x+8y+y2+20=0,则x﹣y=________.16.若规定符号|a bc d|的意义是:|a bc d|=ad﹣bc,则当m2﹣2m﹣3=0时,|m2m−31−2m m−2|的值为________.17.利用平方差计算(2+1)(22+1)(24+1)(28+1)+1=________.18.若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为________.三、解答题(本大题共10题,共84分)19.先化简,再求值:(x+y+2)(x+y﹣2)﹣(x+2y)2+3y2,其中x=﹣12,y= 13.20.先化简,再求值:(x+y)2-2x(x+3y)+(x+2y)(x-2y),其中x=-1,y=2.21.若|x﹣y+1|与(x+2y+4)2互为相反数,化简求代数[(2x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷(2x)的值.22.小明同学在学习整式时发现,如果合理地使用乘法公式可以简化运算,于是在解此道计算题时他是这样做的(如下):(2x−3y)2−(x−2y)(x+2y)=4x2−6xy+3y2−x2−2y2第一步=3x2−6xy+y2第二步小华看到小明的做法后,对他说:“你做错了,在第一步运用公式时出现了错误,你好好检查一下.”小明认真仔细检查后,自己发现了一处错误圈画了出来,并进行了纠正(如下):小华看到小明的改错后说:“你还有错没有改出来.”(1)你认为小华说的对吗?________(填“对”或“不对”);(2)如果小华说的对,那么小明还有哪些错误没有找出来,请你帮助小明把第一步中的其它错误圈画出来并改正,然后写出此题的正确解题过程.23.在边长为a的正方形的一角减去一个边长为b的小正方形(a>b),如图①(1)由图①得阴影部分的面积为________;(2)沿图①中的虚线剪开拼成图②,则图②中阴影部分的面积为________;(3)由(1)(2)的结果得出结论:________=________;(4)利用(3)中得出的结论计算:20202−2019224.(1)已知a−b=2,ab=5,求a2+b2−3ab的值;(2)已知a2−a−1=0,求a3−2a2+3的值.(3)如图,有A型、B型、C型三种不同类型的纸板,其中A型是边长为a的正方形,B型是长为a,宽为b的长方形,C型是边长为b的正方形.若想用这些纸板拼成一个长方形,使其面积为(a+b)(a+2b).完成下列各题:①填空(a+b)(a+2b)=________;②请问需要A型纸板、B型纸板、C型纸板各多少张?试说明理由________.25.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形,根据这一操作过程回答下列问题:(1)图②中阴影部分的正方形的边长为________;(2)请用两种方法表示图②中阴影部分的面积.方法一:________;方法二:________;(3)观察图②,写出代数式(m+n)2、(m−n)2、mn之间的等量关系式:________;(4)计算:(10.5+2)2−(10.5−2)2=________.26.乘法公式的探究及应用.(1)小题1:如图1,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是________(写成多项式乘法的形式).(3)小题3:比较图1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达).27.从边长为a 的正方形剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2). (1)上述操作能验证的等式是(请选择正确的一个)A.a 2﹣2ab+b 2=(a﹣b)2B.a 2﹣b 2=(a+b)(a﹣b)C.a 2+ab=a(a+b)(2)若x 2﹣9y 2=12,x+3y=4,求x﹣3y 的值;(3)计算:(1−122)(1−132)(1−142)⋯(1−120192)(1−120202).28.如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀剪成四块完全一样的小长方形,然后按图2的形状拼成一个正方形。
苏科版七年级数学下册9.2 单项式乘多项式同步练习(包含答案解析)

