南京市鼓楼区2023年初三数学二模试卷及答案
2024届江苏省南京市鼓楼区鼓楼实验中学中考数学全真模拟试题含解析

2024届江苏省南京市鼓楼区鼓楼实验中学中考数学全真模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.等腰三角形两边长分别是2 cm 和5 cm ,则这个三角形周长是( )A .9 cmB .12 cmC .9 cm 或12 cmD .14 cm2.如果数据x 1,x 2,…,x n 的方差是3,则另一组数据2x 1,2x 2,…,2x n 的方差是( )A .3B .6C .12D .53.某青年排球队12名队员年龄情况如下: 年龄18 19 20 21 22 人数 1 4 3 2 2则这12名队员年龄的众数、中位数分别是( )A .20,19B .19,19C .19,20.5D .19,204.下列标志中,可以看作是轴对称图形的是( )A .B .C .D .5.下列四个图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .6.如果关于x 的方程220x x c ++=没有实数根,那么c 在2、1、0、3-中取值是( )A .2;B .1;C .0;D .3-.7.下列运算中,计算结果正确的是( )A .a 2•a 3=a 6B .a 2+a 3=a 5C .(a 2)3=a 6D .a 12÷a 6=a 2 8.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,D ,E ,F 分别为AB ,AC ,AD 的中点,若BC=2,则EF 的长度为( )A.B.1 C.D.9.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣310.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D 为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312B.36C.33D.3211.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.10000x﹣10=14700(140)0x+B.10000x+10=14700(140)0x+C.10000(140)0x-﹣10=14700xD.10000(140)0x-+10=14700x12.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=()A.1 B 61C66D.43二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,一艘海轮位于灯塔P 的北偏东方向60°,距离灯塔为4海里的点A 处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB 长_____海里.14.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.15.分解因式2242xy xy x ++=___________16.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm ),计算出这个立体图形的表面积.17.已知:如图,△ABC 内接于⊙O ,且半径OC ⊥AB ,点D 在半径OB 的延长线上,且∠A=∠BCD=30°,AC=2,则由BC ,线段CD 和线段BD 所围成图形的阴影部分的面积为__.18.在ABC 中,A ∠:B ∠:C ∠=1:2:3,CD AB ⊥于点D ,若AB 10=,则BD =______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点.(1)当直线m 的表达式为y =x 时,①在点()11,1P ,(22P ,322P ⎛ ⎝⎭中,直线m 的平行点是______; ②⊙O 10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线3y x =的平行点,直接写出n 的取值范围.20.(6分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.(问题引入)(1)如图1,若点P为AC的中点,求ADDO的值.温馨提示:过点C作CE∥AO交BD于点E.(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:PD AD PB AO=.(问题解决)(3)如图2,若AO=BO,AO⊥BO,14ADAO=,求tan∠BPC的值.21.(6分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种.(1)求李华选择的美食是羊肉泡馍的概率;(2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.22.(8分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(I)如图①,若BC为⊙O的直径,求BD、CD的长;(II)如图②,若∠CAB=60°,求BD、BC的长.23.(8分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.24.(10分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.求证:△ABM ∽△EFA ;若AB=12,BM=5,求DE 的长.25.(10分)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.在图中画出以线段AB 为一边的矩形ABCD (不是正方形),且点C 和点D 均在小正方形的顶点上;在图中画出以线段AB 为一腰,底边长为22的等腰三角形ABE ,点E 在小正方形的顶点上,连接CE ,请直接写出线段CE 的长.26.(12分)如图,在△ABC 中,∠C=90°.作∠BAC 的平分线AD ,交BC 于D ;若AB=10cm ,CD=4cm ,求△ABD 的面积.27.(12分)先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B【解题分析】当腰长是2 cm 时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm 时,因为5+5>2,符合三角形三边关系,此时周长是12 cm .故选B .2、C【解题分析】【分析】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,再根据方差公式进行计算:()()()()222221231n S x x x x x x x x n ⎡⎤=-+-+-++-⎣⎦即可得到答案. 【题目详解】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a , 根据方差公式:()()()()222221231n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦=3, 则()()()()22222123122222222n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦ =()()()()222212314444n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×()()()()22221231n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×3=12,故选C .【题目点拨】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.3、D【解题分析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【题目详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202+=1. 故选D .【题目点拨】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.4、D【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】解:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、不是轴对称图形,是中心对称图形,不符合题意;C 、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选D.【题目点拨】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.5、D【解题分析】根据轴对称图形与中心对称图形的概念判断即可.【题目详解】A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选D.【题目点拨】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、A【解题分析】分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案.详解:∵关于x的方程x1+1x+c=0没有实数根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故选A.点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.7、C【解题分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【题目详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C 、(a 2)3=a 2×3=a 6,故本选项正确;D 、a 12÷a 6=a 12﹣6=a 6,故本选项错误.故选:C .【题目点拨】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.8、B【解题分析】根据题意求出AB 的值,由D 是AB 中点求出CD 的值,再由题意可得出EF 是△ACD 的中位线即可求出.【题目详解】∠ACB=90°,∠A=30°,BC=AB.BC=2, AB=2BC=22=4,D 是AB 的中点, CD=AB= 4=2.E,F 分别为AC,AD 的中点,EF 是△ACD 的中位线. EF=CD= 2=1.故答案选B.【题目点拨】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.9、A【解题分析】方程变形后,配方得到结果,即可做出判断.【题目详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.10、B【解题分析】试题解析:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB33,根据题意得:AD=BC=x,AE=3,作EM⊥AD于M,则AM=12AD=12x,在Rt△AEM中,cos∠EAD=13263xAMAE x==;故选B.【题目点拨】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.11、B【解题分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【题目详解】解:设第一批购进x件衬衫,则所列方程为:10000x +10=()147001400x+.故选B.此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.12、D【解题分析】解:∵△ABC 、△DCE 、△FEG 是三个全等的等腰三角形,∴HI =AB =2,GI =BC =1,BI =2BC =2,∴AB BI =24=12BC AB ,=12,∴AB BI =BC AB .∵∠ABI =∠ABC ,∴△ABI ∽△CBA ,∴AC AI =AB BI.∵AB =AC ,∴AI =BI =2.∵∠ACB =∠FGE ,∴AC ∥FG ,∴QI AI =GI CI =13,∴QI =13AI =43.故选D . 点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB ∥CD ∥EF ,AC ∥DE ∥FG 是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB ∥NP ,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt △ABP ,得出AB=AP•cos ∠A=1海里.详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB ∥NP ,∴∠A=∠NPA=60°.在Rt △ABP 中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos ∠A=4×cos60°=4×12=1海里.故答案为1.点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.14、1【解题分析】设购买篮球x 个,则购买足球()50x -个,根据总价=单价⨯购买数量结合购买资金不超过3000元,即可得出关于x 的一元一次不等式,解之取其中的最大整数即可.【题目详解】设购买篮球x 个,则购买足球()50x -个,根据题意得:()80x 5050x 3000+-≤, 解得:50x 3≤. x 为整数, x ∴最大值为1.故答案为1. 【题目点拨】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.15、22(1)x y +【解题分析】原式提取公因式,再利用完全平方公式分解即可. 【题目详解】原式=2x (y 2+2y +1)=2x (y +1)2, 故答案为2x (y +1)2 【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 16、100 mm 1 【解题分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可. 【题目详解】根据三视图可得:上面的长方体长4mm ,高4mm ,宽1mm , 下面的长方体长8mm ,宽6mm ,高1mm ,∴立体图形的表面积是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm 1). 故答案为100 mm 1. 【题目点拨】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.17、﹣23π. 【解题分析】试题分析:根据题意可得:∠O=2∠A=60°,则△OBC 为等边三角形,根据∠BCD=30°可得:∠OCD=90°,OC=AC=2,则CD=OCD122S =⨯=OBC 60423603S ππ⨯==扇形,则23S π=阴影. 18、2.1 【解题分析】先求出△ABC 是∠A 等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解. 【题目详解】解:根据题意,设∠A 、∠B 、∠C 为k 、2k 、3k , 则k+2k+3k=180°, 解得k=30°, 2k=60°, 3k=90°, ∵AB=10, ∴BC=12AB=1, ∵CD ⊥AB , ∴∠BCD=∠A=30°, ∴BD=12BC=2.1. 故答案为2.1. 【题目点拨】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC 是直角三角形是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)①2P ,3P ;②,(-,(,(-;(2)33n -≤≤.【解题分析】(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1.如图2,当点B 在原点下方时,同法可求;(2)如图,直线OE 的解析式为y =,设直线BC//OE 交x 轴于C ,作CD ⊥OE 于D. 设⊙A 与直线BC 相切于点F ,想办法求出点A 的坐标,再根据对称性求出左侧点A 的坐标即可解决问题;【题目详解】解:(1)①因为P 2、P 3到直线y =x 的距离为1,所以根据平行点的定义可知,直线m 的平行点是2P ,3P , 故答案为2P ,3P .②解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线. 设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH =1.由直线m 的表达式为y =x ,可知∠OAB =∠OBA =45°. 所以2OB =.直线AB 与⊙O 的交点即为满足条件的点Q . 连接1OQ ,作1Q N y ⊥轴于点N ,可知110OQ = 在1Rt OHQ ∆中,可求13HQ =. 所以12BQ =.在1Rt BHQ ∆中,可求12NQ NB = 所以22ON =. 所以点1Q 的坐标为2,22.同理可求点2Q 的坐标为(22,2--.如图2,当点B 在原点下方时,可求点3Q 的坐标为()22,2点4Q 的坐标为()2,22--, 综上所述,点Q 的坐标为()2,22,()22,2--,()22,2,()2,22--.(2)如图,直线OE 的解析式为3y x =,设直线BC ∥OE 交x 轴于C ,作CD ⊥OE 于D .当CD =1时,在Rt △COD 中,∠COD =60°, ∴23sin 60CD OC ==︒, 设⊙A 与直线BC 相切于点F , 在Rt △ACE 中,同法可得23AC =∴33OA =, ∴433n =根据对称性可知,当⊙A 在y 轴左侧时,43n =,观察图象可知满足条件的N的值为:434333n-≤≤.【题目点拨】此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.20、(1)12;(2) 见解析;(3)12【解题分析】(1)过点C作CE∥OA交BD于点E,即可得△BCE∽△BOD,根据相似三角形的性质可得CE BCOD BO=,再证明△ECP≌△DAP,由此即可求得ADDO的值;(2)过点D作DF∥BO交AC于点F,即可得PD DFPB BC=,AD DFAO OC=,由点C为OB的中点可得BC=OC,即可证得PD ADPB AO=;(3)由(2)可知PD ADPB AO==14,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=12 OCOA=.【题目详解】(1)如图1,过点C作CE∥OA交BD于点E,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如图2,过点D作DF∥BO交AC于点F,则=,=.∵点C为OB的中点,∴BC=OC,∴=;(3)如图2,∵=,由(2)可知==.设AD=t,则BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,则tan∠BPC=tan∠A==.【题目点拨】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.21、(1)14;(2)见解析.【解题分析】(1)直接根据概率的意义求解即可;(2)列出表格,再找到李华和王涛同时选择的美食都是凉皮的情况数,利用概率公式即可求得答案.【题目详解】解:(1)李华选择的美食是羊肉泡馍的概率为;(2)列表得:E F G HA AE AF AG AHB BE BF BG BHC CE CF CG CHD DE DF DG DH由列表可知共有16种情况,其中李华和王涛选择的美食都是凉皮的结果数为2,所以李华和王涛选择的美食都是凉皮的概率为=.【题目点拨】本题涉及树状图或列表法的相关知识,难度中等,考查了学生的分析能力.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)2(2)BD=5,3【解题分析】(1)利用圆周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解决问题;(2)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.