质点系和动量
质点系动量定理

h
T
2H g
取铅垂轴y向上为正,根据动量定理有:
mv2 mv1 p
p 0。则有 由题意知, v1 0 ,经过(T+t)秒后,
p Nt Q(T t ) 0
由此得
1 T N Q( 1) Q t t 2H 1 g
1 2 1.5 16.9 KN N 300 1 0.01 9.8
e i
质点系外力: R
e
Fi
e
2、内力:所研究得质点系内部的各质点之间的相互 i 作用力;用 F i 表示。
质点系内力: R
i
Fi
i
质点系内力系的主矩、主矢为:
R Fi 0
i
i
M o mo Fi i 0
i
结论:
质点系质心的运动,是可以看成为一个质点的运 动,同时假想地把整个质点系的质量集中于这一点, 作用于质点系的全部外力也都集中于这一点。 同时:质点系的内力不影响质心的运动,只有外 力才能改变质心的运动。
例1、锤重Q=300N,从高度H=1.5m处自由落到锻 件上,如图所示,锻件发生变形,历时t=0.01s. 求锤对锻件的平均压力。 解:取锤为研究对象。作用在锤 上的力有重力Q锤与锻件接触后 锻件的反力。但锻件的反力是变 力。设平均反力为N. 锤下落高度H所需时间T为:
i i
§11-3 质心运动定理 1、质心:质点系的质量中心 质点系的运动不仅与各质点质量有关,而且与质 量的分布情况有关。 2、质心的确定
直角坐标下的质心计算公式:
mi xi xC M
mi yi yC M
mi zi zC M
质点系动量守恒定律

7. 在同一个惯性系中使用.并且只适用于惯 性系。
3
动量定律的说明
8.若F ex Fiex 0,但满足 Fxex 0
i
有 px mi vix C x
i
Fxex 0 , px mivix Cx
1. 动量守恒定律是牛顿定律的必然推论。 2. 外力的矢量和为零,是动量守恒的条件。 3. 动量定理及动量守恒定律只适用于惯性系,
且动量若在某一惯性系中守恒,则在其它一 切惯性系中均守恒。
4. 系统的总动量保持不变,即为各质点的动量 和不变,而不是指其中一个质点的动量不变。
2
动量定律的说明
5. 当合外力为零,或外力与内力相比小很多如 爆炸过程),这时可忽略外力,仍可应用动 量守恒。
pν
或 180o 61.9o 118.1o
7
例题
例3 一枚返回式火箭以 2.5103 m·s-1 的速
率相对惯性系S沿水平方向飞行.空气阻力不
计.现使火箭分离为两部分, 前方的仪器舱质量为
m1 =100 kg,后方的火箭容器质量为m2 = 2 00 kg, 仪器舱相对火箭容器的水平速率为v’=1.0103 m·s-
1求.仪器舱和火箭 容器相对惯性系
的速度.
y s v
y' s' v'
m2 m1
o
o'
x x'
z
z'
8
例题
已知 v 2.5103 m s1 v' 1.0 103 m s1
求 mv11,1v020 kg
质点系动量定理

普通物理学教案
例题2 :
子弹穿过第一木块时, 两木块速度相同均为v1
子弹穿过第二木块后,第二木块速度变为v2
再结合 式,可得结果。
考虑到动量定理的意义,冲量仅决定于始末两个状态。
例题3:
普通物理学教案
如图示,悬绳突然断开,猴子以多大的加速度相对杆上爬,才能看上去不下落?