9.2单项式乘多项式一、选择题1.化简,结果正确的是()A. B. C. D.2.计算:的结果是()A. B.C. D.3.化简的结果为()A. B. C. 9 D.4.计算的结果是()A. B. C. D.5.要使的展开式中不含项,则k的值为()A. B. 0 C. 2 D. 36.一个多项式除以,其商为,则该多项式为()A. B.C. D.7.下列计算中:;;;,错误的个数有()A. 1个B. 2个C. 3个D. 4个8.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有();;;.A. B. C. D.9.若,则的值为()A. 216B. 246C.D. 17410.若与的值永远相等,则m、n、k分别为()A. 6,3,1B. 3,6,1C. 2,1,3D. 2,3,1二、填空题11.计算:_______________.12.已知,那么______.13.若多项式与单项式的积是,则该多项式为______.14.一个长方体的长、宽、高分别是、、x,则它的表面积为______.15.已知,则的值为______.16.若,则__________,__________.17.一个矩形的面积为,一边长为2ab cm,则它的周长为________cm.18.要使成立,则a和b的值分别为.三、计算题19.计算:;.四、解答题20.先化简,再求值:,其中.21.阅读:已知,求的值.解:.你能用上述方法解决以下问题吗试一试已知,求的值.22.某同学在计算一个多项式乘以时,因抄错运算符号,算成了加上,得到的结果是,那么正确的计算结果是多少?答案和解析1.【答案】B【解析】【分析】此题考查了单项式乘以多项式的知识,牢记法则是解答本题的关键,属于基础题,比较简单.按照单项式乘以多项式的运算法则进行运算即可.【解答】解:故选B.2.【答案】A【解析】【分析】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:.故选:A.3.【答案】C【解析】解:原式.故选:C.直接利用完全平方公式以及单项式乘以多项式运算法则化简得出答案.此题主要考查了完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.4.【答案】C【解析】解:原式,故选C.【分析】原式利用单项式乘以多项式法则计算即可得到结果.此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.5.【答案】C【解析】【分析】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.直接利用单项式乘以多项式运算法则求出答案.【解答】解:的展开式中不含项,中不含项,,解得:.故选C.6.【答案】D【解析】【分析】本题考查了多项式除以单项式,弄清被除式、除式、商三者之间的关系是求解的关键.根据被除式商除式列出算式,再利用单项式乘多项式,用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:依题意:所求多项式.故选D.7.【答案】C【解析】【分析】此题考查了单项式乘多项式和完全平方公式,熟练掌握公式及运算法则是解本题的关键.各项计算得到结果,即可作出判断.【解答】解:,故错误;,故错误;,故错误;,故正确,错误的有3个.故选C.8.【答案】D【解析】解:表示该长方形面积的多项式正确;正确;正确;正确.故选:D.根据图中长方形的面积可表示为总长总宽,也可表示成各矩形的面积和,此题主要考查了多项式乘以多项式,关键是正确掌握图形的面积表示方法.9.【答案】B【解析】解:原式,当时,原式,故选:B.将原式变形为,再将代入计算可得.本题主要考查单项式乘多项式,解题的关键是熟练掌握单项式乘多项式的运算法则.10.【答案】A【解析】【分析】本题考查的是单项式乘以多项式有关知识,首先对该式进行相乘,然后再利用等式两边的式子相等进行解答即可.【解答】解:,,,,解得:,,.故选A.11.【答案】【解析】解:故答案为:单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.依此计算即可求解.此题考查了单项式乘多项式,单项式与多项式相乘时,应注意以下几个问题:单项式与多项式相乘实质上是转化为单项式乘以单项式;用单项式去乘多项式中的每一项时,不能漏乘;注意确定积的符号.12.【答案】【解析】解:,,解得.故答案为:.根据单项式与多项式相乘的运算法则进行计算,使结果对应相等,得到关于x的方程,解方程得到答案.本题考查的是单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.13.【答案】【解析】解:多项式与单项式的积是,该多项式为:.故答案为:.直接利用整式的除法运算法则计算得出答案.此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.14.