数学建模万能模板7灵敏度分析
数学建模的万能模板

K:学科评价模型学科的水平、地位是高等学校的一个重要指标,而学科间水平的评价对于学科的发展有着重要的作用,它可以使得各学科能更加深入的了解本学科(与其他学科相比较)的地位及不足之处,可以更好的促进该学科的发展。
因此,如何给出合理的学科评价体系或模型一直是学科发展研究的热点问题。
现有某大学(科研与教学并重型高校)的13个学科在一段时期内的调查数据,包括各种建设成效数据和前期投入的数据。
1、根据已给数据建立学科评价模型,要求必要的数据分析及建模过程。
2、模型分析,给出建立模型的适用性、合理性分析。
3、假设数据来自于某科研型或教学型高校,请给出相应的学科评价模型。
承诺书页编号学科评价摘要(一)对问题的基本认识或处理整个问题的基本框架,思路(简明扼要,重点,亮点突出)研究目的,意义要求)本文研究。
问题。
即数学类型的归纳(一)(建模思路)(1.每题数据性质等粗略分析)首先,本文分别分析每个小题的特点:。
(2.建立模型的思路:)针对第一问。
问题,本文建立。
模型;在第一个。
模型中,本文对。
问题进行简化,利用。
什么知识建立什么模型;在对。
模型改进的基础上建立了。
模型Ⅱ。
针对第二。
针对第三。
(三)算法思想,求解思路,使用方法,程序)1)针对模型求解,(设计。
求解思路)。
本文使用。
什么算法,。
软件工具,对附件中所给的数据进行筛选,去除异常数据,对残缺数据进行适当的补充,求解出什么问题,进一步求解出。
什么结果。
(方法,软件,结果清晰写出来)2)建模特点,模型检验)对模型进行合理的理论证明和推导,所给出的理论证明结果大约为。
模型优点。
,建模思想方法。
,算法特点。
,结果检验。
,。
,模型检验。
从中随机抽取了3组(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。
等等3)在模型的检验模型中,本文分别讨论了以上模型的精度,稳定性,灵敏度等分析。
(四)(数据结果,结论,回答所问道所有问题)最后,归纳全文,突出亮点,指出不足,提出本文通过改进或扩展。
数学建模敏感性分析课件

医学研究与诊断案例
诊断模型建立与敏感性分析
敏感性分析在医学研究中的 应用
医学图像处理中的敏感性分 析案例
药物剂量调整中的敏感性分 析应用
农业产量预测案例
案例背景:介绍农业产量预测的背景和 意义
模型建立:详细介绍模型建立的过程和 步骤
数据来源:说明数据来源和收集方法
结果分析:对模型结果进行分析和解释
THANKS
汇报人:PPT
添加标题
添加标题
评估气候变化对环境和人类活动的 影响
医学研究与诊断
医学影像处理:利用数学建模敏感性分析提高医学影像的分辨率和准确性
疾病预测与诊断:通过数学模型对疾病数据进行敏感性分析,提高疾病预 测和诊断的准确性和效率
药物研发:利用数学建模敏感性分析优化药物研发过程,提高药物疗效和 降低副作用
个性化治疗:通过数学模型对患者的个体差异进行敏感性分析,为患者提 供更加个性化的治疗方案
未来展望:随着科技的不断进步和应用领域的不断拓展,数学建模敏感性分析将会在未来的发展中发挥 更加重要的作用,为各个领域的决策和预测提供更加准确和可靠的支持。
Part Seven
数学建模敏感性分 析实践建议与注意
事项
提高模型精度与稳定性
模型参数选择:选 择合适的参数,提 高模型精度
数据处理:对数据 进行预处理,减少 误差
● 背景:基于统计学和数学理论,通过对模型进行敏感性分析,可以更好地理解和解释模型结果 我 正 在 写 一 份 主 题 为 “ 数 学 建 模 敏 感 性 分 析 课 件 ” 的 P P T, 现 在 准 备 介 绍 “ 数 学 建 模 敏 感 性 分 析 方 法”,请帮我生成“主要方法”为标题的内容 主要方法
数学建模敏感性分析课件

05
