求曲线方程

合集下载

2.1.2求曲线的方程课件人教新课标1

2.1.2求曲线的方程课件人教新课标1

∴ x 2y 7 0 (Ⅰ)
⑴由上面过程可知,垂直平分线上的任一点
证明
的坐标都是方程 x 2y 7 0 的解;
⑵设点 M1 的坐标 (x1, y1) 是方程(Ⅰ)的解,即 x1 2y1 7 0
∵上面变形过程步步可逆,∴ (x1 1)2 (y1 1)2 (x1 3)2 (y1 7)2 M1A M1B
y
.M
(x, y)
F(.0, 2)
0
lB x
6
课堂练习:
练习 1.已知点 M 与 x 轴的距离和点 M 与点 F(0,4)
的距离相等,求点 M 的轨迹方程.
解:设点 M 的坐标为(x,y)
∵点 M 与 x 轴的距离为 y ,
FM x2 ( y 4)2
∴ y = x2 ( y 4)2
∴ y2 x2 y2 8y 16 ∴ x2 8y 16 这就是所求的轨迹方程.
活用几何性质来找关系
yB
思维漂亮!
(x, y) C
M
0Ax
8
例2、已知直角坐标平面上点Q(2,0) 和圆Ox:2 y2 1.
动点M到圆O的切线长与|MQ|的比等于常数( 0),
求动点M的轨迹方程,并说明它表示什么曲线?
y M
N
0
Q2 (2m 1)x m2 1(m R) 的顶
建立坐标系 设点的坐标
限(找几何条件) 代(把条件坐标化)
化简
7
思考:(P37 练习第 3 题)
如图,已知点 C 的坐标是(2 , 2) , 过点 C 直线 CA
与 x 轴交于点 A,过点 C 且与直线 CA 垂直的直线 CB
与 y 轴交于点 B,设点 M 是线段 AB 的中点,求点 M 的

求曲线方程的常用方法

求曲线方程的常用方法
于是 ,
化简得:x2+y2-2x=0(x≠0)。
方法二:(代入法)设P点坐标为(x,y),N点坐标为( ),根据中点坐标公式得 ,因为N在圆上,所以
(x≠0),
化简得:x2+y2-2x=0(x≠0)。
方法三:(参数法)设P点坐标为(x,y),直线ON的方程为:y=kx,
由 消去y得:(1+k2)x2-4x=0,
参数法是借助中间变量,间接得到x、y关系的方法。在预先无法判断曲线的类型,又不容易直接找到x、y关系的情况下,就必须使用参数法。参数法的关键是参数的选择。有时用一个中间变量,有时则用多个。平时提到的代入法、点差法、交轨法都属于参数法。使用参数法时,不一定要得到参数方程,在适当的时机消去参数即可。
本课通过对一个题目的多种解法,复习求曲线方程的常用方法,并通过一题多变,让学生体验各种方法的适用条件。学会具体问题具体分析,培养学生发散思维能力和创新能力。
的几种形式,圆、椭圆、双曲线和抛物线的标准方程等。使用公式法的前提是:知道曲线的类型。有时并不告诉曲线的类型,但是根据定义能够判断出曲线的类型,再利用公式(有些书上称为定义法)。在使用公式时,有时可以一一求出公式中的系数,再代入公式。有时则要带着系数运算,直到最后求出系数(这就是所谓的待定系数法)。
因为PC⊥PO,所以|OP|=|OC| =2 ,于是 , ,P点轨迹的参数方程为
,消去参数得:x2+y2-2x=0(x≠0)。
方法九:(参数法——点差法)设P点坐标为(x,y),直线ON与圆的两个交点的坐标分别为(x1,y1)、(x2,y2),则
, ,两式作差得
注意到x1+x2=2x,y1+y2=2y, ,代入整理得:
变化一:(变化圆心和转动点)