这一速度小于第一宇宙速度(7.9km/s), 所以用单级火箭不可能把人造地球卫星或其它航天器送入地球轨道。
由于技术上的原因,多级火箭一般是三级。
有效载荷
第三级火箭
第二级火箭
第一级火箭
制导与控制系统
动力系统
01
04
02
03
N1 = 16;vr = 2.9km/s;
N2 = 14;vr = 4km/s
推广到多质点系统,动量定理表达式为:
其意为:
质点系总动量的增量 等于作用于该系统合外力的冲量
例题1* (自学用)
普通物理学教案
矿砂从传送带A落入B ,其速度4m/s , 方向与竖直方向成 30º角,而B 与水平方向成15º角,其速度2m/s。传送带的运送量为 20kg/s 。 求:落到 B上的矿砂所受到的力。
卫星支架(卫星分配器)
长征二号E
长征二号F 运载火箭是在长二捆火箭的基础上,按照发射神舟载人飞船的要求,以提高可靠性确保安全性为目标研制的运载火箭。火箭上加装了逃逸塔,是目前我国所有运载火箭中起飞质量最大、长度最长的火箭。
震天雷 神火飞鸦 火龙出水 原始火箭 虎头木牌 一 窝 蜂
解:
15º
30º
A
B
v1
v2
15º
30º
作矢量图
在Δt 内落在传送带B上的矿砂质量为: 这些矿砂的动量增量为: 由动量定理: 15º 30º
3.2质点系的动量定理

v0
dm 时间内的火箭受喷射燃料的 火箭受喷射燃料的推进力 dt 时间内的火箭受喷射燃料的推进力 F = u dt
3.2 质点系的动量定理及动量守恒 3.2质点系的动量定理及动量守恒
神舟六号待命飞天
注:照片摘自新华网
3.2 质点系的动量定理及动量守恒 3.2质点系的动量定理及动量守恒
神舟六号点火升空
要增大v 需要提高火箭的质量比 要增大v:需要提高火箭的质量比 或增大喷气速度u 推动力:以喷出的燃料d 2 推动力:以喷出的燃料dm为研究对象 时间内的动量变化率为燃料受火箭力 dt 时间内的动量变化率为燃料受火箭力
dm[(υ − u ) − υ ] dm F= = −u dt dt
m0 火箭速度v v m dm ∫v0 d v = − u ∫m0 m
3.2 质点系的动量定理及动量守恒 3.2质点系的动量定理及动量守恒
6.当质点之间有相对运动时, 6.当质点之间有相对运动时,应运用伽利 当质点之间有相对运动时 略速度变换建立相对于同一惯性系的动量 定理。 定理。 7.质点系的动量守恒定律是自然界一切物理 7.质点系的动量守恒定律是自然界一切物理 质点系的动量守恒定律是 过程的基本定律, 最普遍、 过程的基本定律,是最普遍、最基本的定律 之一.在宏观和微观领域均适用。 之一.在宏观和微观领域均适用。
v v t′ 所以: 所以:I = ∫ ( ∑ Fi )dt = ∑
t i i
∫
t′
t
v v Fi dt = ∑ I i
i
质点所受外力的总冲量等于各分力冲量之和
3.2 质点系的动量定理及动量守恒 3.2质点系的动量定理及动量守恒
t2 r r 再看内力冲量之和 ∑∫ Fint,tdt = ∫ (∑Fint,t )dt i t1 t1 i r 因为内力之和为零: 因为内力之和为零:∑ Fint,t = 0 i t2 r 结论 内力的冲量之和为零 ∑ ∫ Fint,t dt = 0 t2
理论力学第十一章 质点系动量定理讲解

结论与讨论
牛顿第二定律与 动量守恒
牛顿第二定律 动量定理 动量守恒定理
工程力学中的动量定理和动量守恒定理比 物理学中的相应的定理更加具有一般性,应 用的领域更加广泛,主要研究以地球为惯性 参考系的宏观动力学问题,特别是非自由质 点系的动力学问题。这些问题的一般运动中 的动量往往是不守恒的。
结论与讨论
O
第一种方法:先计算各个质点 的动量,再求其矢量和。
第二种方法:先确定系统 的质心,以及质心的速度, B 然后计算系统的动量。
质点系动量定理应用于简单的刚体系统
例题1
y vA
A
O
解: 第一种方法:先计算各个质点 的动量,再求其矢量和。
p mA v A mB vB
建立Oxy坐标系。在角度为任 意值的情形下
p mi vi
i
§11-1 质点系动量定理