CATALOGUE
敏感性分析的未来发展
基于机器学习的敏感性分析方法
机器学习算法
利用机器学习算法对模型输入参数进行学习,预测模型输出结果 的变化趋势,从而评估参数的敏感性。
数据驱动
基于大量数据,通过机器学习算法训练模型,提高敏感性分析的准 确性和可靠性。
可解释性
机器学习算法可以提供模型参数与输出结果之间的关联性解释,帮 助理解参数对模型输出的影响。
详细描述
通过反向传播算法,可以计算出每个节点对误差的敏感度,进而了解网络中各层 之间的信息传递和相互作用。此外,还可以通过可视化技术,如激活图或梯度图 ,来直观地展示网络中各节点的敏感性和信息流。
04
CATALOGUE
敏感性分析的局限性
数据质量对敏感性分析的影响
数据不准确
如果数据存在误差或错误 ,将导致敏感性分析的结 果偏离实际情况。
性分析的准确性降低。
假设不变
模型假设在实际情况中可能发生 变化,而敏感性分析未能及时反
映这些变化。
参数选择对敏感性分析的影响
参数范围不合理
参数范围的设定可能不符合实际情况,导致敏感 性分析的结果不准确。
参数选择主观性
参数的选择可能存在主观性,导致不同人进行敏 感性分析的结果存在差异。
参数相关性
某些参数之间可能存在相关性,导致敏感性分析 无法准确判断单个参数的影响。
基于大数据的敏感性分析方法
数据整合
01
整合多源、多尺度数据,全面考虑各种因素对模型输出的影响
,提高敏感性分析的全面性。
数据驱动决策
02
基于大数据的敏感性分析可以为决策提供科学依据,帮助决策
者更好地理解和应对不确定性。
灵敏度分析5种实例

Maxz=2x1+3X2+4x3x1+2X2+x i+x4=3S.t2x l-x2+3x3-x5=4x1,∙∙∙,x5≥0基变量xl=2,x2=3;非基变量x3=x4=x5=O;由约束条件得基变量用非基变量表示为p=⅛-5⅞-⅛^4÷y⅞[j⅛=f+∣Λ⅛-⅜X4-⅜X5目标函数中基变量用非基变量代入后Z=14-fx3-fx4-fx5o(1)当目标函数中系数Ci变化时(只要考虑最优性条件):设目标函数变为MaX z,=cx l+3X2+4x3目标函数中基变量用非基变量代入2=⅛c+f-(yC-^)x3-(y+fc)x4-(⅜-jc)%5所以如果“-等,∣+⅛C,∣-⅜C≥0,则符合最优解判别条件,所以目标函数最优性不变z=∙⅛c+/由“一等,f+⅛c,£一"之0解得最优性不变的C的范围。
否则,即如果超出该范围,则重新用单纯形法求解。
(2)当约束条件右边常数2变化时(先考虑可行性条件看最优基是否变化,再考虑):x1+2X2+x3+x4=b设约束条件变为2X1-X2+3X3-X5=4X I,∙∙∙,Λ5≥0先假设基没有变,所以令非基变量x3=x4=x5=0代入约束条件解得为4,JX2=2^-4根据可行性条件,必须和%≥o,解得匕的范围,即在此范围内最优基不变(最优解可能变化,要另外去求)。
否则,即如果超出该范围,则重新用单纯形法求解。
(3)当约束条件中价值系数传变化时(先看可行性条件看最优基是否变化,再考虑最优值):a ll x l+Ix1+x3+X4=3设约束条件变为,2X1-X2+3X3-X5=4x1,∙∙∙,x5≥0Ir=5先假设基没有变,所以令非基变量x3=x4=x5=0代入约束条件解得解得为{,^v_2q∣-36(x21Il根据可行性条件,必须%,马≥0,解得。
”的范围,即在此范围内最优基不变(最优解可能变化,要另外去求)。
否则,即如果超出该范围,则重新用单纯形法求解。
模型参数灵敏度分析

返回主页模型参数灵敏度分析建立数学模型的主要目的之一是增进我们对系统的了解,而模型参数的灵敏度分析是对数学模型的参数动态变化过程, 即瞬时变化过程进行分析。
因此,通过模型参数的灵敏度分析可以明确哪些参数对系统的总体输出和动态影响较大。
1. 方法简介下面考虑一个经验模型,其模型的输出y 可以是一种作物的产量,也可以是一头奶牛的总泌乳量等,假定对该模型已经圆满地进行了检验与评价,包括对试验数据进行了适度的拟合。
模型中有些参数是生理指标,而有些是环境指标,另有一些参数,如对作物投入肥料x i,按其对产量的相对效应进行排序,则无论目标函数怎样,都可以得到较为客观的度量。
目标函数y 对参数x i 的灵敏度S(y, x i)的定义为:函数y 对输入参数x i 的灵敏度。
2. 灵敏度分析的计算机处理在分析模型参数变化速率之前, 先给出模型方程,并将模型及其参数按规定格式定义成公式块,按系统要求将待分析的公式放在公式块的第1 行,这些待分析的公式系由变量和参数组合起来的表达式。
在公式中用x1, x2,⋯, x p分别代表p个变量(必须从1开始按顺序给出)。
公式中可使用本系统的全部标准函数,最后的公式在形式上必须是合法的数学表达式,定义格式为方程表达式变量1 的起始值, 终止值, 间隔值或变量1 的取值水平。
变量2 的起始值, 终止值, 间隔值或变量2 的取值水平。
21.5+4.29 x1-3.77 x2-0.059 x1^2-0.015 x2^2+0.0044 x1x212, 18, 0.150 上述公式块中的第2行表示变量x1从12 开始到18,每隔0.1 分析一次,第3行表示将x2 固定为50。
例如研究产量随某种肥料用量变化的规律,求出的肥料反应经验方程为,根据该方程进行模型的灵敏度分析,先按图22-7 的方式编辑定义公式:3x1+2x1x1-0.1x1^31 16 0.5图22-7 产量函数灵敏度分析公式定义图然后进入菜单操作,选择“模型参数变化速率分析”菜单,执行后系统即输出分析结果,yx1灵敏度导数(边际值)平均效应y/ x 目标函数0.0000... 3.0000 ... 0.00000.5000 1.2390 4.9250 3.9750 1.98751.0000 1.3673 6.7000 4.9000 4.9000。
3.灵敏度分析

3T (0,0,1)
T
b (14,8,92)
Min( 8 1
,
92 ) 4
b1
Max( 14) 2
即, 120 b1 105
15 15
15
14 92
8
Min( , ) b Max( )
1 13
2
8
即, 1380 13
b2
15
15 15
15
b 92 3 11
例4 下面是某LP问题的单纯形表 x4 , x5为松弛变量
1 2
4 2
0
所以, 1 1
4
13
五、C的改变
例4:下面是一张LP问题的最优单纯
形表,观察其基变量、非基变量目标
函数系数的改变对检验数的影响
cj
2 3100
cB xB b x1 x2 x3 x4 x5
2 x1 1 1 0 -1 3 -1
3 x2 2 0 1 2 -1 1
σ
0 0 -3 -3 -1
bi
ir
当ir
0时,br
bi
ir
6
即,br的变化范围是:
Max( bi
ir
|
ir
O)
br
Min( bi
ir
|
ir
0)
注:
(1) 此时最优基不变,但最优值发生改变
(2) 只能有一个常数项发生改变
7
例 2:
下面是求解同一LP问题的初始单纯形表
和最优单纯形表
求b1, b2 , b3的变化范围,使原最优基仍最优 初始单纯形表
cj cB xB b
2 x1 1 3 x2 2 0 x6 1
σ -8
灵敏度分析图解法
若 c1增加16 —x2
(c2
不变)
14 —
=
-
c1x1 c2
+
Z c2
灵敏度分析 —图解法
12 —
2x1 + x2 16
10 — B
8—
C
6—
4—
2x1 + 2x2 18
新的最优解
D 4x1 + 6x2 48
2—
0
A
|| 24
|||| |||
6 E 8 10 12 14 16 18
x1
目标函数的系数
– 当这些系数在什么范围内变化时,原最优解 仍保持不变?
– 若最优解发生变化,如何用最简单的方法找 到现行的最优解?
• 研究内容:
研究线性规划中,aij , bi , c j 的变化对最
优解的影响。
研究方法:
➢ 图解法
仅适用于含2个变量 的线性规划问题
➢ 对偶理论分析
在单纯形表中 进行分析
灵敏度分析——图解法
最优解 (3,6)
4x1+ 6x2=48 2x1+ 2x2 =18
4—
4x1 + 6x2 48
2—
D
0
A
|| 24
| 6
||| ||| 8 10 12 14 16 18
x1
E (8,0)
目标函数的系数
34x1 + 40x2 = Z 18 —40x2 = - 34x1 + Z
16 —
x2
=
-
34x1 40
34x1 + 40x2 = Z 18 —40x2 = - 34x1 + Z
16 —
数学建模敏感性分析课件
3个约束条件的右端不妨看作3种“资源”:原料、劳动时间、 车间甲的加工能力。输出中SLACK OR SURPLUS (松弛或 剩余)给出这3种资源在最优解下是否有剩余:原料、劳动时 间的剩余均为零(即约束为紧约束),车间甲尚余40公斤加 工能力(不是紧约束)。
2. 约束右端项变化的范围(Right Hand Side RANGES) 如本例中:第2行约束中当前右端项(CURRENT RHS)=48, 允许增加(Allowable Increase)=INFINITY(无穷)、允许 减少(Allowable Decrease)=24,说明当它在
[48-24,48+ ) = [24,)
目标函数可以看作“效益”,成为紧约束的“资源”一旦增加, “效益”必然跟着增长。
输出中DUAL PRICES(对偶价格) 给出这3种资源在最优解 下“资源”增加1个单位时“效益”的增量:原料增加1个单位 (1桶牛奶)时利润增长48(元),劳动时间增加1个单位(1 小时)时利润增长2(元),而增加非紧约束车间甲的能力显 然不会使利润增长。
选择“是(Y)”按钮,这表示你需要做灵敏性分析。 然后,查看输出结果。
输出结果的前半部分:
LP OPTIMUM FOUND AT STEP 1 OBJECTIVE FUNCTION VALUE
VARIABLE VALUE
REDUCED COST
ROW SLACK OR SURPLUS DUAL PRICES
RHS
INCREASE
DECREASE
3
20.000000
4.000000
201709动力实数学建模实验——线性规划灵敏度分析实验报告模板
数学建模与数学实验课程实验报告实验名称线性规划问题建模和灵敏度分析
所以当生产甲产品12.41379t,乙产品34.48276t时,可以获得最大利润
A1基地向B1,B2,B3销售地分别发货0吨,50吨,10吨;A2基地向分别发货50吨,0吨,30吨,才能使总的运费最小为4800元。
、综合题,建立模型并借助lingo求解和分析。
所以当生产A,B,C,D产品分别为0万件,1.5万件,1.5万件,0万件时,使总利润最大。
(2)答:利用lingo进行分析得:
因为决策变量x5的差额成本为16,说明在E的利润为
产品要亏损16万元。
所以E的利润为至少为17万元,投资才有利。
三、思考题解答
1、简述什么是线性规划问题的紧约束?
答:一般称资源剩余为0的约束为紧约束,此时系统已达最优状态,都成为紧约束时,这样才能充分发挥生产能力和资源潜力,。
工程类环境系统分析数学模型的参数估计及灵敏度分析PPT精品课件
-1
-1
5、网格法
假定有n个等定参数,且已 知各参数的取值范围,把各搜索 区间(取值范围)分成若干个等 分,则参数空间
θ=(θ1, θ2,…, θn)T就被划分成若 干网格,计算所有网格顶点上的 目标函数值,并取其中最小的值 所对应的参数值作为最优估计值。
6、经验公式计算法 如:河流的复氧速度常数,大气扩
• 除经验公式外,其余方法均是利用 系统输入输出数据和数学模型本身 确定合理的参数数值。
1、 图解法
对经适当处理后以转换为直线的 公式,均可用图解法估计参数,其
2、一元线性回归分析法 亦称最小二乘法 该法有两个假定:
①所有自变量的值均不存在误差, 因变量的值则含有测量误差; ②与各测量点拟合最好的直线为能 使各点到直线的竖向偏差(因变量 偏差)的平方和最小的直线。
利用相关系数、相对中值 误差和绝对中值误差等验证方法 还可验证所用参数估值方法哪种 效果更好些。
三、数学模型的灵敏度分析
由于环境系统是一个开放性 系统,各种影响非常复杂,很难精 确定量,各种数学模型存在着不确 定性(有许多假设),模型中的参 数也有误差,因此,利用模型进行 的模拟和规划的真实性,可靠性究 竟如何,如何对此做出估计,换言 之,状态变量对参数的灵敏度如何, 目标函数对参数的灵敏度如何以及
灵敏度分析可以估计模型计算 结果的偏差,且还有助于建立低 灵敏度系统,(这种系统在运行 上比较可靠),有助于确定合理 的设计裕量,这比盲目给定安全 系数要合理得多。
(希望是低灵敏度高预测精度的模 型)
误差分析是直接验证模型计算 结果与实测值的差异,针对一些零 散值而作的,而灵敏度分析是从另 一角度考虑该模型参数的误差大小 对状态变量所引起的计算误差和对 目标函数所引起的误差的一种敏感 程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模万能模板7灵敏度分析
1.引言
在引言部分,首先简要介绍灵敏度分析的重要性,以及在各种数学建模场景中的应用。
可以列举一些实际例子来支持这一观点,同时阐述灵敏度分析对于决策制定、预测以及控制等领域的贡献。
2.灵敏度分析概述
在这一部分,详细解释灵敏度的概念,以及如何利用灵敏度分析来研究模型输出如何随输入参数的变化而变化。
可以引入一些数学概念,如雅可比矩阵、灵敏度系数等,以便为后续的分析打下基础。
3.灵敏度分析方法
在这一部分,介绍灵敏度分析的主要方法,如局部灵敏度分析、全局灵敏度分析、蒙特卡洛模拟等。
详细解释每种方法的原理、计算步骤以及适用范围。
此外,还可以讨论这些方法在数学建模中的应用。
4.数学建模灵敏度分析实例
在这一部分,结合具体的数学模型,进行灵敏度分析的实例展示。
可以选择一个或多个具有代表性的模型,如预测模型、优化模型等。
详细介绍如何使用灵敏度分析方法来研究这些模型的灵敏度特征,以及如何根据分析结果来改进模型或调整模型参数。
5.灵敏度分析的决策应用
在这一部分,讨论灵敏度分析在决策制定中的应用。
可以根据实际情况列举一些具体案例,如根据灵敏度分析结果来制定资源分配策略、调整生产计划或制定风险管理策略等。
此外,还可以讨论灵敏度分析如何与其他技术(如机器学习、仿真等)结合使用,以提高决策制定的科学性和准确性。
6.灵敏度分析的挑战与展望
在这一部分,讨论灵敏度分析面临的挑战以及未来的发展方向。
例如,如何处理高维度模型、如何提高计算效率、如何将灵敏度分析与不确定性量化相结合等。
此外,还可以探讨灵敏度分析在其他领域的应用前景,如生物医学、环境科学等。
7.结论
总结全文的主要内容,强调灵敏度分析在数学建模中的重要性以及在实际应用中的价值。
同时指出本文所介绍的灵敏度分析方法只是其中的一部分,鼓励读者在今后的学习和实践中进一步探索其他灵敏度分析方法,并将其应用于实际问题中。
8.参考文献
列出本文中所引用的参考文献,格式按照所选的参考文献类型进行整理排版即可。
总的来说,这个模板涵盖了数学建模灵敏度分析的各个方面。
在实际使用时,可以根据具体的场景和需求对模板内容进行修改和调整。
希望这个模板能够帮助读者更好地理解和应用灵敏度分析。