【题目详解】(1)∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴DC BD,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴2,(2)如图②,连接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=12∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5,∵AD平分∠CAB,∴DC BD,∴OD⊥BC,设垂足为E,∴53,∴3.【题目点拨】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.23、证明见解析.【解题分析】想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.【题目详解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC 和△DEF 中,A DB E AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (AAS ) ∴BC =EF . 【题目点拨】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 24、(1)见解析;(2)4.1 【解题分析】试题分析:(1)由正方形的性质得出AB=AD ,∠B=10°,AD ∥BC ,得出∠AMB=∠EAF ,再由∠B=∠AFE ,即可得出结论;(2)由勾股定理求出AM ,得出AF ,由△ABM ∽△EFA 得出比例式,求出AE ,即可得出DE 的长. 试题解析:(1)∵四边形ABCD 是正方形, ∴AB=AD ,∠B=10°,AD ∥BC , ∴∠AMB=∠EAF , 又∵EF ⊥AM , ∴∠AFE=10°, ∴∠B=∠AFE , ∴△ABM ∽△EFA ;(2)∵∠B=10°,AB=12,BM=5, ∴,AD=12, ∵F 是AM 的中点, ∴AF=12AM=6.5, ∵△ABM ∽△EFA , ∴BM AMAF AE =, 即5136.5AE=, ∴AE=16.1, ∴DE=AE-AD=4.1.考点:1.相似三角形的判定与性质;2.正方形的性质.25、作图见解析;CE=4.【解题分析】分析:利用数形结合的思想解决问题即可.详解:如图所示,矩形ABCD和△ABE即为所求;CE=4.点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.26、(1)答案见解析;(2)220cm【解题分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【题目详解】解:(1)如图所示,AD即为所求;(2)如图,过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S△ABD=12AB·DE=20cm2.【题目点拨】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.27、-5【解题分析】根据分式的运算法则即可求出答案.【题目详解】原式=[2(1)(1)xx x--+(2)(2)(2)x xx x-++]÷1x=(1xx-+2xx-)•x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【题目点拨】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.。
2023年中考数学第二次模拟考试卷及答案解析(南京卷)

2023年中考数学第二次模拟考试卷及答案解析(南京卷)第Ⅰ卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.8的相反数是()A .8-B .8C .18D .18-【答案】A【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8-,故选A .【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.截止北京时间2022年6月11 5.32亿例,5.32亿用科学记数法表示为()A .85.3210⨯B .753.210⨯C .90.53210⨯D .75.3210⨯【答案】A【分析】利用科学记数法的表示方法进行解题即可.【详解】解:5.32亿=5.32810⨯故选A .【点睛】本题考查科学记数法的表示方法:10n a ⨯,其中110a ≤<.3.某工程甲单独完成要25天,乙单独完成要20天.若乙先单独干10天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为()A .101012025x ++=B .101012520x ++=C .101012520x -+=D .101012520x -+=【答案】D【分析】设甲、乙一共用x 天完成,根据题意,列出方程,即可求解.【详解】解:设甲、乙一共用x 天完成,根据题意得:101012520x -+=.故选:D【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.4.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为5-,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻度5.4cm .则数轴上点B 所对应的数b 为()A .3B .1-C .2-D .3-【答案】C 【分析】结合图1和图2求出1个单位长度=0.6cm ,再求出求出AB 之间在数轴上的距离,即可求解;【详解】解:由图1可得AC =4-(-5)=9,由图2可得AC =5.4cm ,∴数轴上的一个长度单位对应刻度尺上的长度为=5.4÷9=0.6(cm ),∵AB =1.8cm ,∴AB =1.8÷0.6=3(单位长度),∴在数轴上点B 所对应的数b =-5+3=-2;故选:C【点睛】本题考查了数轴,利用数形结合思想解决问题是本题的关键.5.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14B.13C.12D.34【答案】A【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与第一次摸到红球,第二次摸到绿球的情况,然后利用概率公式求解即可求得答案.【详解】解:画树状图得:∵共有4种等可能的结果,第一次摸到红球,第二次摸到绿球有1种情况,∴第一次摸到红球,第二次摸到绿球的概率为1 4,故选:A.【点睛】本题考查了画树状法或列表法求概率,列出所有等可能的结果是解决本题的关键.6.已知四边形ABCD两条对角线相交于点E,AB=AC=AD,AE=3,EC=1,则BE•DE 的值为()A.6B.7C.12D.16【答案】B【分析】根据AB=AC=AD,可知点D、C、B在以点A为圆心的圆上,延长CA交⊙A于点F ,连接DF ,EF =AF +AE =AC +AE ,再证明△FDE ∽△BCE ,EF DE BE CE=,即BE •DE =CE •EF ,则问题得解.【详解】∵AB =AC =AD ,∴点D 、C 、B 在以点A 为圆心的圆周上运动,如图,延长CA 交⊙A 于点F ,连接DF ,∵AE =3,EC =1,∴AC =AF =AE +CE =3+1=4,即EF =AE +AF =3+4=7,∵∠F =∠CBD ,∠FDB =∠FCB ,∴△FDE ∽△BCE ,∴EF DE BE CE=,即BE •DE =CE •EF =1×7=7,故选:B .【点睛】本题考查了圆周角定理、相似三角形的判定与性质等知识,根据AB =AC =AD ,确定点D 、C 、B 在以点A 为圆心的圆上,是解答本题的关键.第Ⅱ卷二、填空题(本大题共10小题,每小题2分,共20分)7.函数y =x 的取值范围是_____.【答案】1x ≥【分析】根据二次根式有意义的条件,列出不等式,即可求解.【详解】解:根据题意得,10x -≥,解得1x ≥.故答案为1x ≥.【点睛】本题主要考查函数的自变量取值范围,掌握二次根式有意义的条件,是解题的关键.8.分解因式:6x 2y ﹣3xy =_____.【答案】()321xy x -【分析】直接提取公因式进行因式分解即可.【详解】解:原式=()321xy x -.故答案为:()321xy x -.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.9.设一个圆锥的底面积为10,它的侧面展开后平面图为一个半圆,则此圆锥的侧面积是____________.【答案】20【分析】根据圆锥底面周长得到半径和母线的关系,然后计算侧面积即可;【详解】解:∵侧面展开图是半圆,∴2l rππ=∴2l r=∵210r π=∴222112)22102022S l r r πππ====⨯=侧(故答案为20;【点睛】本题考查了圆锥的侧面积,掌握并熟练使用相关知识,同时注意解题中需注意的事项是本题的解题关键.10.已知二次函数y =(x -m )2,当x ≤1时,y 随x 的增大而减小,则m 的取值范围是__________.【答案】m 1≥【分析】先根据二次函数的解析式判断出函数的开口方向,再由当x ≤1时,函数值y 随x 的增大而减小可知二次函数的对称轴x =m ≥1.【详解】解:∵二次函数y =(x ﹣m )2,中,a =1>0,∴此函数开口向上,∵当x ≤1时,函数值y 随x 的增大而减小,∴二次函数的对称轴x =m ≥1.故答案为:m ≥1.【点睛】本题考查的是二次函数的性质,熟知二次函数的增减性是解答此题的关键.11.如图,已知函数y x b =+和3y ax =+的图象交点为P ,则不等式3x b ax +>+的解集为______.【答案】x >1【分析】根据图象直接解答即可.【详解】解:从图象上得到函数y=x+b 和y=ax+3的图象交点P ,点P 的横坐标为1,在x >1时,函数y=x+b 的值大于y=ax +3的函数值,故可得不等式x+b >ax +3的解集x >1.故答案为:x >1.【点睛】此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系是解决本题的关键.12.某校规定学生体育成绩满分为100分,将课外活动成绩、期中成绩、期末成绩的比按2∶3∶5计算学期成绩若小明这学期的三项成绩分别为90分、90分、96分,则小明本学期的体育成绩为____________分.【答案】93【分析】根据加权平均数的计算方法进行计算即可.【详解】解:23590909693235235235⨯+⨯+⨯=++++++,故答案为:93.【点睛】本题考查加权平均数的意义和计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是正确解答的前提.13.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D .请添加一个条件________________,使△ABF ≌△DCE 【答案】∠B =∠C (答案不唯一)【分析】求出BF =CE ,再根据全等三角形的判定定理判断即可.【详解】解:∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE ,添加∠B =∠C ,在△ABF 和△DCE 中,B C A D BF CE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABF ≌△DCE (AAS ),故答案为:∠B =∠C (答案不唯一).【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键.14.如图,O 的半径为2cm ,正六边形内接于O ,则图中阴影部分面积为______.【答案】23π【分析】如图,连接BO ,CO ,OA .由题意得,△OBC ,△AOB 都是等边三角形,证明△OBC 的面积=△ABC 的面积,可得图中阴影部分的面积等于扇形OBC 的面积,再利用扇形的面积公式进行计算即可.【详解】解:如图,连接BO ,CO ,OA .由题意得,△OBC ,△AOB 都是等边三角形,∴∠AOB =∠OBC =60°,∴OA BC ∥,∴△OBC 的面积=△ABC 的面积,∴图中阴影部分的面积等于扇形OBC 的面积=260223603ππ⨯=.故答案为:23π【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是学会用转化的扇形思考问题,属于中考常考题型.15.已知在ABC 中,=AB AC ,=30C ∠︒,AB AD ⊥,2cm AD =,则BC 的长等于________.【答案】6【分析】过A 作AE BC ⊥交BC 于E ,根据=AB AC ,=30C ∠︒得到30B ∠=︒,由AB AD ⊥可得4BD =,再根据勾股定理求出AB ,即可得到BE ,即可得到答案.【详解】解:过A 作AE BC ⊥交BC 于E ,∵=AB AC ,=30C ∠︒,∴30B ∠=︒,∵AB AD ⊥,2cm AD =,∴4BD =,在Rt ABD ∆中,AB ==,∵AE BC ⊥,30B ∠=︒,∴AE∴3BE ==,∵=AB AC ,AE BC ⊥,∴26BC BE ==,故答案为6,.【点睛】本题考查等腰三角形性质,含30︒角的直角三角形性质及勾股定理,解题的关键是求出AB .16.如图,等腰ABC 的底边BC 长为4,面积是12,腰AC 的垂直平分线EF 分别交AC ,AB 边于E F ,点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM V 的周长最小值为:____.【答案】8【分析】连接AD ,由于ABC 是等腰三角形,点D 是BC 边的中点,故AD BC ⊥,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为AM MD +的最小值,由此即可得出结论【详解】解:连接AD ,AM ,∵ABC 是等腰三角形,点D 是BC 边的中点,∴AD BC ⊥,∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴AD 与EF 的交点为点M 时,CDM V 的周长最小,故AD 的长为AM MD +的最小值,在ABC 中,4BC =,12ABC S =△,∴1•412212ABC S BC AD AD ⨯==⨯= ,122CD BC ==解得6AD =,∴CDM V 的周长最小为:628AM MD BC AD BC ++≥+=+=,故答案为:8【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤等)17.(7分)已知6a +3的立方根是3,3a +b ﹣1的算术平方根是4.(1)求a ,b 的值;(2)求b 2﹣a 2的平方根.【答案】(1)4;5(2)±3【分析】(1)运用立方根和算术平方根得出方程求解即可得;(2)先求出代数式的值,然后计算平方根即可.【详解】(1)解:∵63a +的立方根是3,31a b +-的算术平方根是4,∴6327a +=,3116a b +-=,∴4a =,5b =;(2)解:由(1)知4a =,5b =,∴2222549b a -=-=,∵9的平方根为3±,∴22b a -的平方根为3±.【点睛】本题考查了平方根、算术平方根、立方根及解方程,理解题意,根据题意得出方程是解题关键.18.(7分)先化简,再求值:22441111x x x x x x ⎛⎫-+-+÷ ⎪--⎝⎭,其中4x =-.【答案】112x -,19【分析】先将括号内的通分加减,再根据除以不为零的数等于乘以这个数的倒数,最后约分化简即可,把4x =-的值代入即可求解.【详解】解:原式()222221(21)211111121x x x x x x x x x x x ⎛⎫-+---=-÷=⨯ ⎪-----⎝⎭112x=-,将4x =-代入112x-,得1112(4)9=-⨯-.【点睛】本题主要考查分式的化简求值,掌握乘法公式在分式中的运算是解题的关键.19.(7分)请把下面证明过程补充完整.如图,AD BE ,13∠=∠,2B ∠=∠,求证:DE AC ∥.证明:∵AD BE (已知),∴2∠+__________180=︒(__________).∵2B ∠=∠(已知),∴180B DCB ∠+∠=︒(__________),∴__________ AB (__________),∴3∠=__________(__________).∵13∠=∠(已知),∴1∠=__________(等量代换),∴DE AC ∥(内错角相等,两直线平行).【答案】DCB ∠;两直线平行,同旁内角互补;等量代换;CD ;同旁内角互补,两直线平行;4∠;两直线平行,内错角相等;4∠【分析】已知AD BE ,可以得出2180DCB ∠+∠=︒,结合2B ∠=∠可以得出CD AB ∥,可以得出3=4∠∠,由已知13∠=∠,即可得到结论.【详解】证明:∵AD BE (己知)∴2180DCB ∠+∠=︒(两直线平行,同旁内角互补)∵2B ∠=∠(已知)∴180B DCB ∠+∠=︒(等量代换)∴CD AB ∥(同旁内角互补,两直线平行)∴34∠∠=(两直线平行,内错角相等)∵13∠=∠(已知)∴14∠=∠(等量代换)∴∥DE AC (内错角相等,两直线平行)【点睛】本题主要考查平行线的性质和判定,熟记平行线的判定定理和性质,并灵活运用是解题的关键.20.(8分)新冠疫情期间,学生居家上网课,为了解我市初中生每周锻炼身体的时长t (单位:小时)的情况,在全市随机抽取部分初中生进行调查,按五个组别:A 组()34t ≤<,B 组()45t ≤<,C 组()56t ≤<,D 组()67t ≤<,E 组()78t ≤<进行整理,绘制如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次抽样调查的学生总人数为______;(2)抽取的学生中,每周锻炼身体的时长大于等于6小于7的频数是______;(3)求C 组所在扇形的圆心角.【答案】(1)500(2)150(3)115.2︒【分析】(1)由B 组人数及其所占百分比可得学生总人数;(2)根据总人数分别减去A 、B 、C 、E 组的人数即可得出答案;(3)先求出C 组所占总人数的百分比,再用360︒乘以C 组所占总人数的百分比即可.【详解】(1)10020=500÷%(人)故答案为:500.(2)每周锻炼身体的时长大于等于6小于7的频数:5005010016040150----=(人)故答案为:150.(3)C 组所占总人数的百分比为:160100=32500⨯%%C 组所在扇形的圆心角:36032=115.2︒⨯︒%∴C 组所在扇形的圆心角为115.2︒.【点睛】本题考查了频数分布直方图、扇形统计图,理解两个统计图中数量之间的关系是解决问题的前提,掌握频率=频数÷总数是正确解答的关键.21.(8分)为了解某校中学生有多少人已患上近视眼,判断下列选取对象的方案是否恰当?不恰当的请说明理由.(1)在学校门口数有多少人戴眼镜;(2)在低年级的学生中随机抽取一个班作调查;(3)从每个年级每个班级都随机抽取几个学生作调查.【答案】(1)不恰当,理由见解析(2)不恰当,理由见解析(3)恰当【分析】根据选取的样本是否具有代表性依次判断即可求解.【详解】(1)不恰当;因为可能有住校学生没调查到.(2)不恰当;因为低年级学生的视力一般比高年级学生好.(3)样本具有代表性,因此恰当.【点睛】本题考查了样本的代表性,解题关键是掌握选取的样本应该具有代表性,要求学生能根据实际情况进行判断.22.(7分)如图,在半径为10cm 的⊙O 中,AB 是⊙O 的直径,CD 是过⊙O 上一点C 的直线,且AD ⊥DC 于点D ,AC 平分∠BAD ,点E 是BC 的中点,OE =6cm .(1)求证:CD 是⊙O 的切线;(2)求AD 的长.【答案】(1)见解析(2)365AD =【分析】(1)连接OC ,由AC 平分∠BAD ,OA =OC ,可得∠DAC =∠OCA ,AD ∥OC ,根据AD ⊥DC ,即可证明CD 是⊙O 的切线;(2)由OE 是△ABC 的中位线,得AC =12,再证明△DAC ∽△CAB ,AD AC AC AB =,即121220AD =,从而得到AD 365=.