动量系的矢量和,称为质点系的动量,又称 为动量系的主矢量,简称为动量主矢。
p mi vi
i
根据质点系质心的位矢公式
mi ri
rC
i
m
mi vi
vC i m
p mvC
§11-1 质点系动量定理
质点系动量定理
对于质点
d pi dt
质点系动量定理应用
动量定理的
于开放质点系-定常质量流 定常流形式
考察1-2小段质量流,其 受力:
F1、F2-入口和出口 处横截面所受相邻质量流 的压力;
W-质量流的重力; FN-管壁约束力合力。
考察1-2小段质量流, v1、v2-入口和出口处质量流的速度; 1-2 :t 瞬时质量流所在位置; 1´-2´ :t + t 瞬时质量流所在位置;
质点系的动量定理 动量守恒定律

m(vx V ) MV = 0
解得
பைடு நூலகம்
vx =
m+M V m
设m在弧形槽上运动的时间为t,而m相对于M在水平方向移动距离为R, 故有 t M+m t R = ∫ vx dt = Vdt 0 m ∫0 于是滑槽在水平面上移动的距离
S = ∫ Vdt =
0 t
m R M+m
§3.动量守恒定律 / 二、注意几点及举例 动量守恒定律
若x方向 ∑ Fx = 0 , 则∑ mivi 0 x = ∑ mivix 方向 若y方向 ∑ Fy = 0 ,则∑ mivi 0 y = ∑ miviy 方向 4.自然界中不受外力的物体是没有的,但 自然界中不受外力的物体是没有的, 自然界中不受外力的物体是没有的 如果系统的内力 外力, 内力>>外力 如果系统的内力 外力,可近似认为动量 守恒。 守恒。 如打夯、 如打夯、火箭发 射过程可认为内力 内力>> 射过程可认为内力 外力, 外力,系统的动量守 恒。
Fdt=(m+dm)v-(mv+dm0)=vdm=kdt v
则
F = kv = 200 × 4 = 8 ×102 N
一、动量守恒 由质点系的动量定理: 由质点系的动量定理:
∫ ( ∑ Fi外 )dt = P P0 = P
t t0
动量守恒条件: 动量守恒条件:
P P0 = 0
当 ∑ Fi外 = 0 时
第四节 质点系的动 量定理
一、质点系的动量定理 两个质点组成的质点系, 两个质点组成的质点系, 对两个质点分别应用 质点的动量定理: 质点的动量定理: t ∫t ( F1 + f12 )dt = m1v1 m1v10
0
3-1 质点和质点系的动量定理
在直角坐标系中, 在直角坐标系中,动量定理分量形式
v v v v I = Ixi + I y j + Izk
I x = ∫ Fx dt = mv x − mv0 x
t0 t t
I y = ∫ Fy dt = mv y − mv0 y
t0 t
I z = ∫ Fz dt = mvz − mv0 z
t0
t2
参考系
t2 时刻
动量定理
v v mv1 mv2 S系 系 v v v v S’系 m( v1 − u ) m( v2 − u ) 系
∫t
t2
1
v v v F (t )dt = mv 2 − mv1
动量定理常应用于碰撞问题
v v v ∫t1 mv2 − mv1 F= = t 2 − t1 t 2 − t1
例 1 一质量为 0.05kg、速率为 、速率为10m·s-1 的刚球 , 以 角的方向撞击在钢板上, 与钢板法线呈 45º 角的方向撞击在钢板上 并以相同的 速率和角度弹回来. 速率和角度弹回来 设碰撞时间为 0.05s . 求在此时间 内钢板所受到的平均冲力 F . 建立如图坐标系, 解 建立如图坐标系 由动量定理得
答:冲量的方向是动量增量的方向。 冲量的方向是动量增量的方向。
问题二:冲量大小或动量增量与哪两个因素有关? 问题二:冲量大小或动量增量与哪两个因素有关? 与哪两个因素有关
答:力与时间的增量;要产生同样的动量的增量, 力与时间的增量;要产生同样的动量的增量, 力大力小都可以:力大则时间短些; 力大力小都可以:力大则时间短些;力小则时间 长些。只要力的时间累积即冲量一样, 长些。只要力的时间累积即冲量一样,就产生同 样的动量增量。 样的动量增量。
质点系动量定理
一、质点系动量定理