(完整版)求曲线方程的六种常用方法

(完整版)求曲线方程的六种常用方法

(完整版)求曲线方程的六种常用方法求曲线方程的六种常用方法在数学中,求解曲线方程是一个非常重要的问题。

这篇文档将介绍六种常用的方法,帮助你解决这个问题。

方法一:代数法代数法是求解曲线方程最常用的方法之一。

它的基本思想是将给定的曲线方程转化为代数方程,然后通过求解代数方程来得到曲线方程的解。

方法二:几何法几何法是另一种常用的求解曲线方程的方法。

它的基本思想是通过几何性质和图形的特点来确定曲线方程的形式和参数。

方法三:微积分法微积分法在求解曲线方程中也起到了非常重要的作用。

它利用微积分的工具和技巧来对曲线进行分析和求解。

通过求导、积分等操作,我们可以推导出曲线的方程式。

方法四:插值法插值法是一种通过已知的离散数据点来推测出未知数据点的方法。

利用插值法,我们可以找到曲线方程经过的点,并进而求解出曲线方程。

方法五:拟合法拟合法和插值法类似,它也是一种通过已知的数据点来求解曲线方程的方法。

拟合法通常通过根据给定的数据点,选择合适的曲线方程形式,使得曲线与这些数据点最为接近。

方法六:数值计算法数值计算法是一种通过数值计算的方式来求解曲线方程的方法。

它利用计算机的高速计算能力,通过迭代等方法快速求解出曲线方程的解。

通过掌握这六种常用的方法,相信你能更加轻松地求解曲线方程。

选择适合你的方法,并进行实践,相信你一定能够取得理想的结果。

结论本文介绍了六种常用的求解曲线方程的方法,包括代数法、几何法、微积分法、插值法、拟合法和数值计算法。

通过掌握这些方法,你能够更加有效地求解曲线方程,解决数学问题。

希望这些方法能够对你有所帮助。

求曲线方程的几种常用方法

求曲线方程的几种常用方法

求曲线方程的几种常用方法宜君县高级中学 马卫娟已知动点所满足的条件,求动点的轨迹方程是平面解析几何的一个重要题型。

下面就通过实例介绍几种求曲线方程的常用方法。

一.直接法:即课本中主要介绍的方法。

若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点的坐标为(x,y),再根据命题中的已知条件,研究动点形成的几何特征,运用几何或代数的基本公式、定理等列出含有x,y 的关系式,从而得到轨迹方程。

例1.在直角△ABC 中,斜边是定长2a(a>0),求直角顶点C 的轨迹方程。

解法一:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系(如图所示)则有:A(-a,0)、B(a,0),设动点C 的坐标为(x,y) 则满足条件的点C 的集合为}/{222AB BCAC C P =+=所以()()()22222222)()(a ya x ya x =+-+++即222a y x =+因为当点C 与A 、B 重合时,直角△ABC 不存在,所以轨迹中应除去A 、B 两点,既ax ±≠。

故所求点C 的轨迹方程为222ay x =+()a x ±≠。

解法二:如解法一建立直角坐标系,设A(-a,0)、B(a,0)、C(x,y) ∵A C ⊥BC ∴1-=⋅BC AC K K∴1-=-⋅+ax y ax y (1)化简得:222a y x =+(2)由于a x ±≠时,方程(1)与(2)不等价,所以所求点C 的轨迹方程为222ay x =+()a x ±≠。

解法三:如解法一建立直角坐标系,则:A(-a,0)、B(a,0),设C(x,y) 连接CO ,则有:AB CO 21=所以a a yx =⋅=+22122即222ay x =+轨迹中应除去A ,B 两点(理由同解法一) 故所求点C 的轨迹方程为222ay x =+()a x ±≠。

说明:利用直接法求曲线方程的一般步骤(1) 建立适当的直角坐标系,用(x,y)表示曲线上任意点M 的坐标; (2) 写出适合条件P 的点M 的集合P={M\p(m)}; (3) 用坐标表示条件P(M),列出方程f(x,y)=0; (4) 化方程f(x,y)为最简形式;(5) 证明以化简后的方程的解为坐标的点都是曲线上的点。

求曲线方程的五种方法

求曲线方程的五种方法

求曲线方程的五种方法曲线方程是数学中的一个重要的概念,它是表示一个曲线的方程。

曲线方程可以有多种形式,可以用任意数量的参数来确定。

求曲线方程的方法也是各种数学软件的一个重要的功能,下面我们来看看其中的五种求曲线方程的方法:第一种是直接由点法得到曲线方程,通常是根据已知点计算曲线方程,也就是由点求式,即问题中大多数可能给定的曲线方程。

如果我们知道曲线上两个点并且想要求得这条曲线的方程,可以采用此方法。

事实上,只要有足够的点,就可以根据点求出曲线的方程。

第二种是利用偏导数,如果我们知道曲线上某一点的梯度,我们就可以通过求偏导数确定曲线的方程。

另外,我们也可以使用积分法对曲线去求其方程。

第三种方法是根据它与其他曲线的关系来求曲线方程,如果我们知道两条曲线的关系(比如二次函数与指数函数的关系),我们就可以求出曲线的方程。

第四种方法是根据曲线的特征和性质,比如曲线的斜率,拐点和极值,以及曲线的对称性,都可以作为曲线方程求解的重要根据。

最后,第五种方法是利用计算机软件辅助的方法,如通过利用数学软件和GIS软件等,可以轻松地求出曲线方程。

上述是求曲线方程的五种方法,由于曲线方程的形式和参数不同,求曲线方程的方式也有多种,比如,我们可以根据点求式,根据偏导数,根据它与其他曲线的关系,根据曲线的特征和性质,以及利用计算机软件辅助求解曲线方程。

此外,还有很多其他的求曲线方程的方法,但是最重要的还是要仔细分析问题,熟悉各种求曲线方程的具体方法,才能把握出该问题的解决方案。

综上所述,求曲线方程的五种方法是根据点法得到曲线方程,利用偏导数,根据它与其他曲线的关系,根据曲线的特征和性质,以及利用计算机软件辅助求解曲线方程。

此外,求解曲线方程的关键在于仔细分析问题,熟悉各种求曲线方程的具体方法。

求曲线方程的方法

求曲线方程的方法

由曲线的方程和方程的曲线两方面来进行说 明 如下图所示的曲线是方程y=1/x的曲线吗 的曲线吗? 如下图所示的曲线是方程y=1/x的曲线吗? 为什么? 为什么?
y
o
x
方程y x=0的曲线是如下图所示的曲线吗 方程y-x=0的曲线是如下图所示的曲线吗? 的曲线是如下图所示的曲线吗? 为什么? 为什么?
间接法(相关点法) 间接法(相关点法)
2、已知曲线C的方程是x2+y2=4,定点A的坐 已知曲线C的方程是x =4,定点 定点A 标是(6,0),Q是曲线 上的一个动点, 是曲线C 标是(6,0),Q是曲线C上的一个动点,当Q在曲 上移动时,求线段QA的中点 的中点P 线C上移动时,求线段QA的中点P的轨迹方 程. (x-3)2+y2=1 (x-
3、已知三角形ABC的顶点是B(-3,8)、 已知三角形ABC的顶点是 的顶点是B C(-1,-6)又顶点A在直线y=x上运动, 又顶点A在直线y=x上运动 上运动, 求这个三角形的重心G的轨迹方程。 求这个三角形的重心G的轨迹方程。 x-y+2=0(x不等于-15/8) y+2=0( 不等于-15/8) 4、求曲线4x2+9y2=36关于点Q(-3,1) 求曲线4x =36关于点 关于点Q 对称的曲线方程。 对称的曲线方程。 4(x+6)2+9(y-2)2=36 x+6) +9(
求曲线的方程
直接法
1、已知∆ABC的边长BC的长为6,∠ABC 已知∆ABC的边长 的长为 的边长BC的长为6 的正切值与∠ACB的正切值的乘积为 的正切值的乘积为2 的正切值与∠ACB的正切值的乘积为2,求 顶点A 顶点A的轨迹方程
y y 2 2 ⋅ = −2( y ≠ 0) ⇒ 2x + y =18( y ≠ 0) x −3 x &#点的 求证: 轨迹C的方程不是x 轨迹C的方程不是x-y=0

曲线方程求法

曲线方程求法
求曲线方程的方法
抚松一中 姜民和
学习目标:
1.曲线的方程、方程的曲线; 2.总结求曲线的方程的方法和步 骤;

定义:在直角坐标系中,如果某曲线C(看作适合某种
条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数
解建立了如下的关系:

①曲线上的点的坐标都是这个方程的解;

②以这个方程的解为坐标的点都是曲线上的点。
5
2
mx 2 ny 2 1
直接法(第二定义)
3.已知点P到定点F (3,0)的距离与到l:x 25的距离之比 3
为 3,求P的轨迹方程 5
基本步骤: 建,设,现,代,化
4.已知过圆 x2 y2 25上的动点 p向x轴做垂线,垂足为 Q 点R满足PR 1 PQ,求点R的轨迹方程
5
5.已知点P在直线y 164 上移动,直线l过点A(0,4)且与 9
分析作业:
已知曲线的类型,可 先设出曲线的方程
曲线与方程
和 x2 y2 25交于点P, Q过点P作x轴的平行线 l1, 过点Q做 x轴的垂线 l2 , l1交l2与点R,求点 R的轨迹方程。
方法小结:
求曲线的轨迹方✓参数法 ✓定义法
所求动点随另 一动点在已知 曲线上的运动 而运动,称为 相关点法.
✓待定系数法
AP垂直,通过点B(0,4)及点P的直线m和直线l相交于点Q 求点Q的轨迹方程
一、复习回顾
一、求曲线的方程(轨迹方程)的一般步骤: 1、建立适当的坐标系,设曲线上任一
点的坐标; 2、找条件,由条件列出方程;
3说、明化所简得方方程程. (可检以验省略)为所求的曲线
方程.
二、求曲线方程的常用方法:

求曲线方程的六种常用方法

求曲线方程的六种常用方法

求曲线方程的六种常用方法本文介绍了求解曲线方程的六种常用方法,分别是:1. 寻找基本解析式:通过观察曲线的形状和特征,找到与之相对应的基本解析式。

基本解析式可以是各种函数的特定形式,比如直线的解析式是 y = kx + b,圆的解析式是 (x - h)^2 + (y - k)^2 = r^2 等。

2. 根据已知条件确定系数:如果已知曲线通过某些特定点,或者满足某些特定条件,可以根据这些已知条件来确定方程中的系数。

例如,如果已知曲线通过点 (x1, y1),可以将这个点的 x 值和 y 值代入方程,然后解方程组得到系数的值。

3. 利用对称性:对于某些曲线,可以利用其对称性来求解方程。

比如,若曲线关于 y 轴对称,则它的方程可以写为一个只包含 x 的函数;若曲线关于原点对称,则它的方程可以写为一个只包含 x^2和 y^2 的函数。

4. 使用切线和法线方程:对于曲线上的一点,可以求出该点处的切线和法线方程,从而得到曲线的方程。

切线方程可通过求导得到,法线方程可以通过求切线方程斜率的倒数得到。

5. 运用参数方程:对于某些曲线,如果能够表示为参数方程的形式,那么可以通过求解参数方程中的参数来得到曲线的方程。

参数方程常用于描述曲线的运动或变化,如抛物线的参数方程为 x =at^2,y = 2at。

6. 通过描点法:对于一些复杂的曲线,可以通过描点法来逼近曲线的方程。

具体做法是在平面上选择一些点,然后将这些点的坐标代入方程,确保曲线经过这些点,进而逐步调整方程的系数,使得曲线更加贴合这些点,最终求得曲线的方程。

综上所述,求解曲线方程的六种常用方法包括寻找基本解析式、确定系数、利用对称性、使用切线和法线方程、运用参数方程以及通过描点法。

在具体应用中,选择合适的方法取决于曲线的特征和已知条件。

希望本文对您求解曲线方程有所帮助。

注意:本文介绍的方法仅供参考,具体问题具体分析,使用时需根据实际情况做出决策,谨慎使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《求曲线方程》预学案
一、【学习目标】
知识与技能:
了解用坐标法研究几何问题的方程
掌握求曲线方程的方法
过程与方法:
初步掌握由曲线的已知条件求出曲线的方程
情感态度价值观:
培养转化能力和全面分析问题的能力,了解解析几何的思想方法,进一步理解数形结合的思想方法
二、【学法指导】
通过预习,小组间的讨论、交流,总结分析解题方法。

三、【预学质疑】
1.求曲线方程的一般步骤:
(1)
(2)
(3)
(4)
(5)
2.求到直线01=+-y x 的距离等于24的动点p 的轨迹方程。

3.已知定圆0604:,04:222221=--+=++x y x C x y x C ,动圆M 和定圆1C 外切,与定圆2C 内切,求动圆圆心M 的轨迹方程。

预学收获、质疑:
4.ABC ∆的周长为18。

且,8=BC 求顶点A 的轨迹方程。

四、【自我总结】
从前面的练习题,能否总结出一定的方法及注意点,用自己的语言加以描述。

五、【预学感悟】。

相关文档
最新文档