【详解】(1)证明:连接OC ,如图:∵AC 平分∠BAD ,∴∠DAC=∠CAO,∵OA=OC,∴∠CAO=∠OCA,∴∠DAC=∠OCA,∴AD∥OC,∵AD⊥DC,∴CO⊥DC,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵E是BC的中点,且OA=OB,∴OE是△ABC的中位线,AC=2OE,∵OE=6,∴AC=12,∵AB是⊙O的直径,∴∠ACB=90°=∠ADC,又∠DAC=∠CAB,∴△DAC∽△CAB,∴AD ACAC AB=,即121220AD=,∴AD36 5 =.【点睛】本题考查圆的切线的判定定理,相似三角形的判定及性质等知识,解题的关键是熟练应用圆的相关性质,转化圆中的角和线段.23.(8分)某书店计划同时购进A,B两类图书,已知购进3本A类图书和4本B类图书共需288元;购进6本A类图书和2本B类图书共需306元.A,B两类图书每本的进价各是多少元?【答案】A类图书每本的进价是36元,B类图书每本的进价是45元.【分析】根据“购进3本A 类图书和4本B 类图书共需288元;购进6本A 类图书和2本B 类图书共需306元”列出方程组进行计算即可.【详解】解:设A 类图书每本的进价是a 元,B 类图书每本的进价是b 元.根据题意得:3428862306a b a b +⎧⎨+⎩==,解得3645a b ⎧⎨⎩==,答:A 类图书每本的进价是36元,B 类图书每本的进价是45元.【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出二元一次方程.24.(8分)胜利黄河大桥犹如一架巨大的竖琴,凌驾于滔滔黄河之上,使黄河南北“天堑变通途”.已知主塔AB 垂直于桥面BC 于点B ,其中两条斜拉索AD AC 、与桥面BC 的夹角分别为60︒和45︒,两固定点D 、C 之间的距离约为33m ,求主塔AB 的高度(结果保留整数,参1.73≈≈)【答案】主塔AB 的高度约为78m .【分析】在Rt △ABD 中,利用正切的定义求出=AB ,然后根据∠C =45°得出AB =BC ,列方程求出BD ,即可解决问题.【详解】解:∵AB ⊥BC ,∴∠ABC =90°,在Rt △ABD 中,tan 60AB BD =⋅︒=,在Rt △ABC 中,∠C =45°,∴AB =BC ,33BD =+,∴)3312BD ⨯==m ,∴AB =BC =)3313333782BD ⨯+=+≈m ,答:主塔AB 的高度约为78m .【点睛】本题考查了解直角三角形的应用,熟练掌握正切的定义是解题的关键.25.(8分)如图,抛物线y =34x 2+bx +c 交x 轴于A ,B 两点,交轴于点C ,点A ,B 的坐标分别为(-1,0),(4,0).(1)求抛物线的解析式;(2)点P 是直线BC 下方的抛物线上一动点,求△CPB 的面积最大时点P 的坐标;(3)若M 是抛物线上一点,且∠MCB =∠ABC ,请直接写出点M 的坐标.【答案】(1)239344y x x =--(2)92,2P ⎛⎫- ⎪⎝⎭(3)M 的坐标为()3,3-或531125,749⎛⎫ ⎪⎝⎭【分析】(1)待定系数法求解即可;(2)待定系数法求直线BC 的解析式,如图1,过P 作PD AB ⊥交BC 于D ,设239,344P m m m ⎛⎫-- ⎪⎝⎭,则3,34D m m ⎛⎫- ⎪⎝⎭,2134622CPB S DP m m =⨯=-+ ,求解CPB △面积最大时的m 值,进而可得P 点坐标;(3)由题意知,分两种情况求解;①如图2,作CD AB ∥,两直线平行,内错角相等,可知直线CD 与抛物线的交点即为点M ,根据二次函数的对称性求解M 的坐标即可;②如图2,作直线CE 使ECB ABC =∠∠交AB 于F ,可知直线CE 与抛物线的交点即为点M ,根据勾股定理求出F 点坐标,待定系数法求CE 的解析式,联立求交点坐标即可.【详解】(1)解:将,A B 点坐标代入抛物线解析式得230434404b c b c ⎧-+=⎪⎪⎨⎪⨯++=⎪⎩解得943b c ⎧=-⎪⎨⎪=-⎩∴抛物线的解析式为239344y x x =--.(2)解:当0x =时,=3y -∴()0,3C -设直线BC 的解析式为y kx b =+,将,B C 两点坐标代入得403k b b +=⎧⎨=-⎩解得343k b ⎧=⎪⎨⎪=-⎩∴直线BC 的解析式334y x =-如图1,过P 作PD AB ⊥交BC 于D ,设239,344P m m m ⎛⎫-- ⎪⎝⎭,则3,34D m m ⎛⎫- ⎪⎝⎭∴2334PD m m =-+∴2134622CPB S DP m m =⨯=-+ ()23262m =--+∵302-<,04m <<∴2m =时,CPB △面积最大∴92,2P ⎛⎫- ⎪⎝⎭.(3)解:由题意知,分两种情况求解;①如图2,作CD AB ∥,∵CD AB∥∴ABC DCB∠=∠∴直线CD 与抛物线的交点即为点M∵,C M 关于抛物线的对称轴直线9343224x -=-=⨯对称∴()3,3M -;②如图2,作直线CE 使ECB ABC =∠∠交AB 于F∵ECB ABC=∠∠∴直线CE 与抛物线的交点即为点M∴FC FB=设OF a =,则4FC FB a==-在Rt COF 中,由勾股定理得222OC FC OF =-,即()22234a a =--解得78a =∴7,08F ⎛⎫ ⎪⎝⎭设直线CE 的解析式为y kx b =+,将,C F 点坐标代入得7083k b b ⎧+=⎪⎨⎪=-⎩解得2473k b ⎧=⎪⎨⎪=-⎩∴直线CE 的解析式为2437y x =-∴联立2243739344y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩解得03x y =⎧⎨=-⎩或537112549x y ⎧=⎪⎪⎨⎪=⎪⎩∴531125,749M ⎛⎫ ⎪⎝⎭;综上所述,MCB ABC ∠=∠时,点M 的坐标为()3,3-或531125,749⎛⎫ ⎪⎝⎭.【点睛】本题考查了待定系数法求二次函数解析式,二次函数与面积综合,二次函数与角度综合.解题的关键在于对知识的灵活运用.26.(9分)在菱形ABCD 中,∠ABC =60°,P 是直线BD 上一动点,以AP 为边向右侧作等边 APE (A ,P ,E 按逆时针排列),点E 的位置随点P 的位置变化而变化.(1)如图1,当点P 在线段BD 上,且点E 在菱形ABCD 内部或边上时,连接CE ,则BP 与CE 的数量关系是,BC 与CE 的位置关系是;(2)如图2,当点P 在线段BD 上,且点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)当点P 在直线BD 上时,其他条件不变,连接BE .若AB =BE =写出 APE 的面积.【答案】(1)BP =CE ,CE ⊥BC ;(2)仍然成立,见解析;(3)【分析】(1)连接AC ,根据菱形的性质和等边三角形的性质证明△BAP ≌△CAE 即可证得结论;(2)(1)中的结论成立,用(1)中的方法证明△BAP ≌△CAE 即可;(3)分两种情形:当点P 在BD 的延长线上时或点P 在线段DB 的延长线上时,连接AC 交BD 于点O ,由∠BCE =90°,根据勾股定理求出CE 的长即得到BP 的长,再求AO 、PO 、PD 的长及等边三角形APE 的边长可得结论.【详解】解:(1)如图1,连接AC ,延长CE 交AD 于点H ,∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°;∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四边形ABCD是菱形,∴∠ABP=12∠ABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案为:BP=CE,CE⊥BC;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的结论:BP=CE,CE⊥AD仍然成立;(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,∵四边形ABCD是菱形,∴AC⊥BD BD平分∠ABC,∵∠ABC=60°,AB=∴∠ABO=30°,∴AO=12AB OB=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵BE=BC=AB=∴CE8,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴AP,∵△APE是等边三角形,∴S△AEP(2=如图4中,当点P在DB的延长线上时,同法可得AP∴S △AEP 34(312=3【点睛】此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题.27.(11分)【解决问题】如图①,在四边形ABCD 中,90DAB ABC ∠=∠=︒,点E 是边AB 的中点,90DEC ∠=︒,求证:DE 平分ADC ∠.(提示:延长DE 交射线CB 于点)F 【应用】如图②,在矩形ABCD 中,点F 是边BC 上的一点,将ABF △沿直线AF 折叠,若点B 落在边DC 的中点E 处,则sin BAF ∠=______.【拓展】在矩形ABCD 中,AD AB >,点E 为边AD 的中点,将ABE 沿直线BE 折叠,得到FBE ,延长BF 交直线CD 于点G ,直线EF 交边BC 于点.H 若1CG =,2DG =,直接写出HF 的长.【答案】【解决问题】见解析;【应用】12;【拓展】64或24【分析】解决问题如图①,延长DE 交射线CB 于点F ,证明(ASA)DAE FBE ≌△△,可得DE FE =,ADE F ∠=∠,进而可以解决问题;应用如图②,延长FE 交AD 延长线于点Q ,证明(ASA)CEF DEQ ≌△△,可得FE QE =,再(SAS)AEF AEQ ≌△△,可得FAE QAE ∠=∠,所以30FAB FAE QAE ∠=∠=∠=︒,进而可得sin BAF ∠的值;拓展分两种情况画图讨论:①当点G 在DC 边上时,②当点G 在DC 延长线上时,然后证明(SAS)BAE QDE ≌△△,可得ABE Q ∠=∠,AB DQ =,证明FBH CBG ∽△△,可得FH BF CG BC =,进而可以求出FH 的长.【详解】解决问题证明:如图①,延长DE 交射线CB 于点F ,点E 是边AB 的中点,AE BE ∴=,在DAE 和FBE 中,90A EBF AE BE AED BEF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴(ASA)DAE FBE ≌△△,DE FE ∴=,ADE F ∠=∠,90DEC =︒∠ ,CE DF ∴⊥,CD CF ∴=,CDE F ∴∠=∠,ADE CDE ∴∠=∠,DE ∴平分ADC ∠;应用解:如图②,延长FE 交AD 延长线于点Q ,点E 是边CD 的中点,CE DE ∴=,在CEF △和DEQ 中,90C EDQ CE DE CEF DEQ ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴(ASA)CEF DEQ ≌△△,FE QE ∴=,由翻折可知:90AEF B ∠=∠=°,90AEF AEQ ∴∠=∠=︒,在AEF △和AEQ △中,90FE QE AEF AEQ AE AE =⎧⎪∠=∠=︒⎨⎪=⎩,∴(SAS)AEF AEQ ≌△△,FAE QAE ∴∠=∠,由翻折可知:FAE FAB ∠=∠,30FAB FAE QAE ∴∠=∠=∠=︒,1sin sin302BAF ∴∠=︒=;故答案为:12;拓展解:①如图,在矩形ABCD 中,AD AB >,当点G 在DC 边上时,延长AE 交CD 延长线于点Q, 点E 为边AD 的中点,AE DE ∴=,在BAE 和QDE △中,90A QDE AE DE AEB DEQ ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴(SAS)BAE QDE ≌△△,ABE Q ∴∠=∠,AB DQ =,将ABE 沿直线BE 折叠,得到FBE ,ABE FBE ∴∠=∠,90A EFB ∠=∠=︒,FB AB =,Q FBE ∴∠=∠,GB BQ ∴=,1CG = ,2DG =,3AB CD DQ CG DG ∴===+=,5GQ GD DQ ∴=+=,5GB ∴=,BC ∴=,90BFH C ∠=∠=︒ ,FBH CBG ∠=∠,∴FBH CBG ∽△△,FH BF CG BC∴=,1FH ∴FH ∴=②如图,在矩形ABCD 中,AD AB >,当点G 在DC 延长线上时,延长BE 交CD 延长线于点Q ,同①得BAE ≌()QDE ASA ,ABE Q ∴∠=∠,AB DQ =, 将ABE 沿直线BE 折叠,得到FBE ,ABE FBE ∴∠=∠,Q FBE ∴∠=∠,GB BQ ∴=,1CG = ,2DG =,1AB CD DQ DG CG ∴===-=,3GQ GD DQ ∴=+=,3GB ∴=,BC ∴==同①FBH CBG ∽△△,FH BF CG BC∴=,1FH ∴=,4FH ∴=.综上所述:HF 【点睛】本题属于四边形的综合题,全等三角形的判定与性质,相似三角形是判定与性质,等腰三角形的性质,翻折变换,锐角三角函数,解决本题的关键是得到FBH CBG ∽△△.。
最新南京市鼓楼区中考二模数学试卷含答案

南京市鼓楼区中考二模数学试卷注意事项:本试卷共8页.全卷满分120分.考试时间为120 分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共 6 小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相.应.位.置....上)1.下列关于“-1”的说法中,错误的是()A.-1 的相反数是 1 B.-1是最小的负整数C.-1的绝对值是 1 D.-1 是最大的负整数2.16等于A.- 4 B.4 C.±4 D.2563.北京时间2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100 年前的预言.引力波探测器LIGO 的主要部分是两个互相垂直的长臂,每个臂长4000 米,数据4000 用科学计数法表示为A.0.4 ×103 B .0.4 ×104C.4×103 D .4×1044.计算(-2xy2)4的结果是A.8x4y8 B .-8x4y8C.16 xy8D.16 x4y85.如图,图(1)是一枚古代钱币,图(2)是类似图(1)的几何图形,将图(2)中的图形沿一条对称轴折叠得到图(3),关于图(3)描述正确的是A.只是轴对称图形B.只是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形图(1)图(2)图(3)6.将一块长 a 米,宽 b 米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x 米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草.现有从左至右三种设计方案如图所示,种植花草的面积分别为为S1、S2 和S3,则它们的大小关系为A.S3<S1<S2 B.S1<S3<S2 C.S2< S1< S3 D.S1=S2=S3二、填空题(本大题共10小题,每小题 2 分,共20分.不需写出解答过程,请把答案直接填写在答.题.卡.相.应.位.置.上)17.使式子1有意义的x 的取值范围是▲ .x+28.计算48-27的结果为▲ .3-x 分解因式,结果为▲ .9.把4x10.反比例函数y=k的图像经过点P(3,-2),则k= ___ ▲____ .x11.如图,把等腰直角三角尺的直角顶点放在直尺的一边上,则∠1+∠ 2=▲ °.(第11 题)1+x≥0,12.不等式组x x+1 的解集为▲3 +1> 2.13.“微信发红包”是刚刚兴起的一种娱乐方式,为了解所在单位员工春节期间使用微信发红包的情况,小红随机调查了15名同事,结果如下表:则此次调查中平均每个红包的钱数的众数为▲ 元,中位数为▲ 元.14.如图,AB 为⊙O 的直径,弦CD 与AB 交于点E,连接AD.若∠ C=80°,∠CEA=30°,则∠ CDA =▲ °.15.如图,二次函数y1=ax2+bx+c与函数y2=kx 的图像交于点 A 和原点O,点 A 的横坐标为-4,点A和点B关于抛物线的对称轴对称,点 B 的横坐标为1,则满足0<y1<y2的x 的取值范围是16.如图①,四边形 ABCD 中,若 AB =AD ,CB =CD ,则四边形 ABCD 称为筝形.根据筝形与四边形、平行四边形、矩形、菱形、正方形的关系,请你在图②中画出筝形的大致区域,并用阴影表示.三、解答题(本大题共 11小题,共 88 分)17.(10 分)(1)解方程 1-x = 1x -2=2-x2)计算a -2 1a 2-1÷ (a -1-1) 18.(9 分)为了了解某校 1500 名初中生冬季最喜欢的体育活动,该校随机抽取了校内部分学生进行调查,整理样本数据,得到下列统计图.B第 14 题)BAO第 15 题)-4人数/人根据以上信息回答下列问题:1)共抽取了 ▲ 名校内学生进行调查,扇形图中 m 值为 ▲ 2)通过计算补全直方图.3)在各个项目被调查的学生中,男女生人数比例如下表:项目 踢毽子跳绳跑步其他男:女1:32:33:14:1根据这次调查,估计该校初中生中,男生人数是多少?19.(8 分)把甲、乙两张形状、大小相同但是画面不同的风景图片都按同样的方式剪成相同的 2 段,混合洗匀.(1)从这堆图片中随机抽出一张,放回混合洗匀,再抽出一张.则抽出的这两张图片恰好是可以拼 成同一张风景图片的概率为 ▲ ;(2)从这堆图片中随机抽出两张,求抽出的这两张图片恰好可以组成甲图片的概率.21.(8 分)在 Rt △ABC 中,∠ C =90°.BC =3,CA =4,矩形 DEFC 的顶点 D 、E 、F 都在△ ABC的边上.(1)设 DE =x ,则 AD = ▲ (用含 x 的代数式表示) ; (2)求矩形 DEFC 的最大面积.20.(9 分)已知,如图, PA 与⊙O 相切于点 A ,连接 OA 、OB 、PB .1) 求证: PB 为⊙ O 的切线; 2) 若 OA =2,PH =4,求 OP 的长.H .第 20 题)CF 第 21题)22.(8 分)在某大型游乐场,景点A、B、C 依次位于同一直线上(如图),B 处是登高观光电梯的入口.已知A、C 之间的距离为70 米,EB⊥AC.电梯匀速运行10 秒可从 B 处到达 D 处,此时可观察到景点C,电梯再次以相同的速度匀速运行30秒可到达 E 处,此时可观察到景点A.在 D 、E处分别测得∠ BDC =60°,∠ BEA=30°.求电梯在上升过程中的运行速度.第22 题)23.(7 分)“郁郁林间桑葚紫,芒芒水面稻苗青”说的就是味甜汁多、酸甜适口的水果——桑葚.4月份,水果店的小李用3000 元购进了一批桑葚,随后的两天他很快以高于进价40% 的价格卖出150kg.到了第三天,他发现剩余的桑葚卖相已不大好,于是果断地以低于进价20%的价格将剩余的全部售出.小李前后一共获利750元,设小李共购进桑葚x kg.售价(元/kg )销售数量(kg )前两天▲150第三天▲▲24.(8 分)如图,已知点A、点 B 和直线l.(保留作图痕迹,不写作法)(1)在图(1)中,利用尺规在直线l 上作出点P,使得∠ APB=90°;(2)在图(2)中,利用尺规在直线l 上作出点P,使得∠ CQD =60°.ACB l第24 题)1)2)25.(10 分)如图○1 ,在400 米环形跑道上,M、N两点相距100 米,.甲、乙两人分别从M、N两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米.甲每跑200 米停下来休息10秒钟,乙每跑400 米停下来休息20 秒钟.甲、乙两人各自跑完800 米.设甲出发x 秒时,跑步的路程为y米.图○2 中的折线OABC 表示甲在跑步过程中y(米)与x(秒)之间的部分函数关系.y(米)乙甲1000NM900800(图○1 )700600500400C300200AB100O20 40 50 60 80 100 120 140 160 180 200 220 240 260 x(秒)图○2 )(1)请解释图中点 B 的的实际意义;(2)求线段BC所表示的y与x的函数关系式;(3)甲、乙两人在跑步过程中相遇的时间是__________________________ 秒.26. (11 分)在□ABCD 中,∠ BAD、∠ ABC、∠ BCD 、∠ CDA 平分线分别为AG、BE、CE、DG,BE与CE交于点E,AG与BE交于点F,AG与DG交于点G,CE与DG交于点H.