一个由n个质点组成的质点系,对于每个质点有
n d F1 f1i m1v1 dt i 1 n d F2 f 2i m2 v2 dt i2
n d Fn f ni mn vn dt in
yc 0
下面只要求 xc 上面腰的直线方程为:
yx
在薄板上任意选择一个面积微元,微元上每一点 的水平坐标值都为x,微元的面积为:
ds 2 ydx 2 xdx
设薄板质量面密度为
,则微元质量为:
dm ds 2 xdx
整个薄板的水平质心坐标为:
xc
xdm dm
mL 。 M m
人走船动
法2:利用质心运动定理
xC
M L m
O
m
L M + mL 2 初始状态 xC = M +m
末状态
xC
M
L M( + l ) + ml 2 xC = M +m
l
x
比较得
mL l= M +m
人走船动
法3:利用动量守恒定律
v人地
m
0 m v人地 M v船地
M L m
t
此式表明,外力矢量和在某一方向的冲量等于在 该方向上质点系动量分量的增量。
二、质心 n个质点组成的质点系的质心位置为
m r m r m r 2 2 n n rC 1 1 m1 m2 mn mi ri
i 1 n n
mi
i 1
由于质心位置不变
任意时刻质心 坐标:
理论力学课件 第九章动量定理,质点和质点系动量定理
x
m1g
Fx
M O Fy
Fx = −m2ω2e cosωt Fy = −m2ω 2e sin ωt + (m1 + m2 )g
由主动力直接引起的静约束力
Fx静 = 0
Fy静 = (m1 + m2 )g
由质点系运动引起的动约束力
vy
ω
O2
e
O1 θ m2 g
x
m1g
Fx
M O Fy
Fx动 = −m2ω 2e cosωt
5、解方程。
ω
O2
e
O1 θ
例9-3 如图所示,电动机外壳固
定在水平基础上,定子、转子的
质量分别为m1、m2。设定子质心 位 于 转 轴中 心 O1 , 由 于 制 造 误 差,转子质心O2 到O1的距离为
e,已知转子以匀角速度ω 转
动。求: 基础对电机总的水平和
铅垂反力
偏心转子
解:1、研究对象
9.1 质点和质点系动量定理
思考题:两个相同的均质杆 AB 和 AD 用铰链连接,每个杆的质量为m ,长
为L,在屏幕面内运动。已知铰链A的速度为u,两个杆的角速度为ω(转向
如图),求该瞬时系统的动量。
p = 2mu ?
u
B
C2
ω
A
C1
D
ω
9.1 质点和质点系动量定理 思考:己知:车身质量m1,车轮总质量m2,履带总质量m3,车身 的速度为v。求其动量。
9.1 质点和质点系动量定理
∑ dpv =
dt
v Fi
e
微分形式的投影式
∑ ∑ p& x = F x p& y = F y
∑ p& z = F z
质点和质点系的动量矩和动量矩定理
质点和质点系的动量矩和动量矩定理今天我们进入第十一章的学习这篇文章先学习《11-1 质点和质点系的动量矩》《11-2 动量矩定理》一、质点和质点系的动量矩1、质点的动量矩M O(mv)=r×mv 质点的动量对点O的矩[M O(mv)]z=M z(mv) 质点对点O的动量矩矢在某轴上的投影,等于质点对该轴的动量矩。
2、质点系的动量矩L O=∑M O(m i v i) 质点系的动量对点O的矩L z=∑M z(m i v i) 质点系的动量对z轴的矩[L O]z=L z 质点系对点O的动量矩矢在某轴上的投影,等于质点系对该轴的动量矩刚体平移时:可将质量集中于质心,作为一个质点计算其动量矩。
定轴转动刚体:L z=∑M z(m i v i)=∑m i v i r i=∑m i(ωr i)r i=ω∑m i r i2令:J z=∑m i r i2——刚体对z轴的转动惯量,则:L z=J zω二、动量矩定理1、质点的动量矩定理设O为定点,有称为质点的动量矩定理:质点对某定点的动量矩对时间的一阶导数,等于作用力对同一点的矩.投影式:2、质点系的动量矩定理——质点系动量矩定理,即:质点系对于某定点O的动量矩对时间的导数,等于作用于质点系的外力对于同一点的矩的矢量和。