【答案】【解析】解:表面积是,故答案为:.先根据题意列出算式,再求出即可.本题考查了整式的混合运算,能根据题意列出算式是解此题的关键.15.【答案】16【解析】解:,,即,则,故答案为:16.将已知等式去括号、合并可得,整体代入到原式可得答案.本题主要考查代数式的求值,解题的关键是掌握去括号、合并同类项的法则及因式分解的应用、整体代入思想的运用.16.【答案】;.【解析】【分析】这是一道考查单项式乘以多项式的题目,解题关键在于掌握法则,根据对应相等,即可求出M和N.【解答】解:,,,即,,故答案为;.17.【答案】【解析】【分析】此题考查了多项式除以单项式、单项式乘多项式在实际中的应用.求出矩形的另一边长是解题的关键.先根据矩形的面积公式求出另一边的长,再根据矩形的周长长宽列式,通过计算即可得出结果.解:,.故答案为.18.【答案】2,【解析】【分析】【分析】先将等式左边去括号合并同类项,再根据多项式相等的条件即可求出a与b的值.此题考查了整式的混合运算,涉及的知识有:去括号法则,合并同类项法则,以及多项式相等的条件,熟练掌握法则是解本题的关键.【解答】解:因为,所以,,解得,.19.【答案】解:原式;原式.【解析】本题考查了单项式乘以多项式,按照单项式乘以多项式法则进行计算即可;本题考查了幂的乘方与积的乘方、单项式乘以多项式,先算幂的乘方与积的乘方再算单项式乘以多项式即可求得答案.20.【答案】解:原式,,当时,原式.【解析】本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.21.【答案】解:,,,,,.【解析】本题考查了单项式乘多项式,整体代入是解题关键.根据单项式乘多项式,可得一个多项式,根据把已知代入,可得答案.22.【答案】解:这个多项式是,正确的计算结果是:.【解析】用错误结果减去已知多项式,得出原式,再乘以得出正确结果.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.2 单项式乘多项式一.选择题(共5小题)1.计算(﹣3x)•(2x2﹣5x﹣1)的结果是()A.﹣6x2﹣15x2﹣3x B.﹣6x3+15x2+3xC.﹣6x3+15x2D.﹣6x3+15x2﹣12.通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是()A.(a﹣b)2=a2﹣2ab+b2B.2a(a+b)=2a2+2abC.(a+b)2=a2+2ab+b2D.(a+b)(a﹣b)=a2﹣b23.计算:(2x2)3﹣6x3(x3+2x2+x)=()A.﹣12x5﹣6x4B.2x6+12x5+6x4C.x2﹣6x﹣3 D.2x6﹣12x5﹣6x44.已知ab2=﹣2,则﹣ab(a2b5﹣ab3+b)=()A.4 B.2 C.0 D.145.若x﹣y+3=0,则x(x﹣4y)+y(2x+y)的值为()A.9 B.﹣9 C.3 D.﹣3二.填空题(共3小题)6.已知实数m,n,p,q满足m+n=p+q=4,mp+nq=6,则(m2+n2)pq+mn(p2+q2)=.7.a n b2[3b n﹣1﹣2ab n+1+(﹣1)2003]=.8.计算:m2n3[﹣2mn2+(2m2n)2]=.三.解答题(共8小题)9.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.10.先化简,再求值:(x﹣2y)2﹣x(x+3y)﹣4y2,其中x=﹣4,y=.11.计算:(1)(﹣2xy2)2•3x2y;(2)(﹣2a2)(3ab2﹣5ab3)12.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x、y的可能值较多,不可以逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值.13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.14.计算:(1)a(a﹣b)+ab;(2)2(a2﹣3)﹣(2a2﹣1).15.计算:(1)(﹣ab2c4)3(2)(x2y﹣xy2﹣y3)(﹣4xy2)16.某同学在计算一个多项式乘以﹣2a时,因抄错运算符号,算成了加上﹣2a,得到的结果是a2+2a﹣1,那么正确的计算结果是多少?参考答案与试题解析一.选择题(共5小题)1.计算(﹣3x)•(2x2﹣5x﹣1)的结果是()A.﹣6x2﹣15x2﹣3x B.﹣6x3+15x2+3xC.﹣6x3+15x2D.﹣6x3+15x2﹣1【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:(﹣3x)•(2x2﹣5x﹣1)=﹣3x•2x2+3x•5x+3x=﹣6x3+15x2+3x.故选:B.【点评】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.2.通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是()A.(a﹣b)2=a2﹣2ab+b2B.2a(a+b)=2a2+2abC.(a+b)2=a2+2ab+b2D.(a+b)(a﹣b)=a2﹣b2【分析】由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系.【解答】解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故选:B.【点评】本题考查了单项式乘多项式的几何解释,列出面积的两种不同表示方法是解题的关键.3.计算:(2x2)3﹣6x3(x3+2x2+x)=()A.﹣12x5﹣6x4B.2x6+12x5+6x4C.x2﹣6x﹣3 D.2x6﹣12x5﹣6x4【分析】先算积的乘方,单项式乘多项式,再合并同类项即可求解.【解答】解:(2x2)3﹣6x3(x3+2x2+x)=8x6﹣6x6﹣12x5﹣6x4=2x6﹣12x5﹣6x4.故选:D.【点评】考查了积的乘方,单项式乘多项式,合并同类项,关键是熟练掌握计算法则正确进行计算.4.已知ab2=﹣2,则﹣ab(a2b5﹣ab3+b)=()A.4 B.2 C.0 D.14【分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:﹣ab(a2b5﹣ab3+b)=﹣a3b6+a2b4﹣ab2=﹣(ab2)3+(ab2)2﹣ab2,当ab2=﹣2时,原式=﹣(﹣2)3+(﹣2)2﹣(﹣2)=8+4+2=14故选:D.【点评】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.5.若x﹣y+3=0,则x(x﹣4y)+y(2x+y)的值为()A.9 B.﹣9 C.3 D.﹣3【分析】由于x﹣y+3=0,可得x﹣y=﹣3,根据单项式乘多项式、合并同类项和完全平方公式的运算法则将x(x﹣4y)+y(2x+y)变形为(x﹣y)2,再整体代入即可求解.【解答】解:∵x﹣y+3=0,∴x﹣y=﹣3,∴x(x﹣4y)+y(2x+y)=x2﹣4xy+2xy+y2=x2﹣2xy+y2=(x﹣y)2=(﹣3)2=9.故选:A.【点评】考查了单项式乘多项式,单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.注意整体思想的运用.二.填空题(共3小题)6.已知实数m,n,p,q满足m+n=p+q=4,mp+nq=6,则(m2+n2)pq+mn(p2+q2)=60 .【分析】先利用单项式乘以多项式法则将要求值的多项式进行整理,将题目所给的有确定值的式子进行变形,得出所需要的式子的值,运用整体代入法既可求解.【解答】解:∵m+n=p+q=4∴(m+n)(p+q)=4×4=16∵(m+n)(p+q)=mp+mq+np+nq∴mp+mq+np+nq=16∵mp+nq=6∴mq+np=10∴(m2+n2)pq+mn(p2+q2)=m2pq+n2pq+mnp2+mnq2=mp•mq+np•nq+mp•np+nq•mq=mp•mq+mp•np+np•nq+nq•mq=mp(mq+np)+np(nq+mq)=(mp+nq)(np+mq)=6×10=60故答案为60【点评】本题需要综合运用单项式乘以多项式、多项式乘以多项式法则,将式子通过变形后整体代入求解,解题的关键是对条件所给的式子变形要有方向性和目的性,同时要掌握分组分解法对式子进行因式分解,有一定难度.7.a n b2[3b n﹣1﹣2ab n+1+(﹣1)2003]=3a n b n+1﹣2a n+1b n+3﹣a n b2.【分析】根据单项式成多项式,用单项式乘多向数的每一项,把所得的积相加,可得答案.【解答】解:原式=a n b2(3b n﹣1﹣2ab n+1﹣1)=3a n b n+1﹣2a n+1b n+3﹣a n b2,故答案为:3a n b n+1﹣2a n+1b n+3﹣a n b2.【点评】本题考查了单项式成多项式,用单项式乘多向数的每一项,把所得的积相加.8.计算:m2n3[﹣2mn2+(2m2n)2]=﹣m3n5+2m6n5.【分析】先算幂的乘方,再根据单项式乘以多项式进行计算即可.【解答】解:m2n3[﹣2mn2+(2m2n)2]==﹣m3n5+2m6n5.故答案为:﹣m3n5+2m6n5.【点评】本题考查单项式乘多项式,解题的关键是明确单项式乘多项式的计算方法.三.解答题(共8小题)9.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.【分析】首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.【解答】解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.【点评】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.10.先化简,再求值:(x﹣2y)2﹣x(x+3y)﹣4y2,其中x=﹣4,y=.【分析】根据完全平方公式、单项式乘多项式的法则把原式进行化简,代入已知数据计算即可.【解答】解:原式=x2﹣4xy+4y2﹣x2﹣3xy)﹣4y2=﹣7xy,当x=﹣4,y=时,原式=﹣7×(﹣4)×=14.【点评】本题考查的是单项式乘多项式,掌握完全平方公式、单项式乘多项式的法则是解题的关键.11.计算:(1)(﹣2xy2)2•3x2y;(2)(﹣2a2)(3ab2﹣5ab3)【分析】(1)首先利用积的乘方运算法则化简,进而利用单项式乘以单项式运算法则计算得出答案;(2)直接利用单项式乘以多项式运算法则计算得出答案.【解答】解:(1)(﹣2xy2)2•3x2y=4x2y4•3x2y=12x4y5;(2)(﹣2a2)(3ab2﹣5ab3)=﹣2a2×3ab2﹣2a2×(﹣5ab3)=﹣6a3b2+10a3b3.【点评】此题主要考查了积的乘方运算以及单项式乘以多项式运算,正确掌握运算法则是解题关键.12.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x、y的可能值较多,不可以逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值.【分析】根据单项式乘多项式,可得一个多项式,根据把已知代入,可得答案.【解答】解:(2a3b2﹣3a2b+4a)•(﹣2b),=﹣4a3b3+6a2b2﹣8ab,=﹣4×(ab)3+6(ab)2﹣8ab,=﹣4×33+6×32﹣8×3,=﹣108+54﹣24,=﹣78.【点评】本题考查了单项式乘多项式,整体代入是解题关键.13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.【分析】(1)设多项式为A,则A=(3x2y﹣xy2+xy)÷(﹣xy)计算即可.(2)把x=,y=代入多项式求值即可.【解答】解:(1)设多项式为A,则A=(3x2y﹣xy2+xy)÷(﹣xy)=﹣6x+2y﹣1.(2)∵x=,y=,∴原式=﹣6×+2×﹣1=﹣4+1﹣1=﹣4.【点评】本题考查单项式乘多项式、多项式除以单项式的法则,解题的关键是利用乘法与除法是互为逆运算,把乘法转化为除法解决问题,属于基础题.14.计算:(1)a(a﹣b)+ab;(2)2(a2﹣3)﹣(2a2﹣1).【分析】1)先算单项式乘多项式,再合并同类项即可求解;2)先算单项式乘多项式,再去括号合并同类项即可求解.【解答】解:1)a(a﹣b)+ab=a2﹣ab+ab=a2;2)2(a2﹣3)﹣(2a2﹣1)=2a2﹣6﹣2a2+1=﹣5.【点评】考查了整式的加减、单项式乘多项式,单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.15.计算:(1)(﹣ab2c4)3(2)(x2y﹣xy2﹣y3)(﹣4xy2)【分析】(1)直接利用积的乘方运算得出即可;(2)利用单项式乘以多项式运算法则求出即可.【解答】解:(1)(﹣ab2c4)3=﹣a3b6c12;(2)(x2y﹣xy2﹣y3)(﹣4xy2)=﹣3x3y3+2x2y4+xy5.【点评】此题主要考查了积的乘方运算以及单项式乘以多项式,正确把握运算法则是解题关键.16.某同学在计算一个多项式乘以﹣2a时,因抄错运算符号,算成了加上﹣2a,得到的结果是a2+2a﹣1,那么正确的计算结果是多少?【分析】根据题意首先求出多项式,进而利用单项式乘以多项式运算法则求出即可.【解答】解:∵计算一个多项式乘以﹣2a时,因抄错运算符号,算成了加上﹣2a,得到的结果是a2+2a﹣1,∴这个多项式为:a2+2a﹣1+2a=a2+4a﹣1,∴正确的计算结果是:﹣2a(a2+4a﹣1)=﹣2a3﹣8a2+2a.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.。