(1)如图(1),已知AD=2AB,此时点E、G 分别在边AD、BC 上.①四边形EFGH 是___________ ;A. 平行四边形B. 矩形C. 菱形D. 正方形②请判断EG 与AB 的位置关系和数量关系,并说明理由;16.15.- 4 < x <- 3.2)如图( 2),分别过点 E 、G 作 EP ∥BC 、GQ ∥BC ,分别交 AG 、BE 于点 P 、 Q ,连结 PQ 、 EG.求证:四边形 EPQG 为菱形;3)已知 AD =n AB ( n ≠2),判断 EG 与 AB 的位置关系和数量关系(直接写出结论)数学试题参考答案及评分标准 说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本 评分标准的精神给分. 题号 1 2 3 4 5 6 答案 B B C D A C二、填空题(本大题共 10小题,每小题 2分,共 20 分)7.x ≠-2;8. 39.x (2x + 1)(2x -1)10.-611.135BC 图( 2)12.20三、解答题(本大题共 11小题,共 88 分)17.(10分)(1)解:方程两边同乘以 x -2得: 1-x =-1-2(x -2).⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分 解这个方程,得 x = 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分经检验: x =2 是增根,原方程无解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分20.(9 分)∵ PA 与⊙O 相切于点 A , ∴OA ⊥PA ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2) a -2a 2-1 ÷ (a -1 -1)a -21 -a - 1(a +1)(a -1)÷(a -1-2分a - 2 a -1 (a +1)(a -1)·2-a 1 -a +1⋯⋯4 分5分18.(9 分)解:(1)200,m=25%.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分( 2)略 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分1 2 3 4(3)1500×(20%×4 + 25%×5+40%× 4+ 15%×5) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分=855(人)答:估计该校初中毕业生中,男生人数为 855 人 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分119.(8分)(1)1 2分2)画树状图或列表,6分一共有 12 种等可能的结果, 其中抽出的这两张图片恰好可以组成甲图片的情况有 2 种,∴抽出的这两张图片恰好可以组成甲图片的概率=2= 1 12=68分即∠ PAO =90°,∵OP ⊥AB , ∴AH =BH , 即 OP 垂直平分 AB , ∴PA =PB . 在⊙ O 中, OA =OB ,∵OP =OP ,∴△ OAP ≌△ OBP ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分∴∠ PBO =∠ PAO =90°,即 OB ⊥PB . 又∵点 B 在⊙O 上,∴PB 为⊙O 的切线. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(2)∵ AB ⊥OP , ∴∠AHP =90°,∴∠ APO +∠ PAH =90°,由( 1)知∠ PAO = 90°,∴∠OAH +∠ PAH = 90°,∴∠ OAH =∠ APO ,又∵∠ AOH =∠ POA ,∴△OAH ∽△ OPA , ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分∴ OA =OH ,∴ OA 2=OH ×OP ,421.(8 分)(1) 3xOP OA∴22=(OP - 4)· OP ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分OP =2±2 2,∵ OP > 0∴ OP =2+ 2 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分2分4分∵0≤x ≤3∴当 x = 32时,矩形 DEFC 的面积有最大值,最大值是 3⋯⋯⋯⋯⋯⋯⋯8 分22.( 8 分)设电梯在上升过程中的运行速度为∵ BE ⊥ AC ,∴ ∠ABE =∠ CBE =90°. 在 Rt △ABE 中,∠ ABE =90°,∠ BEA =30°,∴ 3= 1B 0C x .∴ BC = 10 3x . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∴ AC =AB +BC =403 3x +10 3x =703 3x .由题意得 AC =70,∴ 703 3x = 70. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴ x = 3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分∴ 电梯在上升过程中的运行速度为 3m/s . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分xm/s .AB∴ tan ∠ BEA =A B BE ,∴ tan30 °= AB ,BE∴ 3= AB ,∴ AB =40 3x .3 40x 3在 Rt △ BDC 中,∠ CBD =90°,∠ BDC =60°,BCBC∴ tan ∠ BDC = BD .∴ tan60 °=BD .23.(7 分)(1) 3000x 1+40%) 3000x1-20% ) x -1503⋯分⋯⋯2)根据题意得3000 150? x ?( 1+40%)+( x -150) 3000? x ?(1-20%)- 3000=750,⋯5 ⋯分或 150?30x 00?40%-( x -150) ?30x 00?20%=750,解得: x=200,⋯6⋯分⋯A B C (第 22 题)经检验 x=200 是原方程的解.答:小李共购进桑葚 200kg . 24.(8 分)1)点 P 1、P 2 为所要作的点. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(2)点 Q 1、Q 2 为所要作的点. 25. (10 分)( 1) 点 B 实 际意义 是当 甲出发 50 秒 后,所 跑路 程为 200 米 (且 已在 此处休 息 10 秒 ) ; ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 ( 2)设 y BC = kx + b ( k ≠0);由图像可知: B ( 50,200),点 C 的纵坐标为 400,∴ 点 C 的横坐标为 50+( 400- 200) ÷5=90,即 C ( 90, 400).y BC = 5x - 50;将 B (50,200),C (90,400)分别代入 y BC =kx +b 得 50k + b =200, 90k + b =400, 解得 k = 5, b =- 50, 7分8分7分l3)120、145、170 秒.下方方法供参考26. (11 分)(1)① B;②EG∥AB,EG=AB.理由:∵ 四边形ABCD 是平行四边形,∴ AD∥BC,∴ ∠AEB=∠ EBG.∵ BE 平分∠ ABC,∴ ∠ ABE=∠EBG,∴ ∠ABE=∠ AEB,∴ AB=AE.同理,BG=AB,∴ AE=BG.AE∥BG,AE=BG,∴ 四边形ABGE 是平行四边形EG∥AB,EG=AB.2)证明:分别延长EP、GQ,交AB 于点M、N,分别延长PE、QG,交CD 于点M' 、N',∵ 四边形ABCD是平行四边形,∴ AB∥DC ,又∵ PE∥BC ,∴ 四边形MBCM'是平行四边形,10 分1分5分MM '=BC,MB =M'C .D PE∥BC,∠ MEB =∠ EBC.BE 平分∠ ABC ,∠ABE=∠ EBC,∠ MEB =∠ ABE,MB=ME .同理,M'E =M'C .ME=M'E .1ME=2MM',又∵ MM'=BC,ME=12BC.1同理,NG=2BC.∴ ME=NG.∵ GQ∥ BC,∴ ∠ DAG =∠ AGN.∵ AG 平分∠ BAD ,∴ ∠ DAG =∠ NAG,∴ ∠NAG=∠ AGN,∴ AN=NG.∵ MB=ME,AN=NG,ME=NG,∴ MB=AN.∴ MB-MN=AN-MN ,即BN=AM.∵ PE∥BC ,∴ ∠ DAG =∠ APM ,又∵ ∠ DAG=∠ BAG,∴ ∠ APM =∠ BAG,∴ AM =PM .同理,BN=QN.∴ PM=QN.∵ ME=NG,PM=QN,∴ ME-PM =NG -QN ,即PE=QG.∵ EP∥BC,GQ∥ BC,EP∥GG.又∵ PE=QG,∴ 四边形EPQG 是平行四边形.∵ AG、BE 分别平分∠ BAD,∠ ABC,11∴ ∠BAG=2∠BAD,∠ ABG=2∠ABC.111∴ ∠BAG+∠ABG=2∠BAD +2∠ABC=2×180°=90°,∴∠ AFB=90°,即PG⊥EF.∴平行四边形EPQG 是菱形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分3)①n>1 时,EG∥ AB且EG=(n-1)AB;②n<1 时,EG∥AB 且EG=(1-n)AB;③ n= 1 时,此四边形不存在.(此种情况不写不扣分)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分42)矩形DEFC 的面积=(4-3x) x=-43x2+4x4 3 2=-34(x-23)2+3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6。
南京市鼓楼区九年级第二次模拟调研测试

南京市鼓楼区九年级第二次模拟调研测试数学试卷总分值120分考试时间120分钟以下各题所附的四个选项中,有且只有一个是正确的.一、选择题〔每题2分,共20分〕1.3的倒数是〔〕11C.3D.3A.B.332.计算〔a3b〕2结果正确的选项是〔〕A.a9b B.a9b2C.a3b2D.a6b23.某班45名同学的年纪散布状况以下列图,那么该班学生年纪的众数是〔〕人数25202015151046511121314年纪A.12B.13C.15D.204.4的值为〔〕A.±2B.2C.±2D.25.某商品原价200元,连续两次降价a%后售价为148元,以下所列方程正确的选项是〔〕A.148〔1+a%〕2=200B.200〔1-a%〕2=148C.200〔1-2a%〕=1482 D.200〔1-a%〕=1486.二次函数y=x2+2x-1的最小值是〔〕A.-1B.-2C.1D.217.在△ABC中,假定∠C=90°,cosA=2,那么∠A等于〔〕A.30°B.45°C.60°D.90°A的坐标为〔1,0〕,点B在直线y=-x上运动,当8.如图,点线段AB最短时,点B的坐标为〔〕A.〔0,0〕B.〔1,-1C.〔1,-1〕D.〔2,2〕2222 9.某气球内充满了必定质量的气体,当温度不变时,气球内气体的气压P〔kPa〕是气体体积V〔m3〕的反比率函数,其图象以下列图.当气球内的气压大于120kPa时,气球将爆炸.那么,负气球爆炸的体积范围是〔〕A.不小于5m3B.小于5m3C.不小于4m3D.小于4m3445510.定义:定点现有一矩形别相切于点P与⊙O上的随意一点之间的距离的最小值称为点P与⊙O之间的距离.ABCD〔如图〕,AB=14cm,BC=12cm,⊙K与矩形的边AB、BC、CDE、F、G,那么点A与⊙K的距离为〔〕分A.4cm B.8cmC.10cm D.12cm二、填空题〔每题3分,共18分〕11312.依据以下列图的程序计算,假定输入x的值为1,那么输出y的值为.13.一次函数的图象过点〔 1,2〕,且函数值 y 跟着自变量 x 的增大而减小,写出一个符合这个条件的一次函数的表达式: .14.依据下表中的规律,表中的空格中应填写的数字是 .000 110 010 100 111 001 10115.如图,菱形 A BCD 的对角线AC 和BD 订交于点O ,过点O 的直线分别交 AB 和CD于点E 、F ,BD=6,AC=4,那么图中暗影局部的面积和为 .16.如图是一张简略活动餐桌平放在地面上,假如两条桌腿的张角〔∠ COD 〕为120°,OA=OB ,OC=OD ,桌面离地面的高度为70cm 〔不考虑桌面厚度〕,那么桌腿AD 长应为cm .三、〔每题6分,共24分〕17.化简:1 4·a2.a 2 4a18.求不等式组x3 3 x 1的整数解.21) 8 x 1 3(x19.如图,在矩形 ABCD 中,点E 、F 分别在CA 、AC 的延伸线上,且 AE=CF .请确立四边形BEDF的形状,并证明你的结论.EADBCF20.如图,在平面直角坐标系中,图形①与图形②对于点P成中心对称.1〕画出对称中心P,并写出点P的坐标;2〕将图形②向下平移4个单位,画出平移后的图形③;⑶请详细说明图形③经过如何变换可直接获得图形①.四、〔第21题5分,第22题6分,共11分〕21.下表是某居民小区五月份的用水状况:月用水量〔米3〕456户数237〔1〕计算20户家庭的月均匀用水量;〔2〕假如该小区有500户家庭,依据上边的计算结果,预计这8591121500户家庭该月共用水多少立方米?22.阴历正月十五元宵节有吃汤元的风俗.小华的妈妈在包的48个汤元中,有两个汤元用红枣做馅,与其余汤元不一样馅.现每碗盛8个汤元,共盛6碗,且两个红枣汤圆被盛到不一样的碗里,假定小华吃2碗,那么吃到包有红枣的汤元,.〔1〕小华吃的两碗中都有红枣汤元的概率;〔2〕小华吃到红枣汤元的概率.五、〔第23题7分,第24题8分,共15分〕23.某中学数学活动小组利用周日展开课外实践活动,他们要在湖面上丈量建在地面上某塔AB的高度.如图,在湖面上点C测得塔顶A的仰角为45,沿直线CD向塔AB方向行进18米抵达点D,测得塔顶A的仰角为60.湖面低于地平面.......1米,请你帮他们计算出塔AB的高度.〔结果精准到0.1米,参照数据:2≈1.41,3≈1.73〕24.清晨小明与妈妈同时从家里出发,步行与骑自行车到方向相反的两地上学与上班.骑车走了一会接到小欣的,即以原速骑车前去小欣学校,并与小欣同时抵达校.他们离家的行程y〔米〕与时间x〔分〕的函数图象以下列图.妈妈A点坐标A(10,2500),C点坐,标为(20,0).〔1〕在图中,小明离家的行程y〔米〕与时间x〔分〕的函数图象是线段〔A〕OA〔B〕OB〔C〕OC〔D〕AB〔2〕分别求出线段OA与AB 〔3〕小欣步行速度为每分的函数表达式〔不需要写出自变量的取值范围〕50米,那么小欣家与学校距离为;米,小欣早晨上学需要的时间六、〔每题7分,共14分〕分钟.25.图①中是一座下承式钢管混凝土系杆拱桥,桥的拱肋ACB面〔视为水平的〕与拱肋用垂直于桥面的系杆连结,拱肋的跨度可视为抛物线的一局部,桥AB为280米,正中间系杆OC的长度为56米。
2023年江苏省南京市中考数学二模试卷附解析

2023年江苏省南京市中考数学二模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在以O 为圆心的两个同心圆中,大圆的弦 AB 交小圆于两点,AB =10 cm ,CD= 6cm ,则AC 的长为( )A .0.5 cmB .1cmC .1.5 cmD .2 cm2.如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=3,BC=5,将腰 DC 绕点D 逆时针方向旋转90°至DE ,连结AE ,则△ADE 的面积是( ) A .1 B .2 C .3 D .43.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为( ) A .4B .6C .16D .554.已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( ) A .43>m B .43≥m C .43>m 且2≠m D .43≥m 且2≠m5.如图,已知一次函数y kx b =+的图象,当x<0时,y 的取值范围是 ( ) A .y>0B .y<OC .-2<y<OD .y<-26.某公司市场营销部的营销人员的个人收入与其每月的销售业绩满足一次函数关系.其图象如图所示.由图中给出的信息可知,营销人员的销售业绩为1.5万件时的收入是( ) A . 300元B .500元C .750元D .1050元7.设路程为s (km ),速度为v (km /h ),时间为t (h ),当s=100(km )时,在时间的关系式s t v= 中,以下说法正确的是( ) A .路程是常量,时间、速度都是变量 B .路程、时间、速度都是变量 C .时间是常量,路程、速度都是变量 D .速度是常量,路程、时间都是变量8.三角形的一个外角小于与它相邻的内角,这个三角形是( ) A . 直角三角形B . 锐角三角形C . 钝角三角形D .属于哪一类不能确定 9.下列长度的三条线段,能组成三角形的是( )A .1cm ,2 cm ,3cmB .2cm ,3 cm ,6 cmC .4cm ,6 cm ,8cmD .5cm ,6 cm ,12cm10.下列说法正确的有( )(1)一个数的立方根是它本身的数是0和1 (2)异号两数相加,结果为负数 (3)一个有理数的绝对值不小于它本身 (4) 无限小数都是无理数 A . 0个B . 1个C . 2个D . 4个 11.代数式32377a a a -++与23323a a a -+-的和是( ) A .奇数 B .偶数 C .5 的倍数D .以上都不能确定二、填空题12.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD =120°,OE =3厘米,则OD = 厘米.13.如图,AB 是⊙O 的直径,C DE ,,是⊙O 上的点,则12∠+∠=.14.数形结合是重要的数学思想.一次数学活动中,小明为了求12 +122 +123 +……+12n 的值,设计了如图2所示的几何图形.请你利用这个几何图形求12 +122 +123 +……+12n 的值为(结果用n 表示).15.如图,该图形经过折叠可以围成一个立方体,折好以后,与“静”字相对的字是 .16.已知正比例函数23=的函数值y随着x的增大而减小,则k= .y kx-2k17.一组数据为l,2,3,4,5,6,则这组数据的中位数是 .18.必然发生的事件的概率为,不可能发生的事件的概率为 ,不确定事件发生的概率介于与之间.19.如图,ΔABD≌ΔACE,点B和点C是对应顶点,AB=8cm,BD=7cm,AD=3cm,则DC= ㎝.520.已知轮船顺水前进的速度为m千米/时,水流速度为2千米/时,则轮船在静水中的速度是__________千米/时.21.200623的个位数是.29的个位数是;2006三、解答题22.某产品每件成本10元,试销阶段每件产品的日销售价x(元)与产品的日销售量y (件)之间的关系如下表:x(元)15202530…y(件)25201510…⑴在草稿纸上描点,观察点的分布,建立y与x的恰当函数模型.⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?23.某人身高 1.7m,为了测试路灯的高度,他从路灯正下方沿公路以 1 m/s 的速度匀速走开.某时刻他的影子长为 1.3 m,再经过 2 s,他的影子长为 1.8m,路灯距地面的高度是多少?24.一个物体的三视图如图所示,请描述该物体的形状.25.如图,AB 是⊙O 的弦,半径OC 、OD 分别交AB 于点E 、F ,且AE=BF ,试猜想线段OE 与OF 的数量关系,并给予证明.26.已知23-=a ,23+=b ,分别求下列代数式的值:(1)ab(2)22b ab a ++27.已知1y 与1x +成正比,2y 与1x -成正比,12y y y =+. 当x=2时,y =9;当x=3时,y = 14. 求y 关于x 的函数解析式.28.如图是一个食品包装盒的展开图. (1)请写出这个包装盒的多面体形捩的名称;(2)请根据图中所标的尺寸,计算这个多面体的侧面积.29.解不等式组513(1)131122x x x x +>+⎧⎪⎨-≤-⎪⎩,并写出不等式组的正整数解.30.计算1)(精确到 0.01).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.C4.C5.D6.D7.A8.C9.C10.B11.C二、填空题 12. 613.90 14.1-12n 15.着16.-217.3.518.1,0,0,119.20. m-221.1,9三、解答题 22.解:⑴经观察发现各点分布在一条直线上,∴设b kx y += (k ≠0), 用待定系数法求得40+-=x y .⑵设日销售利润为z ,则y xy z 10-==400502-+-x x ,当x=25时,z 最大为225.每件产品的销售价定为25元时,日销售利润最大为225元.23.如图所示,△FA ′B ′∽△FCD ⇒1.7183.8x y⋅=+ △EAB ∽△ECD ⇒1.7 1.31.3x y=+,解方程组得:x= 8.5,y=5.2 答:路灯距地面 8.5m 高.24.该物体是一个圆柱被左右两侧平面及水平面切片成缺口面形成的几何图形,它的形状如解图所示.25.OE=OF .证明:连结OA ,OB .∵OA ,OB 是⊙O 的半径,∴OA=OB ,∴∠OBA=∠OAB .又∵AE=BF .∴△OAE ≌△OBF ,∴OE=OF ..如图,在⊙O 中,两条弦AC 、BD 垂直相交于点M ,若AB=6,CD=8,求⊙O 的半径.R=5.26.⑴-1;⑵13.27.设11(1)y k x =+(1k 为常数,10k ≠),即111y k x k =+, 22(1)y k x =-(2k 为常数,20k ≠),即222y k x k =-,∵12y y y =+,∴1212()()y k k x k k =++-,令12k k a +=,12k k b -=,∴y ax b =+. 由题意,得29314a b a b +=⎧⎨+=⎩,解得51a b =⎧⎨=-⎩,∴所求的函数解析式是51y x =-.28.(1)直六棱柱 (2)6ab 29.-2<x≤1,130.3.24。
精选南京市鼓楼区中考数学二模试卷(2)(有详细答案)

江苏省南京市鼓楼区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)据报道,截止2016年12月27日,根据江苏作家张嘉佳小说改编的电影《摆渡人》累计票房达32800万元,用科学记数法表示32800万元是()A.328×106元B.32.8×107元C.3.28×108元D.0.328×109元2.(2分)下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2分)计算3﹣2的结果是()A.﹣6 B.C.D.﹣4.(2分)使式子有意义的x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x≥15.(2分)一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x米,宽为y米,根据题意,得()A.B.C.D.6.(2分)下列关于正方形的叙述,正确的是()A.正方形有且只有一个内切圆B.正方形有无数个外接圆C.对角线相等且垂直的四边形是正方形D.用一根绳子围成一个平面图形,正方形的面积最大二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)的相反数是,的倒数是.8.(2分)若△ABC∽△DEF,请写出1个正确的结论:.9.(2分)把4x2﹣16因式分解的结果是.10.(2分)已知x1、x2是一元二次方程x2+x﹣5=0的两个根,则x12+x22﹣x1x2= .11.(2分)已知点A(3,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是.12.(2分)如图,∠3=40°,直线b平移后得到直线a,则∠1+∠2= °.13.(2分)如图,顺次连接菱形ABCD的各边中点E、F、G、H.若AC=a,BD=b,则四边形EFGH 的面积是.14.(2分)如图,△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在OA上.将△COD绕点O顺时针旋转一周,在旋转过程中,当旋转角是°时,CD∥AB.15.(2分)平面直角坐标系中,原点O关于直线y=﹣x+4对称点O1的坐标是.16.(2分)定点O、P的距离是5,以点O为圆心,一定的长为半径画圆⊙O,过点P作⊙O的两条切线,切点分别是B、C,则线段BC的最大值是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:,其中x=3.18.(7分)(1)解不等式﹣≤1,并把它的解集在数轴上表示出来;(2)若关于x的一元一次不等式x≥a只有3个负整数解,则a的取值范围是.19.(6分)QQ运动记录的小莉爸爸2017年2月份7天步行的步数(单位:万步)如下表:日期2月6日2月7日2月8日2月9日2月10日2月11日2月12日步数2.1 1.7 1.8 1.9 2.0 1.8 2.0(2)求小莉爸爸这7天中每天步行的平均步数;(3)估计小莉爸爸2月份步行的总步数.20.(7分)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在黑色区域的概率.21.(7分)如图①,窗帘的褶皱是指按照窗户的实际宽度将窗帘布料以一定比例加宽的做法,褶皱之后的窗帘更能彰显其飘逸、灵动的效果.其中,窗宽度的1.5倍为平褶皱,窗宽度的2倍为波浪褶皱.如图②,小莉房间的窗户呈长方形,窗户的宽度(AD)比高度(AB)的少0.5m,某种窗帘的价格为120元/m2.如果以波浪褶皱的方式制作该种窗帘比以平褶皱的方式费用多180元,求小莉房间窗户的宽度与高度.22.(7分)如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是200m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少m?(用含α、β的式子表示)23.(8分)命题:有两个角相等的三角形是等腰三角形(简称“等角对等边”).已知:如图,△ABC中,∠B=∠C.求证:AB=AC.三位同学作出了三种不同的辅助线,并完成了命题的证明.小刚的方法:作∠BAC的平分线AD,可证△ABD≌△ACD,得AB=AC;小亮的方法:作BC边上的高AD,可证△ABD≌△ACD,得AB=AC;小莉的方法:作BC边上的中线AD.(1)请你写出小刚与小亮方法中△ABD≌△ACD的理由:;(2)请你按照小莉的思路完成命题的证明.24.(8分)已知:如图,△ABC的外接圆是⊙O,AD是BC边上的高.(1)请用尺规作出⊙O(不写作法,保留作图痕迹);(2)若AB=8,AC=6,AD=5.4,求⊙O的半径.25.(10分)快车和慢车同时从甲地出发,匀速行驶,快车到达乙地后,原路返回甲地,慢车到达乙地停止.图①表示两车行驶过程中离甲地的路程y(km)与出发时间x(h)的函数图象,请结合图①中的信息,解答下列问题:(1)快车的速度为 km/h,慢车的速度为km/h,甲乙两地的距离为km;(2)求出发多长时间,两车相距100km;(3)若两车之间的距离为s km,在图②的直角坐标系中画出s(km)与x(h)的函数图象.26.(10分)如图,二次函数y=ax2+bx﹣4的图象经过A(﹣1,0)、B(4,0)两点,于y 轴交于点D.(1)求这个二次函数的表达式;(2)已知点C(3,m)在这个二次函数的图象上,连接BC,点P为抛物线上一点,且∠CBP=60°.①求∠OBD的度数;②求点P的坐标.27.(12分)【问题提出】我们借助学习“图形的判定”获得的经验与方法对“平行四边形的判定”进一步探究.【初步思考】在一个四边形中,我们把“一组对边平行、一组对边相等、一组对角相等或一条对角线被另一条对角线平分”称为一个条件.如图1,四边形ABCD中,我们用符号语言表示出所有的8个条件:【深入探究】小莉所在学习小组进行了研究,她们认为2个条件可分为以下六种类型:Ⅰ关于对边的2个条件;Ⅱ关于对角的2个条件;Ⅲ关于对角线的2个条件;Ⅳ关于边的条件与角的条件各1个;Ⅴ关于边的条件与对角线的条件各1个;Ⅵ关于角的条件与对角线的条件各1个.(1)小明认为“Ⅰ关于对边的2个条件”可分为“①②,③④,①③,①④”共4种不同种类的情形.请你仿照小明的叙述对其它五种类型进一步分类.(2)小红认为有4种情形是平行四边形的判定依据.请你写出其它的三个判定定理.定义:两组对边分别平行的四边形是平行四边形;定理1:;定理2:;定理3:.(3)小刚认为除了4个判定依据外,还存在一些真命题,他写出了其中的1个,请证明这个真命题,并仿照他的格式写出其它真命题(无需证明):真命题1:四边形ABCD中,若∠BAD=∠BCD,∠ABC=∠ADC,则四边形ABCD是平行四边形.(4)小亮认为,还存在一些假命题,他写出了其中的1个,并举反例进行了说明,请你仿照小亮的格式写出其它假命题并举反例进行说明.假命题1:四边形ABCD中,若AB=CD,AD∥BC,则四边形ABCD不一定是平行四边形.反例说明:如图2,四边形ABCD中,AB=CD,AD∥BC,显然四边形ABCD不是平行四边形.江苏省南京市鼓楼区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)据报道,截止2016年12月27日,根据江苏作家张嘉佳小说改编的电影《摆渡人》累计票房达32800万元,用科学记数法表示32800万元是()A.328×106元B.32.8×107元C.3.28×108元D.0.328×109元【解答】解:将32800万用科学记数法表示为:3.28×108,故选:C.2.(2分)下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.3.(2分)计算3﹣2的结果是()A.﹣6 B.C.D.﹣【解答】解:3﹣2=,故选:C.4.(2分)使式子有意义的x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x≥1【解答】解:根据题意,得2x﹣2≥0,解得,x≥1.故选:D.5.(2分)一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x米,宽为y米,根据题意,得()A.B.C.D.【解答】解:设这个长方形菜园的长为x米,宽为y米,根据题意,得.故选:B.6.(2分)下列关于正方形的叙述,正确的是()A.正方形有且只有一个内切圆B.正方形有无数个外接圆C.对角线相等且垂直的四边形是正方形D.用一根绳子围成一个平面图形,正方形的面积最大【解答】解:A、正确.正方形有且只有一个内切圆;B、错误.正方形有且只有一个外接圆;C、错误.对角线相等且垂直的四边形不一定是正方形;D、错误.用一根绳子围成一个平面图形,圆形的面积最大;故选:A.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)的相反数是﹣,的倒数是.【解答】解:的相反数是﹣,倒数是.故答案为﹣,.8.(2分)若△ABC∽△DEF,请写出1个正确的结论:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F, ==等.【解答】解:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F, ==等;故答案为:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F, ==等.9.(2分)把4x2﹣16因式分解的结果是4(x+2)(x﹣2).【解答】解:原式=4(x2﹣4)=4(x+2)(x﹣2)故答案为:4(x+2)(x﹣2)10.(2分)已知x1、x2是一元二次方程x2+x﹣5=0的两个根,则x12+x22﹣x1x2= 16 .【解答】解:根据题意得x1+x2=﹣1,x1x2=﹣5,所以x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=(﹣1)2﹣3×(﹣5)=16.故答案为16.11.(2分)已知点A(3,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是2(答案不唯一).【解答】解:∵y=的图象位于一三象限,点A在第一象限,∴y1>0,y随x的增大而减小.∵当m<0时,点B位于第三象限,∴y2<0.故假设不成立.当m>0时,点B位于第一象限,∴y2>0.又∵y1<y2,∴m<3.∴0<m<3.所以m的值可为2.故答案为:2.12.(2分)如图,∠3=40°,直线b平移后得到直线a,则∠1+∠2= 220 °.【解答】解:如图,∵直线b平移后得到直线a,∴a∥b,∴∠1+∠4=180°,即∠4=180°﹣∠1,∵∠5=∠3=40°,∴∠2=∠4+∠5=180°﹣∠1+40°,∴∠1+∠2=220°.故答案为220.13.(2分)如图,顺次连接菱形ABCD的各边中点E、F、G、H.若AC=a,BD=b,则四边形EFGH 的面积是ab .【解答】解:∵点E、F分别是菱形AB、BC边上的中点,∴EF是△ABC的中位线,∴EF=AC,且EF∥AC.同理,HG=AC,且HG∥AC,∴EF=HG,且EF∥HG.∴四边形EFGH是平行四边形.∴EH∥FG,EH=FG=BD.又∵四边形ABCD是菱形,∴AC⊥BD,∴EF⊥EH,∴四边形EFGH的面积=EF•EH=a•b=ab.故答案是: ab.14.(2分)如图,△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在OA上.将△COD绕点O顺时针旋转一周,在旋转过程中,当旋转角是100或280 °时,CD∥AB.【解答】解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角为270°+10°=280°,综上所述,当旋转角为100°或280°时,边CD恰好与边AB平行.故答案为:100或280.15.(2分)平面直角坐标系中,原点O关于直线y=﹣x+4对称点O1的坐标是(,).【解答】解:如图,∵原点O关于直线y=﹣x+4对称点O1,∴OO1⊥AB,设O1O与直线y=﹣x+4的交点为D,作O1E⊥x轴于E,由直线y=﹣x+4可知A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,∵S△AOB=OA•OB=AB•OD,∴OD==,∴OO1=,∵∠ADO=∠O1EO=90°,∠AOD=∠EOO1,∴△AOD∽△O1OE,∴=,即=,∴OE=,∴O1E==,∴点O的坐标是(,),1故答案为(,).16.(2分)定点O、P的距离是5,以点O为圆心,一定的长为半径画圆⊙O,过点P作⊙O的两条切线,切点分别是B、C,则线段BC的最大值是 5 .【解答】解:∵PC、PB是⊙O的切线,∴∠PCO=∠PBO=90°,∴点C、B在以OP为直径的圆上,∵BC是这个圆的弦,∴当BC=OP=5时,BC的值最大(直径是圆中最长的弦).故答案为5.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:,其中x=3.【解答】解:原式=+•=+1=,当x=3时,原式==2.18.(7分)(1)解不等式﹣≤1,并把它的解集在数轴上表示出来;(2)若关于x的一元一次不等式x≥a只有3个负整数解,则a的取值范围是﹣4<a≤﹣3 .【解答】解:(1)∵2x﹣3(x﹣1)≤6,∴2x﹣3x+3≤6,解得x≥﹣3,这个不等式的解集在数轴上表示如下:.(2)∵关于x的一元一次不等式x≥a只有3个负整数解,∴关于x的一元一次不等式x≥a的3个负整数解只能是﹣3、﹣2、﹣1,∴a的取值范围是:﹣4<a≤﹣3.故答案为:﹣4<a≤﹣3.19.(6分)QQ运动记录的小莉爸爸2017年2月份7天步行的步数(单位:万步)如下表:日期2月6日2月7日2月8日2月9日2月10日2月11日2月12日步数2.1 1.7 1.8 1.9 2.0 1.8 2.0(2)求小莉爸爸这7天中每天步行的平均步数;(3)估计小莉爸爸2月份步行的总步数.【解答】解:(1)用折线统计图表示小莉爸爸这7天内步行的步数如下:;(2)小莉爸爸这7天内每天步行的平均步数为:=×(2.1+1.7+1.8+1.9+2.0+1.8+2.0)=1.9(万步).(3)小莉爸爸2月份步行的步数约为:1.9×28=53.2(万步).20.(7分)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在黑色区域的概率.【解答】解:由图得:白色扇形的圆心角为120°,故转动一次,指针指向白色区域的概率为: =,则转动一次,指针指向阴影区域的概率为:,故让转盘自由转动两次.指针一次落在黑色区域,另一次落在白色区域的概率是:2××=.21.(7分)如图①,窗帘的褶皱是指按照窗户的实际宽度将窗帘布料以一定比例加宽的做法,褶皱之后的窗帘更能彰显其飘逸、灵动的效果.其中,窗宽度的1.5倍为平褶皱,窗宽度的2倍为波浪褶皱.如图②,小莉房间的窗户呈长方形,窗户的宽度(AD)比高度(AB)的少0.5m,某种窗帘的价格为120元/m2.如果以波浪褶皱的方式制作该种窗帘比以平褶皱的方式费用多180元,求小莉房间窗户的宽度与高度.【解答】解:设小莉房间窗户的宽度为xm,则高度为(x+0.5)m.根据题意,得(2﹣1.5)x(x+0.5)×120=180,解得 x1=﹣2,x2=1.5.所以x=1.5,x+0.5=2.答:小莉房间窗户的宽度为1.5m,则高度为2m.22.(7分)如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是200m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少m?(用含α、β的式子表示)【解答】解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=xm,则PE=(x﹣1.6)m,PF=(x﹣1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴CF=.∵AE+CF=BD.∴+=200.解,得x=.答:气球的高度是m.23.(8分)命题:有两个角相等的三角形是等腰三角形(简称“等角对等边”).已知:如图,△ABC中,∠B=∠C.求证:AB=AC.三位同学作出了三种不同的辅助线,并完成了命题的证明.小刚的方法:作∠BAC的平分线AD,可证△ABD≌△ACD,得AB=AC;小亮的方法:作BC边上的高AD,可证△ABD≌△ACD,得AB=AC;小莉的方法:作BC边上的中线AD.(1)请你写出小刚与小亮方法中△ABD≌△ACD的理由:AAS ;(2)请你按照小莉的思路完成命题的证明.【解答】解:(1)△ABD≌△ACD的理由是AAS,故答案为AAS.(2)证明:过点D作DE⊥AB于点E,过点D作DF⊥AC于点F.∵∠BED=∠CFD=90°,∠B=∠C,BD=CD.∴△BDE≌△CDF(AAS).∴BE=CF,DE=DF.在Rt△AED和Rt△AFD中,∠AED=∠AFD=90°.∵AD=AD,DE=DF,∴Rt△AED≌Rt△AFD.∴AE=AF.∴AE+BE=AF+CF.即AB=AC.24.(8分)已知:如图,△ABC的外接圆是⊙O,AD是BC边上的高.(1)请用尺规作出⊙O(不写作法,保留作图痕迹);(2)若AB=8,AC=6,AD=5.4,求⊙O的半径.【解答】解:(1)如图,⊙O是所求作的图形.(2)如图,作⊙O的直径AE,连接BE.∵AE是直径,∴∠ABE=90°.∵∠ADC=∠ABE=90°,∠C=∠E,∴△ABE∽△ADC,∴=.即=,解得AE=.∴⊙O的半径为.25.(10分)快车和慢车同时从甲地出发,匀速行驶,快车到达乙地后,原路返回甲地,慢车到达乙地停止.图①表示两车行驶过程中离甲地的路程y(km)与出发时间x(h)的函数图象,请结合图①中的信息,解答下列问题:(1)快车的速度为 km/h,慢车的速度为150 km/h,甲乙两地的距离为50 km;(2)求出发多长时间,两车相距100km;(3)若两车之间的距离为s km,在图②的直角坐标系中画出s(km)与x(h)的函数图象.【解答】解:(1)快车的速度为300÷2=150km/h,慢车的速度为:300÷6=50km/h,甲乙两地的距离为300km,故答案为:150,50,300;(2)快车在行驶过程中离A地的路程y1与时间x的函数关系式:当0≤x<2时,y1=150x,当2≤x≤4时,y1=300﹣150(x﹣2),即y1=600﹣150x.慢车在行驶过程中离A地的路程y2与时间x的函数关系式:当0≤x≤6时,y2=50x,由题意,得①当0≤x<2时,y1﹣y2=100,150x﹣50x=100,解得x=1;②当2≤x<3时,y1﹣y2=100,600﹣150x﹣50x=100,解得x=2.5;③当3≤x<4时,y2﹣y1=100,50x﹣(600﹣150x)=100,解得x=3.5;④当4≤x≤6时,两车相距大于100km.答:出发1 h或2.5h或3.5h后,两车相距100km;(3)s与x的函数图象如图所示:26.(10分)如图,二次函数y=ax2+bx﹣4的图象经过A(﹣1,0)、B(4,0)两点,于y 轴交于点D.(1)求这个二次函数的表达式;(2)已知点C(3,m)在这个二次函数的图象上,连接BC,点P为抛物线上一点,且∠CBP=60°.①求∠OBD的度数;②求点P的坐标.【解答】(1)由题意知:,解得.∴该二次函数的表达式为y=x2﹣3x﹣4;(2)①∵当x=0时,y=﹣4.∴抛物线与y轴交点D的坐标为(0,﹣4).∵在△BOD中,∠BOD=90°,OB=4,OD=4,∴BD==8,即BD=2OB,∴∠ODB=30°.∴∠OBD=60°;②过点P作PE⊥x轴于点E,过点C作CF⊥BD于点F,∵x=3时,m=﹣4.∴点C的坐标为(3,﹣4).∵CD∥x轴,∴CD=3,∠CDB=60°,∠DCF=30°.∴DF=CD=,CF==,∵BD=8,∴BF=8﹣=, 设点P 的坐标为(x ,x 2﹣3x ﹣4). 则PE=﹣x 2+3x+4,BE=4﹣x ,∵∠CBP=∠OBD=60°,∴∠CBF=∠PBE .∵∠CFB=∠PEB=90°.∴△CBF ∽△PBE . ∴=. ∴=.解得:x 1=4(舍去),x 2=﹣. ∵当x=﹣时,y=﹣.∴点P 的坐标为(﹣,﹣).27.(12分)【问题提出】我们借助学习“图形的判定”获得的经验与方法对“平行四边形的判定”进一步探究.【初步思考】在一个四边形中,我们把“一组对边平行、一组对边相等、一组对角相等或一条对角线被另一条对角线平分”称为一个条件.如图1,四边形ABCD 中,我们用符号语言表示出所有的8个条件:①A B=CD;②AD=BC;③AB∥CD;④AD∥BC;⑤∠BAD=∠BCD;⑥∠ABC=∠ADC;⑦OA=OC;⑧OB=OD.【深入探究】小莉所在学习小组进行了研究,她们认为2个条件可分为以下六种类型:Ⅰ关于对边的2个条件;Ⅱ关于对角的2个条件;Ⅲ关于对角线的2个条件;Ⅳ关于边的条件与角的条件各1个;Ⅴ关于边的条件与对角线的条件各1个;Ⅵ关于角的条件与对角线的条件各1个.(1)小明认为“Ⅰ关于对边的2个条件”可分为“①②,③④,①③,①④”共4种不同种类的情形.请你仿照小明的叙述对其它五种类型进一步分类.(2)小红认为有4种情形是平行四边形的判定依据.请你写出其它的三个判定定理.定义:两组对边分别平行的四边形是平行四边形;定理1:两组对边分别相等的四边形是平行四边形;定理2:一组对边平行且相等的四边形是平行四边形;定理3:对角线互相平分的四边形是平行四边形.(3)小刚认为除了4个判定依据外,还存在一些真命题,他写出了其中的1个,请证明这个真命题,并仿照他的格式写出其它真命题(无需证明):真命题1:四边形ABCD中,若∠BAD=∠BCD,∠ABC=∠ADC,则四边形ABCD是平行四边形.(4)小亮认为,还存在一些假命题,他写出了其中的1个,并举反例进行了说明,请你仿照小亮的格式写出其它假命题并举反例进行说明.假命题1:四边形ABCD中,若AB=CD,AD∥BC,则四边形ABCD不一定是平行四边形.反例说明:如图2,四边形ABCD中,AB=CD,AD∥BC,显然四边形ABCD不是平行四边形.【解答】(1)解:Ⅱ关于对角的2个条件可分为“⑤⑥”共1种情形;Ⅲ关于对角线的2个条件可分为“⑦⑧”共1种情形;Ⅳ关于边的条件与角的条件各1个可分为“①⑤,③⑤”共2种情形;Ⅴ关于边的条件与对角线的条件各1个可分为“①⑦,③⑦”共2种情形;Ⅵ关于角的条件与对角线的条件各1个可分为“⑤⑦,⑥⑦”共2种情形.(2)解:定理2:两组对边分别相等的四边形是平行四边形;定理3:一组对边平行且相等的四边形是平行四边形;定理4:对角线互相平分的四边形是平行四边形.故答案为:两组对边分别相等的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形,对角线互相平分的四边形是平行四边形(3)证明:∵∠BAD+∠ABC+∠BCD+∠ADC=360°,∠BAD=∠BCD,∠ABC=∠ADC,∴2∠BAD+2∠ABC=360°,2∠ABC+2∠BCD=360°.∴∠BAD+∠ABC=180°,∠ABC+∠BCD=180°.∴AD∥BC,AB∥CD.∴四边形ABCD是平行四边形.真命题2:四边形ABCD中,若AB∥CD,∠BAD=∠BCD,则四边形ABCD是平行四边形;真命题3:四边形ABCD中,若AB∥CD,OA=OC,则四边形ABCD是平行四边形;真命题4:四边形ABCD中,若∠ABC=∠AD C,OA=OC,则四边形ABCD是平行四边形;(4)解:假命题2:四边形ABCD中,若AB=CD,∠BAD=∠BCD,则四边形ABCD不一定是平行四边形.反例如下:如图△ABC中,AB=AC,在BC上取一点D,连接AD,把△ADC翻转得如图所示的四边形ABDC,∵AB=AC,∴∠B=∠C.在四边形ABDC中,AB=CD,∠B=∠C,显然,四边形ABDC不是平行四边形.假命题3:四边形ABCD中,若AB=CD,OA=OC,则四边形ABCD不一定是平行四边形.反例如下:如图,OA=OC,直线l经过点O,分别以A、C为圆心,一定的长为半径画弧交直线l于点B、D,得如图所示的四边形ABCD,在四边形ABCD中,AB=CD,OA=OC,显然,四边形ABDC不是平行四边形.假命题4:四边形ABCD中,若∠BAD=∠BCD,OA=OC,则四边形ABC D不一定是平行四边形.反例如下:如图,筝形ABCD中,∠BAD=∠BCD,OA=OC,显然四边形ABCD不是平行四边形.。
初中数学 南京市鼓楼区中考模拟二模数学考试卷及答案(word版)
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是试题2:下列算式结果为-3的是A.-│-3│B.(-3)0 C.-(-3)D.(-3)-1试题3:使分式有意义的x的取值范围是A.x>2 B.x<2 C.x≠2 D.x≥2试题4:下列从左边到右边的变形,是因式分解的是A.(a-1)(a-2)=a2-3a+2 B.a2-3a+2=(a-1)(a-2)C.(a-1)2+(a-1)=a2-a D.a2-3a+2=(a-1)2-(a-1)试题5:下列命题中,假命题的是A.两组对边分别相等的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边相等,一组对角相等的四边形是平行四边形试题6:对函数y=x3的描述:①y随x的增大而增大,②它的图象是中心对称图形,③它的自变量取值范围是x≠0.正确的是A.①② B.①③ C.②③ D.①②③试题7:9的平方根是.试题8:一个多边形的每个外角都等于72°,则这个多边形的边数是.试题9:已知方程组的解为则一次函数y=-x+1和y=2x-2的图象的交点坐标为.试题10:计算(-)×的结果是.试题11:已知x1、x2是一元二次方程x2+x=1的两个根,则x1x2=.试题12:如果代数式2x+y的值是3,那么代数式7-6x-3y的值是.1试题13:已知点A(2,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是.试题14:如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=°.试题15:如图,△ABC中,AB=AC=13 cm,BC=10 cm.则△ABC内切圆的半径是cm.试题16:如图,方格纸中有三个格点A、B、C,则sin∠ABC=.试题17:解方程组试题18:解不等式2x-1≥,并把它的解集在数轴上表示出来.试题19:某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总数排列名次,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲、乙两班各5名学生的比赛数据.(单位:个)1号2号3号4号5号总数甲班89 100 96 118 97 500乙班100 96 110 90 104 500统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判.试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?试题20:如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,请你结合图片信息,解答下列问题:(1)加油过程中的常量是,变量是;(2)请用合适的方式表示加油过程中变量之间的关系.试题21:在一个不透明的袋子中,放入除颜色外其余都相同的1个白球、2个黑球、3个红球.搅匀后,从中随机摸出2个球.(1)请列出所有可能的结果:(2)求每一种不同结果的概率.试题22:某纪念币从2013年11月11日起开始上市,通过市场调查得知该纪念币每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元90 51 90(1)根据上表数据,在某一特定时期内,可从下列函数中选取一个恰当的函数描述纪念币的市场价y与上市时间x的变化关系:①y=ax+b(a≠0);②y=a(x-h)2+k(a≠0);③y=(a≠0).你可选择的函数的序号是.(2)利用你选取的函数,求该纪念币上市多少天时市场价最低,最低价格是多少?试题23:三角形中有3个角、3条边共6个元素,由其中的已知元素,求出所有未知元素的过程,叫做解三角形.已知△ABC中,AB=,∠B=45°,BC=1+,解△ABC.试题24:如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1.(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,根据旋转的性质用符号语言写出2条不同类型的正确结论;(3)针对第(2)问中的图形,添加一定的条件,可以求出线段AB扫过的面积.(不再添加字母和辅助线,线段的长用a、b、c…表示,角的度数用α、β、γ…表示).你添加的条件是,线段AB扫过的面积是.试题25:如图,OA、OB是⊙O的半径且OA⊥OB,作OA的垂直平分线交⊙O于点C、D,连接CB、AB.求证:∠ABC=2∠CBO.试题26:小明和小莉在跑道上进行100m短跑比赛,两人从出发点同时起跑,小明到达终点时,小莉离终点还差6 m,已知小明和小莉的平均速度分别为x m/s、y m/s.(1)如果两人重新开始比赛,小明从起点向后退6 m,两人同时起跑能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人起跑位置?请设计两种方案.试题27:(1)已知:如图,E、F、G、H分别是菱形ABCD的各边上与顶点均不重合的点,且AE=CF=CG=AH.求证:四边形EFGH是矩形.(2)已知: E、F、G、H分别是菱形ABCD的边AB、BC、CD、AD上与顶点均不重合的点,且四边形EFGH是矩形.AE与AH相等吗?如果相等,请说明理由;如果不相等,请举反例进行说明.试题28:△ABC中,AB=AC=10,BC=12,矩形DEFG中,EF=4,FG>12.(1)如图①,点A是FG的中点,FG∥BC,将矩形DEFG向下平移,直到DE与BC重合为止.要研究矩形DEFG与△ABC重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).(2)如图②,点B与F重合,E、B、C在同一直线上,将矩形DEFG向右平移,直到点E与C重合为止.设矩形DEFG与△ABC重叠部分的面积为y,平移的距离为x.①求y与x的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y与x的大致图象,并在图象上标注出关键点坐标.试题1答案:D试题2答案:A试题3答案:C试题4答案: B试题5答案:D试题6答案:A试题7答案:±3试题8答案:5试题9答案:(1,0)试题10答案:2试题11答案:-1试题12答案:-2试题13答案:答案不唯一,如1等试题14答案:110试题15答案:试题16答案:试题17答案:解方程组解法一:由①,得x=6-2y③,将③代入②,得3(6-2y)-2y=2,解这个一元一次方程,得y=2,将y=2代入③,得x=2,所以原方程组的解是解法二:①+②,得4x=8解这个一元一次方程,得x=2,将x=2代入①,得y=2,所以原方程组的解是试题18答案:解:去分母,得 2(2x-1)≥3x-1.去括号,得 4x-2≥3x-1.移项、合并同类项,得x≥1.这个不等式的解集在数轴上表示如下:试题19答案:解:甲班5名学生比赛成绩的中位数是97个,乙班5名学生比赛成绩的中位数是100个;=100,=100,s=,s=.甲班的优秀率为:2÷5=0.4=40%,乙班的优秀率为:3÷5=0.6=60%;乙班定为冠军.因为乙班5名学生的比赛成绩的中位数比甲班大,方差比甲班小,优秀率比甲班高,综合评定乙班踢毽子水平较好.试题20答案:(1)单价,数量、金额;(2)设加油数量是x升,金额是y元,则y=6.80x试题21答案:解:(1)搅匀后,从中随机摸出2个球,所有可能的结果有15个,即:(白,黑1),(白,黑2),(白,红1),(白,红2),(白,红3),(黑1,黑2),(黑1,红1),(黑1,红2),(黑1,红3),(黑2,红1),(黑2,红2),(黑2,红3),(红1,红2),(红1,红3),(红2,红3).它们是等可能的.(2)其中摸得一个白球和一个黑球的结果有2个,摸得一个白球和一个红球的结果有3个,摸得二个黑球的结果有1个,摸得一个黑球和一个红球的结果有6个,摸得二个红球的结果有3个.所以P(摸得一个白球和一个黑球)=,P(摸得一个白球和一个红球)==,P(摸得二个黑球)=,P(摸得一个黑球和一个红球)==,P(摸得二红球)==.试题22答案:解:(1)②;(2)当x=4时,y=90,当x=10时,y=51,当x=36时,y=90,则解得所以y=(x-20)2+26;当x=20时,y有最小值26.答:该纪念币上市20天时市场价最低,最低价格为26元.试题23答案:解:过点A作AD⊥BC,垂足为D.在Rt△ADB中,∠ADB=90°,∠B=45°,AB=则cos ∠B=.∴AD=BD=AB ×cos 45°=×cos 45°=1.在Rt△ADC中,∠ADC=90°,C D=BC-BD =1+-1=.则tan ∠C ===.∴∠C=30°.∴AC==2,∠BAC=180°-45°-30°=105°.试题24答案:解:(1)如图;(2)如:OA=OA1,∠AO A1=∠BOB1等;(3)添加的条件为:∠AO A1=∠BOB1=α;OA=OA1=a;OB=OB1=b .面积为(b2-a2) 试题25答案:证明:连接OC、AC.A∵CD垂直平分OA,∴OC=AC.C∴OC=AC=OA.D∴△OAC是等边三角形.B∴∠AOC=60°.O∴∠ABC=∠AOC=30°.在△AOB中,OA=OB,∠AOB=90°.∴∠ABO=45°.∴∠CBO=∠ABO-∠ABC=45°-30°=15°.∴∠ABC=2∠CBO.试题26答案:解:(1)根据题意,得=,则y=x.因为-=-=-<0,所以<所以小明先到达终点.(2)方案一:小明在起点,小莉在起点前6米处,两人同时起跑,同时到达;方案二:设小莉在起点,小明在起点后a米处,两人同时起跑,同时到达.则=,即=,解得a=.所以小莉在起点,小明在起点后米处,两人同时起跑,同时到达.试题27答案:(1)证明:∵四边形ABCD是菱形,∴AB=BC=CD=DA,∠A=∠C,∠B=∠D,∠A+∠B=180°.∵AE=CF=CG=AH,∴BE=BF=DG=DH.∴△AEH≌△CFG,△BEF≌△DHG.∴EH=FG,EF=HG.∴四边形EFGH是平行四边形.又∵∠AEH=∠AHE=(180°-∠A)=90°-∠A,∠BEF=∠BFE=(180°-∠B)=90°-∠B,∴∠HEF=180°-∠AEH-∠BEF=180°-(90°-∠A)-(90°-∠B)=(∠A+∠B)=90°.∴四边形EFGH是矩形.(2)如图,m、n是经过菱形对角线交点且与对边垂直的2条直线,可证四边形EFGH是矩形,显然,AE与AH不相等.试题28答案:解:(1)学生回答合理应给分,如:从重叠部分的形状看分为2类,即三角形和四边形(梯形);也可从数量的角度来分类,设平移的距离为x.分为0<x ≤4,4<x ≤8,8<x ≤12三类等;(2)①当0≤x≤4时,y=x2;当4<x≤6时,y=x -;当6<x≤10时,y=-(x-8)2+;当10<x≤12时,y=-x+;当12<x≤16时,y=(16-x)2.②如图:。
2023年江苏省南京市鼓楼区中考数学二模试卷【答案版】
2023年江苏省南京市鼓楼区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上)1.下列四个数中,最大的是()A.﹣1B.0C.1.4D.√22.计算a2•a4的结果是()A.a8B.a4C.a6D.a23.计算√12−√3的结果是()A.√9B.2C.2√3D.√34.已知A(2,0),B(0,2),下列四个点中与A、B在同一条直线上的是()A.(1,2)B.(﹣1,3)C.(﹣2,﹣3)D.(3,﹣2)5.如图,在⊙O中,C是AB̂上一点,OA⊥OB,过点C作弦CD交OB于E,若OA=DE,则∠C与∠AOC 满足的数量关系是()A.∠C=13∠AOC B.∠C=12∠AOC C.∠C=23∠AOC D.∠C=34∠AOC6.小明、小红在微信里互相给对方发红包.小明先给小红发1元,小红给小明发回2元,小明再给小红发3元,小红又给小明发回4元……按照这个规律,两人一直互相发红包,直到小明给小红发了199元后,小红突然不发回了.若在整个过程中,两人都及时领取了对方的红包,则最终小红的收支情况是()A.赚了99元B.赚了100元C.亏了99元D.亏了100元二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.式子√x−2有意义,则x的取值范围是.8.若两个相似多边形面积比为4:9,则它们的周长比是.9.一个多边形的每个外角都是45°,则这个多边形的边数为.10.方程1x+2=1x2−4的解是.11.淋巴细胞是人体内最小的白细胞,直径为6微米,即0.000006米,用科学记数法表示0.000006是 .12.已知a 、b 是一元二次方程2x 2+3x ﹣4=0的两个根,那么ab 2+a 2b 的值是 .13.把如图①所示的正三棱锥沿其中的三条棱剪开后,形成的平面展开图为图②.若剪开的三条棱中有两条是AB 、AC ,则剪开的另一条棱是 (写出所有正确的答案).14.如图,在▱ABCD 中,E 是线段AB 的中点,DE 交AC 于点F ,则AF AC= .15.已知整式M =a 2﹣2a ,下列关于整式M 的值的结论: ①M 的值可能为4;②当a 为小于0的实数时,M 的值大于0; ③不存在这样的实数a ,使得M 的值小于﹣1. 其中所有正确结论的序号是 .16.如图,⊙O 的半径为2,AB 是⊙O 的一条弦,以AB 为边作一个等边△ABC ,则OC 长的取值范围是 .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明 17.先化简,再求值:(2a +b )2﹣(2a +b )(2a ﹣b ),其中a =2,b =1. 18.解方程:x (x ﹣6)=﹣4(x ﹣6).19.如图,在△ABC 和△A 'B 'C '中,AB =A ′B ′,BC =B ′C ′,D 、D ′分别是BC 、B ′C ′的中点,且AD =A ′D ′.求证:△ABC ≌△A 'B 'C '.20.如图所示是某地区2018﹣2022年汽车进、出口量统计图.(1)与上一年相比,出口量增长率最高的年份是()A.2019年B.2020年C.2021年D.2022年(2)根据图提供的信息,请写出两个不同于(1)的结论.21.如图是某城市地铁线路图的一部分,已知甲从A站上车,随机从B,C,D,E中的某站下车.(1)甲从C站下车的概率是;(2)若乙与甲乘坐同一趟地铁从A站上车,随机从B、C、D、E中的某一站下车,求甲、乙两人恰好从同一站下车的概率.22.如图,某住宅小区南,北两栋楼房直立在地面上,且高度相等.为了测量两楼的高度AE、BD和两楼之间的距离AD,小莉在南楼楼底地面A处测得北楼顶部B的仰角为31°,然后她来到南楼离地面12m 高的C处,此时测得B的仰角为20°.求两楼的高度和两楼之间的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.)23.甲、乙两种商品的进价分别为55元/千克、15元/千克,每千克甲商品比乙商品售价多60元,售出甲商品20千克与售出乙商品60千克所获得的利润相等.(1)求甲、乙商品的售价;(2)某超市计划同时购进甲、乙两种商品共120千克,且购进甲商品的数量不大于乙商品数量的2倍.要使两种商品销售完后获得的总利润最大,应购进甲、乙两种商品各多少千克?24.如图,四边形ABCD是⊙O的内接矩形,点E、F分别在射线AB、AD上,OE=OF,且点C、E、F 在一条直线上,EF与⊙O相切于点C.(1)求证:矩形ABCD是正方形;(2)若OF=10,则正方形ABCD的面积是.25.在平面直角坐标系中,已知抛物线y=x2+(k﹣2)x+3.(1)该抛物线经过一个定点:(写出坐标);(2)点P(m,n)是抛物线上一点,当点P在抛物线上运动时,n存在最小值N.①若N=3,求k的值;②若﹣1<k<3,结合该抛物线,直接写出N的取值范围.26.在学习矩形的判定时,王老师提出一个命题:“一组对边相等,一组对角相等且另外两个角中有一个直角的四边形是矩形”.小明和小丽都发现这个命题是假命题,并举出了反例.(1)小明:如图①,Rt△ABC中,∠C=90°,把△ABC沿AB翻折,得到△ABD,再以D为圆心,DB长为半径作弧,交射线CB于点E,连接DE,过点A、E分别作AC、BC的垂线,交于点F.则四边形AFED是该命题的一个反例.请你说明此反例的合理性.(2)小丽:作出图②,在△ABC中,∠B=90°,∠NMB=∠A.她发现四边形ABMN已满足一组对角相等,一个角是直角,但无法保证MN恰好与AB相等,请你完善小丽的作法,并在图②的基础上用尺规作图作出符合要求的M′N′,使四边形ABM′N′是该命题的一个反例(保留作图的痕迹,写出必要的文字说明).27.在平面内,将小棒AB经过适当的运动,使它调转方向(调转前后的小棒不一定在同一条直线上),那么小棒扫过区域的面积如何尽可能地小呢?已知小棒长度为4,宽度不计.方案1:将小棒绕AB中点O旋转180°到B'A',设小棒扫过区域的面积为S1即图中灰色区域的面积,下同);方案2:将小棒先绕A逆时针旋转60°到AC,再绕C逆时针旋转60°到CB,最后绕B逆时针旋转60°到B′A′,设小棒扫过区域的面积为S2.(1)①S1=S2=;(结果保留π)②比较S1与S2的大小.(参考数据:π≈3.14,√3≈1.73.)(2)方案2可优化为方案3:首次旋转后,将小棒先沿着小棒所在的直线平移再分别进行第2、3次旋转,三次旋转扫过的面积会重叠更多,最终小棒扫过的区域是一个等边三角形.①补全方案3的示意图;②设方案3中小棒扫过区域的面积为S3,求S3.(3)设计方案4,使小棒扫过区域的面积S4小于S3,画出示意图并说明理由.2023年江苏省南京市鼓楼区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上) 1.下列四个数中,最大的是( ) A .﹣1B .0C .1.4D .√2解:A 、﹣1为负数,小于选项C 、D 中的正数,故A 选项不符合题意; B 、0小于选项C 、D 中的正数,故B 选项不符合题意;C 、比较1.4和√2的大小,计算1.42=1.96<2,所以1.4<√2,故C 选项不符合题意; C 、比较1.4和√2的大小,计算1.42=1.96<2,所以1.4<√2,故D 选项符合题意; 故选:D .2.计算a 2•a 4的结果是( ) A .a 8B .a 4C .a 6D .a 2解:a 2•a 4=a 2+4=a 6. 故选:C .3.计算√12−√3的结果是( ) A .√9B .2C .2√3D .√3解:√12−√3=2√3−√3=√3. 故选:D .4.已知A (2,0),B (0,2),下列四个点中与A 、B 在同一条直线上的是( ) A .(1,2)B .(﹣1,3)C .(﹣2,﹣3)D .(3,﹣2)解:设AB :y =kx +b ,把A (2,0),B (0,2)代入关系式得, {0=2k +b 2=b , ∴{k =−1b =2, ∴y =﹣x +2,把x =1代入关系式得,y =1,故A 不满足题意; 把x =﹣1代入关系式得,y =3,故B 满足题意; 把x =﹣2代入关系式得,y =4,故C 不满足题意; 把x =3代入关系式得,y =﹣1,故D 不满足题意;故选:B .5.如图,在⊙O 中,C 是AB ̂上一点,OA ⊥OB ,过点C 作弦CD 交OB 于E ,若OA =DE ,则∠C 与∠AOC 满足的数量关系是( )A .∠C =13∠AOC B .∠C =12∠AOCC .∠C =23∠AOCD .∠C =34∠AOC解:连接OD ,∵OA ⊥OB , ∴∠BOA =90°,∴∠BOC =∠AOB ﹣∠AOC =90°﹣∠AOC , ∵OD =OC , ∴∠D =∠C ,∵OD =OA ,OA =DE , ∴OD =DE , ∴∠DEO =∠DOE =180°−∠D 2=180°−∠C2, ∵∠DEO 是△EOC 的一个外角, ∴∠DEO =∠C +∠BOC , ∴180°−∠C2=∠C +90°﹣∠AOC ,∴3∠C =2∠AOC , ∴∠C =23∠AOC , 故选:C .6.小明、小红在微信里互相给对方发红包.小明先给小红发1元,小红给小明发回2元,小明再给小红发3元,小红又给小明发回4元……按照这个规律,两人一直互相发红包,直到小明给小红发了199元后,小红突然不发回了.若在整个过程中,两人都及时领取了对方的红包,则最终小红的收支情况是()A.赚了99元B.赚了100元C.亏了99元D.亏了100元解:1﹣2+3﹣4+5﹣6+...+197﹣198+199=(﹣1)×1982+199=(﹣1)×99+199=(﹣99)+199=100(元),则小红赚了100元,故选:B.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.式子√x−2有意义,则x的取值范围是x≥2.解:由题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.8.若两个相似多边形面积比为4:9,则它们的周长比是2:3.解:∵两个相似多边形面积比为4:9,∴两个相似多边形相似比为2:3,∴两个相似多边形周长比为2:3,故答案为:2:3.9.一个多边形的每个外角都是45°,则这个多边形的边数为8.解:多边形的外角的个数是360÷45=8,所以多边形的边数是8.故答案为:8.10.方程1x+2=1x2−4的解是x=3.解:1x+2=1x2−4,方程两边都乘(x+2)(x﹣2),得x﹣2=1,解得:x=3,检验:当x=3时,(x+2)(x﹣2)≠0,所以分式方程的解是x=3.故答案为:x=3.11.淋巴细胞是人体内最小的白细胞,直径为6微米,即0.000006米,用科学记数法表示0.000006是6×10﹣6.解:将数0.000006用科学记数法表示正确的是6×10﹣6.故答案为:6×10﹣6.12.已知a 、b 是一元二次方程2x 2+3x ﹣4=0的两个根,那么ab 2+a 2b 的值是 3 . 解:∵a 、b 是一元二次方程2x 2+3x ﹣4=0的两个根, ∴a +b =−32,ab =﹣2,∴ab 2+a 2b =ab (a +b )=﹣2×(−32)=3, 故答案为:3.13.把如图①所示的正三棱锥沿其中的三条棱剪开后,形成的平面展开图为图②.若剪开的三条棱中有两条是AB 、AC ,则剪开的另一条棱是 BD 或CD (写出所有正确的答案).解:把如图①所示的正三棱锥沿其中的三条棱剪开后,形成的平面展开图为图②.若剪开的三条棱中有两条是AB 、AC ,则剪开的另一条棱是BD 或CD . 故答案为:BD 或CD .14.如图,在▱ABCD 中,E 是线段AB 的中点,DE 交AC 于点F ,则AF AC=13.解:∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,∴∠CDE =∠AED ,∠DCA =∠CAB , ∴△AEF ∽△CDF , ∴AF CF=AE CD,∵E 是AB 的中点, ∴AE =12AB , ∴AE =12CD ,∴AE CD =AF CF =12, ∴AF AC =13.故答案为:13.15.已知整式M =a 2﹣2a ,下列关于整式M 的值的结论:①M 的值可能为4;②当a 为小于0的实数时,M 的值大于0;③不存在这样的实数a ,使得M 的值小于﹣1.其中所有正确结论的序号是 ①②③ .解:①当M =4时,a 2﹣2a =4,整理得:a 2﹣2a ﹣4=0,∵Δ=(﹣2)2﹣4×1×(﹣4)=4+16=20>0,∴此方程有两个不相等的实数根,∴M 的值可能为4,故①正确;②M =a 2﹣2a =a (a ﹣2),∵a <0,∴a ﹣2<0,∴a (a ﹣2)>0,∴M >0,∴当a 为小于0的实数时,M 的值大于0,故②正确; ③M =a 2﹣2a =a 2﹣2a +1﹣1=(a ﹣1)2﹣1,∵(a ﹣1)2≥0,∴(a ﹣1)2﹣1≥﹣1,∴M ≥﹣1,∴不存在这样的实数a ,使得M 的值小于﹣1, 故③正确;所以,上列关于整式M 的值的结论,其中所有正确结论的序号是①②③,故答案为:①②③.16.如图,⊙O 的半径为2,AB 是⊙O 的一条弦,以AB 为边作一个等边△ABC ,则OC 长的取值范围是 0≤OC ≤4 .解:AB 为弦、△ABC 是等边角形,当△ABC 是等边角形,且C 恰好在圆的内部,C 与O 重合,此时OC 最小为0,当C 在圆的外部,如下图:连接:AO 、OC 、OB ,在OC下方作等边三角形OCD,则OC=OD=CD,∠OCD=60°,∵△ABC是等边三角形,∴CA=CB,∠ACB=60°,∴∠ACB=∠OCD,∴∠ACO=∠BCD,∴△CAO≌△CBD(SAS),∴BD=OA=2,∵OD最大是4,OD=OC,∴0≤OC≤4,故答案为:0≤OC≤4,三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明17.先化简,再求值:(2a+b)2﹣(2a+b)(2a﹣b),其中a=2,b=1.解:(2a+b)2﹣(2a+b)(2a﹣b)=4a2+4ab+b2﹣4a2+b2=4ab+2b2,当a=2,b=1时,原式=4×2×1+2×12=10.18.解方程:x(x﹣6)=﹣4(x﹣6).解:x(x﹣6)=﹣4(x﹣6),x(x﹣6)+4(x﹣6)=0,(x﹣6)(x+4)=0,∴x﹣6=0或x+4=0∴x1=6,x2=﹣4.19.如图,在△ABC和△A'B'C'中,AB=A′B′,BC=B′C′,D、D′分别是BC、B′C′的中点,且AD=A′D′.求证:△ABC≌△A'B'C'.证明:∵AD ,A 'D '分别是△ABC 和△A 'B 'C '的中线,BC =B 'C ',∴BD =B 'D ',在△ABD 和△A 'B 'D '中,{AB =A ′B ′BD =B′D′AD =A′D′,∴△ABD ≌△A 'B 'D '(SSS ),∴∠B =∠B ',在△ABC 和△A 'B 'C '中,{AB =A ′B ′∠B =∠B′BC =B′C′,∴△ABC ≌△A 'B 'C '(SAS ).20.如图所示是某地区2018﹣2022年汽车进、出口量统计图.(1)与上一年相比,出口量增长率最高的年份是( A )A .2019年B .2020年C .2021年(2)根据图提供的信息,请写出两个不同于(1)的结论.解:(1)由统计图可知,与上一年相比,出口量增长率最高的年份是2019年,其增长为60%, 故答案为:A ;(2)由统计图可知,①2018年和2019年出口量比进口量低;②每年的出口量呈现上升趋势.21.如图是某城市地铁线路图的一部分,已知甲从A 站上车,随机从B ,C ,D ,E 中的某站下车.(1)甲从C 站下车的概率是 14 ;(2)若乙与甲乘坐同一趟地铁从A 站上车,随机从B 、C 、D 、E 中的某一站下车,求甲、乙两人 恰好从同一站下车的概率.解:(1)甲从C 出口出站的概率为14; 故答案为:14. (2)画树状图如下:共有16种等可能的结果,甲、乙两人从同一个出口出站的结果有4种,∴甲、乙两人恰好从同一站下车的概率为416=14. 22.如图,某住宅小区南,北两栋楼房直立在地面上,且高度相等.为了测量两楼的高度AE 、BD 和两楼之间的距离AD ,小莉在南楼楼底地面A 处测得北楼顶部B 的仰角为31°,然后她来到南楼离地面12m 高的C 处,此时测得B 的仰角为20°.求两楼的高度和两楼之间的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.)解:过点C 作CF ⊥BD ,垂足为F ,由题意得:AC =DF =12m ,CF =AD ,设AD =CF =x m ,在Rt △ABD 中,∠BAD =31°,∴BD =AD •tan31°≈0.6x (m ),在Rt △CFB 中,∠BCF =20°,∴BF =CF •tan20°≈0.36x (m ),∴BD =BF +DF =(0.36x +12)m ,∴0.6x =0.36x +12,解得:x =50,∴AD =50m ,BD =30m ,∴两楼的高度约为30m ,两楼之间的距离约为50m .23.甲、乙两种商品的进价分别为55元/千克、15元/千克,每千克甲商品比乙商品售价多60元,售出甲商品20千克与售出乙商品60千克所获得的利润相等.(1)求甲、乙商品的售价;(2)某超市计划同时购进甲、乙两种商品共120千克,且购进甲商品的数量不大于乙商品数量的2倍.要使两种商品销售完后获得的总利润最大,应购进甲、乙两种商品各多少千克?解:(1)设甲商品的售价是x 元/千克,乙商品的售价是y 元/千克,根据题意得:{x −y =6020(x −55)=60(y −15), 解得:{x =85y =25. 答:甲商品的售价是85元/千克,乙商品的售价是25元/千克;(2)设购进甲商品m 千克,则购进乙商品(120﹣m )千克,根据题意得:m ≤2(120﹣m ),解得:m ≤80.设购进的两种商品销售完后获得的总利润为w 元,则w =(85﹣55)m +(25﹣15)(120﹣m ),即w=20m+1200,∵20>0,∴w随m的增大而增大,∴当m=80时,w取得最大值,此时120﹣m=120﹣80=40.答:要使两种商品销售完后获得的总利润最大,应购进甲商品80千克,乙商品40千克.24.如图,四边形ABCD是⊙O的内接矩形,点E、F分别在射线AB、AD上,OE=OF,且点C、E、F 在一条直线上,EF与⊙O相切于点C.(1)求证:矩形ABCD是正方形;(2)若OF=10,则正方形ABCD的面积是40.(1)证明:如图,连接AC,∵四边形ABCD是⊙O的内接矩形,∴AC是⊙O的直径,∵EF与⊙O相切于点C,∴AC⊥EF,∵OE=OF,∴CF=CE,∠FOC=∠EOC,∴∠AOF=∠AOE,∵OA=OA,∴△AOF≌△AOE(SAS),∴AF=AE,∵四边形ABCD是矩形,∴∠F AE=90°,∴AC=12EF=CF=CE,∴∠CAE=45°,∵∠ABC=90°,∴∠ACB=45°,∴AB=CB,∴矩形ABCD是正方形;(2)解:∵OC=12AC,AC=CF,∴CF=2OC,∵OF=10,OF2=OC2+CF2,∴102=OC2+4OC2,∴OC=2√5,∴AB=√2OC=2√10,∴AB2=40,∴正方形ABCD的面积是40.故答案为:40.25.在平面直角坐标系中,已知抛物线y=x2+(k﹣2)x+3.(1)该抛物线经过一个定点:(0,3)(写出坐标);(2)点P(m,n)是抛物线上一点,当点P在抛物线上运动时,n存在最小值N.①若N=3,求k的值;②若﹣1<k<3,结合该抛物线,直接写出N的取值范围.(1)解:∵y=x2+(k﹣2)x+3,∴y=x(x+k﹣2)+3,∴当x=0时,y=3,∴无论k取何值,抛物线经过(0,3).故答案为:(0,3).(2)①∵y=x2+(k﹣2)x+3,a=1>0,∴二次函数的图象是开口向上的,点P为顶点时的n最小,∵N=3,∴4×3−(k−2)24=3,解得k =2,答:k 的值为2.②∵﹣1<k <3,∴0≤(k ﹣2)2<9,∴﹣9<﹣(k ﹣2)2≤0,∵N =4×3−(k−2)24≤3, ∴34<N ≤3. 答:N 的取值范围为34<N ≤3. 26.在学习矩形的判定时,王老师提出一个命题:“一组对边相等,一组对角相等且另外两个角中有一个直角的四边形是矩形”.小明和小丽都发现这个命题是假命题,并举出了反例.(1)小明:如图①,Rt △ABC 中,∠C =90°,把△ABC 沿AB 翻折,得到△ABD ,再以D 为圆心,DB 长为半径作弧,交射线CB 于点E ,连接DE ,过点A 、E 分别作AC 、BC 的垂线,交于点F .则四边形AFED 是该命题的一个反例.请你说明此反例的合理性.(2)小丽:作出图②,在△ABC 中,∠B =90°,∠NMB =∠A .她发现四边形ABMN 已满足一组对角相等,一个角是直角,但无法保证MN 恰好与AB 相等,请你完善小丽的作法,并在图②的基础上用尺规作图作出符合要求的M ′N ′,使四边形ABM ′N ′是该命题的一个反例(保留作图的痕迹,写出必要的文字说明).解:(1)∵△ABD 由Rt △ABC 翻折得到,∴AC =AD ,∠C =∠ADB =90°,∵EF ⊥CE ,AC ⊥AF ,∴四边形ACEF是矩形,∴AC=EF,∴AD=EF,在四边形ACBD中,∠DAC=180°﹣∠DBC,∠DBE=180°﹣∠DBC,∴∠DAE=∠DBE,∵BD=DE,∴∠DBE=∠DEB,∴∠DAC=∠DEB,∵∠F AD=90°﹣∠DAC,∠FED=90°﹣∠DEB,∴∠F AD=∠FED<90°,∴四边形ADEF满足一组对边相等,一组对角相等且另外两个角中有一个直角的四边形,但是它不是矩形;(2)如图所示,①在射线MN上截取MD=AB;②作DN′∥BC,交AC于点N′;③在BC上截取MM=DN′,连接MN′,四边形ABM′N′即为所求.27.在平面内,将小棒AB经过适当的运动,使它调转方向(调转前后的小棒不一定在同一条直线上),那么小棒扫过区域的面积如何尽可能地小呢?已知小棒长度为4,宽度不计.方案1:将小棒绕AB中点O旋转180°到B'A',设小棒扫过区域的面积为S1即图中灰色区域的面积,下同);方案2:将小棒先绕A逆时针旋转60°到AC,再绕C逆时针旋转60°到CB,最后绕B逆时针旋转60°到B′A′,设小棒扫过区域的面积为S2.(1)①S1=4πS2=8π﹣8√3;(结果保留π)②比较S1与S2的大小.(参考数据:π≈3.14,√3≈1.73.)(2)方案2可优化为方案3:首次旋转后,将小棒先沿着小棒所在的直线平移再分别进行第2、3次旋转,三次旋转扫过的面积会重叠更多,最终小棒扫过的区域是一个等边三角形.①补全方案3的示意图;②设方案3中小棒扫过区域的面积为S3,求S3.(3)设计方案4,使小棒扫过区域的面积S4小于S3,画出示意图并说明理由.解:(1)①方案1:∵将小棒绕AB中点O旋转180°到B'A',∴小棒扫过区域是以AB为直径的圆,∴S1=π×22=4π,方案2:∵扇形ABC的面积=60×π×16360=83π,∴S2=3×83π−√34×16×2=8π﹣8√3,故答案为:4π;8π﹣8√3;②∵S1=4π=4×3.14=12.56,S2=8×3.14﹣8×1.73=11.28,且12.56>11.28,∴S1>S2;(2)①依题意补全方案3的示意图如下:②连接EM,M为切点,则M为AA'的中点,EM=4,第21页(共21页)设AM =x ,则AE =2x ,由勾股定理得:AM 2+EM 2=AE 2,即:x 2+42=4x 2,解得:x =4√33, ∴AA '=AE =2x =8√33,∴S 3=12AA '•EM =12×8√33×4=16√33. (3)设计方案4:如图,△ABC 是等边三角形,首先让点B 在BC 上运动,点A 在CB 的延长线上运动,使得AB 的长度保持不变,当点B 运动到点C 时,由此AB 边调转到AC ( A 'B ')边,接着两次同样的方式旋转到BC ( A 'B ')边和AB ( B 'A ')边,最终小棒扫过的区域是如图所示.对于第一次旋转,当旋转AB 旋转到DH 时,此时DH ⊥BC ,又作DE ∥AB ,则S △CDE =S 3=S △ABC +S 梯形ABED ,依题意得:扫过的区域比等边三角形ABC 多三块全等的图形,记每块面积为a ,则有a <S △ADF ,F 为AB 的中点,∵S △ADF <S △GDF ,∴S △ADF <12S 四边形GDAF =14S 梯形ABED ,∴a <S △ADF <14S 梯形ABED ,∴S 4=S △ABC +3a <S △ABC +34S 梯形ABED <S △ABC +S 梯形ABED =S 3.。
2023年江苏省中考数学第二次联合测评试卷附解析
2023年江苏省中考数学第二次联合测评试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 在△ABC 中,∠C=900,若∠B=2∠A ,则tanA =( )AB . 3C .21D . 1 2.把抛物线221x y =向右平移2个单位,再向上平移1个单位,所得的抛物线的解析 式为 ( )A .()+-=2221x y 1 B .()--=2221x y 1 C .()++=2221x y 1 D .()21212-+=x y 3.关于抛物线215322y x x =-+-,下列说法不正确的是( ) A .开口向下B .对称轴是直线x=-3C . 顶点坐标(3,2)D . 顶点是抛物线的最高点 4.二次函数242y x =-的顶点坐标为( )A .(4,一2)B .(4,2)C . (4,0)D . (0,4) 5.要了解全市八年级学生身高在某一范围内的学生所占比例的大小,需要知道相应样本的( )A .平均数B .最大值C .众数D .频率分布6.两个完全相间的长方体的长,宽,高分别是5 cm ,4 cm ,3 cm ,把它们叠放在一起组成一个新长方体,在这些新长方体中,表面积最大的是( )A .188cm 2B .176cm 2C .164cm 2D .158 cm 2 7.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( )A .个体B .总体C .样本容量D .总体的一个样本8.为了考查某城市老年人参加体育锻炼的情况,调查了其中100名老年人每天参加体育锻炼的时间,其中100是这个问题的( )A .一个样本B .样本容量C .总体D .个体 9.如图是用直尺和圆规作一个角的平分线的示意图,则说明 OC 平分∠AOB 的依据是( ) A . SAS B .SSS C .ASA D . AAS10.如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( )A .315°B .270°C .180°D .135°11.下列四个图中,能表示线段x=a+c-b 的是( )A .B .C .D . 二、填空题12.如图所示,点D 、E 分别在线段AB 、AC 上,BE 、CD 相交于点O ,要使△ABE ∽△ACD ,需添加一个条件是 (只要写一个条件) . 13.菱形两对角线长分别为24 cm 和10 cm ,则菱形的高为 cm .14.如图所示,以五边形的各顶点为圆心,l cm 长为半径,画五个等圆,则图中阴影部分的面积之和为 cm 2.15. 方程22220x x -+=,这里24b ac -= .16. 若31a =+,31b =-,则22a b -⨯+= .17.如图,已知AB=AC ,要使△ACD ≌△ABE ,只要增加条件 .(写出一个即可)18.如果用c 表示摄氏温度(℃),f 表示华氏温度(℉),那么c f 与之间的关系是:5(32)9c f =-.已知15c =,则___f =. 三、解答题19.如图,在△ABC 中,中线BE ,CD 交于点O ,F ,G 分别是OB ,OC 的中点.A BC D E O求证:四边形DFGE 是平行四边形.20.如图, 在△ABC 中, ∠B = 90°, 点P 从点 A 开始沿AB 边向点B 以 1cm / s 的速度移动, Q 从点B 开始沿 BC 边向C 点以 2 cm / s 的速度移动, 如果点P 、Q 分别从A 、B 同时出发, 几秒钟后, △PBQ 的面积等于8 cm 221.已知3x =-是方程212x a x --=+解,解关于x 的不等式2233x ax <-.22.如图,C 表示灯塔,轮船从A 处出发以每小时21海里的速度向正北(AN 方向)航行,在A 处测得么∠NAC=30°,3小时后,船到达B 处,在B 处测得么∠NBC=60°,求此时B 到灯塔C 的距离.23.已知某电脑公司有 A .B 、C 三种型号的电脑,其价格分别为 A 型每台 6 000元,B 型每台4000元,C 型每台2500元. 育才学校计划将100500元钱全部都用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案,供学校选择.24.已知方程组3,51,ax byx cy+=⎧⎨-=⎩甲正确地解得2,3,xy=⎧⎨=⎩,而乙粗心地把c看错了,解得3,6,xy=⎧⎨=⎩,试求出a、b、c•的值.25.先化简,再求值:(4)(2)(1)(3)x x x x----+,其中52x=-.26.在 1999 年 8 月份结束的国际象棋女子世界冠军挑战赛上,我国女子国际象棋特级大师谢军在苦战第 15盘结束后,以净胜俄罗斯棋手加里亚莫娃 2 分的优异成绩,第三次夺得棋后桂冠. 问谢、加两位棋手最后的积分分别是多少? (在女子国际象棋比赛中规定,胜方得 1 分,负方得0分,和棋各得 0. 5 分)27.如图所示,已知∠BAC=∠DAE,∠B=∠C,BD=CE.证明:AB=AC,AD=AE.28.佩佩所在的班级共有50名学生,在一次教学考试中,女生的及格率为 80%,男生的及格率为75%,全班的及格率为 78%,问这个班的男、女生各有多少人?29.列式求三个数-10、-2、+4 的和比它们的绝对值的和小多少?30.为调动销售人员的积极性,A、B两公司采取如下工资支付方式:A公司每月2000元基本工资,另加销售额的2%作为奖金;B公司每月l600元基本工资,另加销售额的4%作为奖金.已知A、B公司两位销售员小李、小张l~6月份的销售额如下表:(1)请问小李与小张3月份的工资各是多少?(2)小李l~6月份的销售额y1与月份x的函数解析式是y1=l200x+10400,小张1~6月份的销售额y2也是月份x的一次函数,请求出y2与x的函数解析式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.(B)4.D5.D6.C7.C8.B9.B10.B11.D二、填空题12.∠B=∠C(答案不唯一)13.1201314. 32π15.16..∠B=∠C 或AD=AE 或∠AEB=∠ADC18.59三、解答题19.提示:∵DE //12BC ,FG //12BC ,∴DE //FG ,∴四边形DFGE 是平行四边形 20.2s 或4s .21.x<322.63海里23.假设学校购买A 型和B 型的电脑,设A 型x 台,则B 型y 台,列方程组,得3660004000100500x y x y +=⎧⎨+=⎩,解得21.75x =-,不合题意,舍去, 假设学校购A 型和C 型的电脑,设A 型x 台,则C 型y 台,列方程组,得3660002500100500x y x y +=⎧⎨+=⎩,解得3x =,则购买A 型3台,C 型33 台, 假设学校购买B 型和C 型的电脑,设B 型x 台,则C 型y 台,列方程组,得3640002500100500x y x y +=⎧⎨+=⎩,解得7x =,则购买B 型7台,C 型29台,所以可以购买A 型3 台、C 型33 台或B 型7台、C 型2924.a=3,b=-1,c=325.811x -+,3126.谢、加的积分分别为为 8.5 分和6. 5 分27.略28.设这个班男生有x 人,则女生有(50x -)人.由题意,得75%80%(50)78%50x x +-=⨯,解得20x =,∴5030x -=(人). 答:这个班男生20人,女生 30人.29.2430.(1)2280元,2040元;(2)y 2=1800x+5600;(3)9月份。
2023年江苏省南京市中考数学二模试题附解析
2023年江苏省南京市中考数学二模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列说法正确的是( )A .三角形的内心到三角形的三个顶点的距离相等B .三角形的内心到三角形的三条边的距离相等C .三角形的内心是三角形的三条中线的交点D .三角形的内心是三角形三边的中垂线的交点2.在一个有 10 万人的小镇,随机调查了 2000人,其中有 250 人看中央电视台的早新闻,在该镇随机问一个人,他看早新闻的概率大约是( ) A .0.75B . 0.5C . 0.25D . 0.125 3.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( ) A .2∶3 B .4∶9C .2∶3D .3∶24.如图,C 是以AB 为直径的⊙O 上一点,已知AB =5,BC =3,则圆心O 到弦BC 的距离是( ) A .1.5 B .2C .2.5D .3 5.已知AABC 的三个内角度数比为2:3:4,则这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形6.下列各组长度的三条线段能组成三角形的是( )A .3cm,3cm , 6cmB .7 cm,4cm , 5cmC .3cm,4cm , 8cmD .4.2 cm, 2.8cm , 7cm7.已知a +b =2,则224a b b -+的值是( ) A .2 B .3C .4D .68.若把2a bab+(a>0,b>0)中的a 、b 都缩小5倍,则分式的值( ) A .缩小5倍 B .缩小10倍 C .扩大5倍 D .保持不变 9.已知a <0,若-3a n ·a 3的值大于零,则n 的值只能是( )A .n 为奇数B .n 为偶数C .n 为正整数D .n 为整数10.长方形的周长是36(cm ),长是宽的2倍,设长为x (cm ),则下列方程正确的是( ) A .x+2 x =36B .1362x x +=C .2(x +2x )=36D .12()362x x +=二、填空题11.如图所示,转动甲、乙两转盘,当转盘停止后,指针指向阴影区域的可能性甲 乙(填“大于”、“小于”或“等于”).12.如图所示是 体的展开图.13.等腰△ABC 中,BC =8,AB 、AC 的长是关于x 的方程0102=+-m x x 的两根,则m 的值是 .14. 当x 取 时,26x 有意义.15.在弹性限度内,一弹簧长度y(cm)与所挂物体的质量x(kg)之间的函数关系是1052+=x y ,如果该弹簧最长可以拉伸到20cm ,则它所挂物体的最大质量是__________.16.近视眼镜的度数y (度)与镜片焦距x (m )成反比例,已知400度近视眼镜镜片的焦距为0.25 m ,则y 与x 的函数关系式为 .17.Rt △ABC 中,∠C =Rt ∠,∠A =30°,AB 的中垂线交AB 于D ,交AC 于E ,若△ADE 的面积是8,EC =3,BC =4,则△ABC 的面积为 .18.如图所示,将长方体沿着对角线用一个平面切开,所得截面中互相平行的线段有 组.19.若代数式2326x x -+的值为 8,则代数2312x x -+的值为 .三、解答题20.一口袋中装有四根长度分别为1cm ,3cm ,4cm 和5cm 的细木棒,小明手中有一根长度为3cm 的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题: (1)求这三根细木棒能构成三角形的概率; (2)求这三根细木棒能构成直角三角形的概率; (3)求这三根细木棒能构成等腰三角形的概率.21.已知y 是x 的反比例函数,当x=3时,y=4,则当x=2时求函数y 的值. 6.22.如图,在半径等于5㎝的圆0内有长为53㎝的弦 AB,求此弦所对的圆周角的度数.23.如图所示,G,H是□ABCD对角线AC上的点,且AG=CH,E,F分别是AB,CD的中点.求证:四边形EHFG是平行四边形.24.画图:某一海洋测量船在0处,测得灯塔A在0的北偏西30°,距O地13海里处,请你在下图中画出灯塔A的位置(图中1厘米表示l0海里);25.将如图所示的几何体分类,并说明理由.(1)立方体 (2)圆柱 (3)长方体 4)球 (5)圆锥 (6)三棱锥26..有一块菜地,地形如图,试求它的面积s(单位:m).27.解方程:47233xx x-+=--28.某生产车间制造 a 个零件,原计划每天造 x个,后来实际每天多造 b个,则可提前几天完成.2abx bx+29.若∠AOB=30°,过点 0引一条射线OC,使∠COB=15°,求∠COA 的度数.30.如图,一个4×2的矩形可以用不同的方式分割成2或5或8个小正方形,那么一个5×3的矩形用不同的方式可以分割成多少个小正方形?简要画出图形并说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.B5.A6.B7.C8.C9.B10.D二、填空题11.等于12.六棱锥13.16或2514.任何实数15.2516.100yx=17.2218.219.2三、解答题20.解:用枚举法或列表法,可求出从四根细木棒中取两根细木棒的所有可能情况共有6种.枚举法:(1,3)、(1,4)、(1,5)、(3,4)、(3,5)、(4,5)共有6种.(1)P(构成三角形)=4263=; (2)P(构成直角三角形)=16;(3)P(构成等腰三角形)=36=12.21.22.连结 AO、BO,过0作 OC⊥AB,交 AB于C,∵OC⊥AB 且平分AB,∴,△AOC为直角三角形,∴∠AOC= 60° ,∵∠AOC=∠BOC,∴∠AOB= 120° ,∴AB 所对圆周角为 60°或 120°.23.证△AGE≌△CFH,再证EG=HF,EG∥HF 24.略25.答案不唯一,如:(1)按平面分:立方体、长方体、三棱锥;(2)按曲面分:圆柱、球、圆锥26.24m227.无解28.2abx bx29.当OC在∠OB内部时,∠COA=15°;当OC在∠AOB外部时,∠COA=45°30.如图,可以分割成4或7或9或15个小正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京市鼓楼区2023年初三数学二模试卷
及答案
一、选择题(共15题,每题2分,共30分)
1. 在算式 $7 \times 3 + 5 \div 5$ 中,计算得:
- A. 23
- B. 22
- C. 21
- D. 20
2. 若$x$为整数,下列不等式中,为真的是:
- A. $|x+3| > 0$
- B. $|2x-1| < 2$
- C. $|3-x| > 1$
- D. $|4x+2| < 8$
3. 一个半径为$r$的圆的周长为$6 \pi$,则它的面积是:
- A. $3 \pi r$
- B. $6 \pi r$
- C. $9 \pi r$
- D. $12 \pi r$
4. 某数减去-8的结果为44,则这个数是:
- A. 52
- B. 48
- C. 36
- D. 40
5. 分解因式 $8x^2 - 18xy + 5y^2$ 得:
- A. $(2x-3y)(4x-4y)$
- B. $(4x-5y)(2x-2y)$
- C. $(4x-3y)(2x-5y)$
- D. $(4x-4y)(2x-2y)$
6. 下列函数的图象与其对应的“方程”错误搭配的是:- A. $y=-x^2+4x+3$
- B. $y=\frac{x+1}{x-2}$
- C. $y=3 \sqrt{x+3}-2$
- D. $y=\frac{x^2+2x+1}{x+3}$
7. 若 $B$ 是变量,$A = \frac{0.01B - 1}{0.01B + 1}$,则
$A$ 的取值范围是:
- A. $(-\infty, 1)$
- B. $(1, \infty)$
- C. $(-\infty, -1) \cup (1, \infty)$
- D. $(-1, 1)$
8. 若一颗球从15米高的地方自由下落,每次反弹高度为原高
度的一半,则第5次反弹时球的高度为:
- A. 0.9375米
- B. 0.625米
- C. 0.3125米
- D. 0.米
9. 有一组数排列如下:$a_0$, $a_1$, $a_2$, $a_3$, $a_4$, $a_5$, $\cdots$。
其中$a_0=3$,$a_1=9$,$a_2=27$,$a_n$ 是 $a_{n-
2}$ 与 $a_{n-1}$ 的和,那么 $a_1 + a_3 + a_5 + a_7$ 的值为:- A. 1260
- B. 972
- C. 756
- D. 540
10. 某数在4两和7两之间,且这个数是两位数,那么这个数的个位是:
- A. 4
- B. 5
- C. 6
- D. 7
11. 已知 $\log_ab=2$,$\log_ac=3$,则 $\log_a\frac{b}{c}$ 的值为:
- A. 1
- B. 2
- C. 3
- D. 6
12. 若对于任意整数$n$,不等式 $f(x)=nx^2+2(n^2+1)x+n$ 都有两个不等实数根,则实数$n$的取值范围是:
- A. $(-\infty, 0) \cup (0, \infty)$
- B. $(0, \infty)$
- C. $(-\infty, 0)$
- D. $(0, 1)$
13. 一部电影首映票房的30%将作为影片演员和其他工作人员的奖金。
已知首映票房3千万元,由于税款等因素,实际作为奖金的300万元约为首映票房的94.286%,则每万元票房的税款为:- A. 5714元
- B. 5577元
- C. 5357元
- D. 4885元
14. 用长度为6米的钢筋围成一个边长为1米的矩形,若长度和宽度相等,则这个矩形的周长为:
- A. 10米
- B. 12米
- C. 14米
- D. 16米
15. 某矩形卡片的长宽分别是6cm和8cm,如图,将矩形沿宽
度方向线段$EF$折叠,得到一个直角三角形$DGF$,则三角形$DGF$的面积是:

- A. 18平方厘米
- B. 24平方厘米
- C. 30平方厘米
- D. 36平方厘米
二、解答题(共4题,共40分)
16. 在空间直角坐标系 $O-xyz$ 中,四面体 $A(-1,0,0)$,
$B(0,3,0)$,$C(1,1,4)$,$D(2,-2,-2)$ 的底面是三角形 $ABC$,直
线 $AD$ 与平面 $BCD$ 相交于 $E$,试求 $\triangle AED$ 的面积。
17. 设 $\bigtriangleup ABC$ 的内角 $A$,$B$,$C$ 的对边分
别为 $a$,$b$,$c$,其中 $\sin A=\frac{3}{5}$,$\cos
B=\frac{7}{25}$。
求 $\triangle ABC$ 的面积。
18. 某地的西部风力强度服从正态分布,已知强度不小于20级的比例为4%,不大于45级的比例为12%,试求该地西部风力强度的标准差。
所谓标准差是指随机变量偏离其均值的程度。
19. 已知函数 $f(x)=\log_2(x+2)+\log_3(x+10)$,其中 $\log_2
3=\frac{1}{2}$,求函数 $y=f(x)$ 的单调区间。
三、综合题(共1题,共30分)
20. (本题文字较多,建议使用排版软件来呈现答案)如图为平面直角坐标系 $xOy$ 中的点集 $A$,$B$,$C$,$D$ 的图形,其坐标均为整数
- 图片略 -
现定义一个点集 $F$,其中的点 $P$ 满足 $\angle APB=\angle CPD=90^\circ$,请任选两个相距最近的点 $P$ 和 $Q$($P$,
$Q$ 可相同),建立集合关系,并写出它们的坐标。
四、附加题(共1题,共20分)
21. “你没有抢到我的手机。
”李明对小明说,小明笑着回答:“我早抢到了。
”这两句话哪句为真,哪句为假?为什么?
答案:
1. B
2. D
3. C
4. A
5. C
6. D
7. C
8. A
9. B
10. D
11. C
12. B
13. C
14. B
15. D
16. 面积为16平方单位
17. 面积为$\frac{9\sqrt{39}}{10}$平方单位
18. 风力强度的标准差为6.7级
19. 函数 $y=f(x)$ 的单调递减区间为$x > -2$
20. $P(1,1)$,$Q(7,1)$
21. 两句话都为假,因为小明和李明的说法矛盾。