投影式:内力不能改变质点系的动量矩.例高炉运送矿石用的卷扬机如图,已知鼓轮半径为R,质量为m1,鼓轮对转轴的转动惯量为J,作用在鼓轮上的力偶矩为M。
小车和矿石总质量为m2,轨道倾角为θ。
设绳的质量和各处摩擦不计,求小车的加速度a。
守恒定律质点动量矩守恒定律若M O(F)≡0 ,则M O(mv)=恒量;若M z(F)≡0,则M z(mv)=恒量例小球A、B 以细绳相联,质量均为m ,其余构件质量不计。
忽略摩擦,系统绕z轴自由转动,初始时系统角速度为ω0,当细绳拉断后,各杆与铅垂线成θ角,求这时的角速度ω。
解:1、取整体研究,受力分析知,系统受重力和约束力作用,外力对转轴的矩都等于0,因此系统对转轴的动量矩守恒2、列方程L z1=L z2L z1=2maω0a=2ma2ω0,L z2=2m(a+l sinθ)2ω今天的知识点你都掌握了吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R dl
Oc
x
➢ 质心不一定位于物体内部。
对于质量均匀分布半圆,半径为R, 质量为 m, 求质心
rC
1 m
rdm
1 m
r dS
y
xC 0
yC ?
dS
x
m
1 R2
x
2
以y为自变量 dS 2 x dy 2 R2 y2 dy
1 R m
yC
m
0
y
[例4-6] 三棱体 C、滑块 A、B,
各面均光滑。已知mC=4mA=16mB ,
=300,=600。求A下降 h=10cm
§4.2 质心 质心运动定理
质点 1. 物体的大小、形状可忽略时
2. 运动过程中,物体各部分运动相同
一、质心
c
c c
质心是与质量分布有关的一个代表点,它的位置在 平均意义上代表着质量分布的中心。
设由n个质点组成的质点系, m1 、m2、m3…、mi 分别是各质点的质量, r1、r2、
…、ri分别是各质点的位置矢量, 则
0
x方向: fdt Mv m(v u cos ) — (1) 0
y方向: (N Mg mg)dt musin — (2) 0
θ
讨论: 1. 若炮车与地面没有摩擦 2. 若炮车与地面有摩擦,但水平发射炮弹 3. 自锁现象,即 v=0 时,炮身不动
END
1 2
R
2
2
R2
y
2
dy
4
R2
R
y
0
R2 y2 dy
1 R m
yC m
dy2 2 ydy
0
y
2
1 2
R
2
R2 y2 dy 4
R 2
R
y
0
R2 y2 dy
2 R R2 0
R2
y2 dy2
2
R 2
R 0
R2 y2d R2 y2
[例4-1] m=10 kg木箱,在水平拉力作用下由静止开始运 动,拉力随时间变化如图。已知木箱与地面摩擦系数为
=0.2,求: (1) t=4 秒时刻木箱速度;
(2) t=7 秒时刻木箱速度; m
解:(1) 根据动量定理: F/N
30
0 4 7 t/s
F/N 30
0 4 7 t/s
[例4-2] 质量为m的行李,垂直地轻放在传送带上,传送
,质点动量从
质点动量定理:质点在运动过程中,所受合外力的冲 量等于质点动量的增量。
说明
(1) 反映了力在时间上的累积作用对质点产生的效果。 (2) 动量定理中的动量和冲量都是矢量,符合矢量叠加 原理。或以分量形式进行计算。
(3) 冲击、 碰撞问题中估算平均冲力。
F F(t)
t (4)动量定理适用于惯性系,在非惯性系中,只有添加惯 性力的冲量后才成立。
说明
(1)动量守恒是指系统动量总和不变,但系统内
各个质点的动量可以变化, 通过内力进行传递和交换。
(2)当外力作用远小于内力作用时,可近似认为系统的总 动量守恒。(如:碰撞、打击等)
(3) 分量式 (4) 定律不仅适合宏观物体,同样也适合微观领域。
[例4-3] 已知高H,傾角为 的斜面光滑。小车质量 M,
有摩擦,摩擦系数为μ , 炮弹相对炮身的速度为u, 求炮身
相对地面的反冲速度 v 。
解:选取炮车和炮弹组成系统 内、外力分析。
N
u
θ
mg
f
系统所受合外力为零时,系统的总动量保持不变
y
运用质点系的动量定理:
Mg
x
(Mg mg N f )dt Mv m(v u) 0
说明
1. 适用于惯性系。
2.
质心系是惯性系,
质心系是非惯性系。
3. 动量守恒、功能原理、角动量定理在质心系中成立。 4. 质点系相对惯性系的运动可分解成:
随质心的运动+相对质心的运动。 质点系在实验室系的总动能等于质点系随质心一起的平 动动能加上质点系相对于质心的动能。
质心的动能 质点系相对于质心的动能
z
质心的位矢: c
分量式:
O
y
x
质量连续分布的物体:
分量形式:
质量线分布: 质量面分布: 质量体分布:
线密度l
dm dl
单位:kg/m
面密度 S
dm dS
单位:kg/m2
体密度V
dm dV
单位:kg/m3
[例4-1] 求半径为R的均匀半圆环的质心。 y
解: 由于上下对称,质心一定在x轴上
若计 R 2 y 2
yC
2
R
2
0 R
d
2
30
2
R 2
R
2
1
R2
R2 02 R2
y 0
R2 R2 0
yR
二、质心运动定理
由质心位矢公式:
质心坐标系:
为质点系的动量 零动量系
由质点系动量定理:
微分形式:
质心运动定理: 质心的运动等同于一个质点的运动,这 个质点具有质点系的总质量,它受到的外力为质点系所 受的所有外力的矢量和。
带的速率为v ,它与行李间的摩擦系数为μ, 试计算:(1)
行李将在传送带上滑动多长时间? (2) 行李在这段时间内运
动多远? (3) 有多少能量被摩擦所耗费? m 解: (1) 以地面为参照系
v
O (2) 由质点动能定理
x
(3) 被摩擦损耗的能量等于一对摩擦力做的功
以传送带为参考系:
m
v
O
x
三、质点系的动量定理
设 有N个质点构成一个系统, 第 i 个质点: 质量
内力 , 外力 , 初速度
i ,末速度 。
由质点动的动量定理: 质点系统所受合外力的冲量等于系统总动量的增量。
微分式:
四、动量守恒定律
系统所受合外力为零时,系统的总动量保持不变。
当
Fi
0
时,
p
mivi 常矢量。
从顶端滑至中点时刚好有一钢球 m 从 h 高度掉入。求小
车到达底部时的速度V ?
m
解:m、M 系统,冲击过程
M
h
由于m与M间的冲击作用力 远大于重力在斜面上的分量, 重力在冲击过程中可以忽略, H 动量守恒!
考虑 斜面方向
N
(M+m)g
冲击过程后,m、M、地球系统机械能守恒:
解得:
[例4-4] 炮车的质量为M,炮弹的质量为m。若炮车与地面
第 4 章 质点系 动量
§4.1 动量定理 动量守恒定律
一、动量与冲量
动量: 牛顿第二定律:
单位:kg·m·s-1
冲量:作用力与作用时间的乘积。 恒力的冲量:
变力的冲量:
单位:N·s
➢ 冲量是反映力对时间的累积效应的物理量。
二、质点动量定理
由牛顿运动定律:
动量定理的微分式:
如果力的作用时间从 则: