线性代数应用实例

合集下载

线性代数在计算机科学中的应用

线性代数在计算机科学中的应用

线性代数在计算机科学中的应用线性代数作为数学学科的一个重要分支,广泛应用于各个领域。

在计算机科学中,线性代数也扮演着重要的角色。

本文将介绍线性代数在计算机科学中的应用,并分别以几个实际案例来说明其具体应用。

一、图像处理图像处理是计算机科学中一个重要的应用领域,而线性代数在图像处理中发挥着重要作用。

以图像的表示为例,一张彩色图像可以用一个矩阵来表示,其中每个元素代表相应像素点的颜色信息。

通过对这个矩阵进行线性变换,比如缩放、旋转和平移等操作,可以实现对图像的各种处理,例如尺寸变换、滤波和锐化等。

此外,线性代数的矩阵运算还可以用于图像的压缩和去噪等方面。

二、机器学习在机器学习领域,线性代数是必不可少的工具之一。

常见的机器学习算法,比如线性回归、逻辑回归和支持向量机等,都是基于线性代数的理论和方法。

例如,在线性回归中,可以通过构造一个线性方程组来求解最优的模型参数;在逻辑回归中,可以使用矩阵运算来计算样本的概率和损失函数。

此外,对于高维数据的处理,线性代数的矩阵运算可以有效地进行特征提取和降维等操作。

三、图论图论是计算机科学中研究图的性质和应用的一门学科,而线性代数提供了图论研究的基础工具。

以邻接矩阵为例,可以用一个矩阵来表示图的连接关系,其中矩阵的元素表示节点之间的边。

通过对邻接矩阵进行线性变换,可以实现对图的各种操作,比如最短路径的计算、连通性的判断和社交网络的分析等。

此外,线性代数的特征值和特征向量也可以应用于图的聚类和社团检测等问题。

四、密码学密码学是保护信息安全的一门学科,而线性代数在密码学中具有广泛的应用。

以加密算法为例,矩阵是常用的加密操作对象。

通过对明文和密钥进行矩阵运算,可以得到密文。

在解密过程中,再次对密文和密钥进行矩阵运算,即可还原为明文。

此外,线性代数的向量空间和矩阵空间也可以用于密码系统的设计和分析中。

综上所述,线性代数在计算机科学中具有广泛而重要的应用。

通过在图像处理、机器学习、图论和密码学等领域中的应用实例,展示了线性代数的实际应用能力。

线性代数的应用举例

线性代数的应用举例

三、人口迁徙模型
• 设在一个大城市中的总人口是固定的。人口的分布则 设在一个大城市中的总人口是固定的。 因居民在市区和郊区之间迁徙而变化。每年有6%的 因居民在市区和郊区之间迁徙而变化。每年有 的 市区居民搬到郊区去住,而有2%的郊区居民搬到市 市区居民搬到郊区去住,而有 的郊区居民搬到市 假如开始时有30%的居民住在市区,70%的居民 的居民住在市区, 区。假如开始时有 的居民住在市区 的居民 住在郊区, 住在郊区,问10年后市区和郊区的居民人口比例是多 年后市区和郊区的居民人口比例是多 少?30年、50年后又如何? 年 年后又如何? 年后又如何
x1
x4
D
260
x2
B 220 292
C 357
x3
单行道4节ቤተ መጻሕፍቲ ባይዱ交通图
320
• 问题:某城市有如图的交通图,每一条道路都 问题:某城市有如图的交通图, 是单行道, 是单行道,图中数字表示某一个时段的机动车 流量。 流量。 • 针对每一个十字路口,进入和离开的车辆数相 针对每一个十字路口, 等。 • 请计算每两个相邻十字路口间路段上的交通流 量xi(i=1,2,3,4) ( )
一、药方配制问题
问题:某中药厂用 种中草药 种中草药( ), ),根据不同的比 问题:某中药厂用9种中草药(A-I),根据不同的比 例配制成了7种特效药 各用量成分见表1(单位: 种特效药, 例配制成了 种特效药,各用量成分见表 (单位:克) (1)某医院要购买这7种特效药,但药厂的第3号药和 )某医院要购买这 种特效药,但药厂的第 号药和 种特效药 号药已经卖完, 第6号药已经卖完,请问能否用其他特效药配制出这两 号药已经卖完 种脱销的药品。 种脱销的药品。 种草药配制三种新的特效药, (2)现在该医院想用这 种草药配制三种新的特效药, )现在该医院想用这7种草药配制三种新的特效药 给出了三种新的特效药的成分, 表2给出了三种新的特效药的成分,请问能否配制? 给出了三种新的特效药的成分 请问能否配制? 如何配制? 如何配制?

浅谈线性代数的一些应用实例

浅谈线性代数的一些应用实例

浅谈线性代数的一些应用实例一、关于矩阵运算的应用1.数学期望值准则。

把各种行动方案看成不同的随机变量,每个方案对应若干种状态,假设它们的概率是已知的,每个方案在各种状态下的效益看成随机变量的取值。

数学期望准则就是将每个行动方案的数学期望计算出来,视其决策目标的情况选择最优行动方案。

如果决策目标是利润、效益等最大,则采用期望值最大的行动方案;如果决策目标是成本、损失等最小,则采用期望值最小的行动方案。

用X表示各行动方案的集合,N表示各具体行动方案所处各种状态的集合,它们的概率写成向量P,效益值写成矩阵A(其中,列向量代表不同的随机变量在各种状态的取值):N=(N1,・・・,Nn),P=(P1(N1),・・・,Pn(Nn)),X=(X1,・・・,Xm),A=(aij)m×n。

则数学期望E(X)=(E(X1),・・・,E(Xn))=PA,决策就是确定向量E(X)的最大分量或最小分量所对应的行动方案。

例某投资者要在两种产品间作投资选择:生产领带或旅游鞋。

生产领带需投资800万元,生产旅游鞋需投资1000万元。

两者的生产年限都是8年,估计在此期间两个方案的产品销售状况出现好、中、差的概率都是0.5、0.3、0.2。

生产领带在好、中、差的状况下的年纯利润分别为400万元、300万元、50万元;生产旅游鞋在好、中、差的状况下的年纯利润分别为500万元、400万元、120万元。

试按数学期望值准则对这两种方案进行决策。

解:P=(0.5,0.3,0.2),A=■T,X1=产领带,X2=产旅游鞋。

令Y=8X-Y0,这里Y0=(800,1000),则EY=8(EX)-Y0=8PA-Y0=(1600,2152),因此应采取生产旅游鞋方案。

2.矩阵乘幂的应用。

例某高校所在地本地学生度周末有回家和在校两种选择。

统计数据显示,本周末回家的学生,下周末回家的几率为2/5,本周末在校的学生下周末在校的几率是1/5。

已知第一周末有30%本地学生回家。

线性代数应用案例

线性代数应用案例

线性代数应用案例线性代数是数学中的一个重要分支,它研究向量空间和线性映射的理论。

线性代数的应用非常广泛,涉及到物理学、工程学、计算机科学等多个领域。

本文将介绍线性代数在实际应用中的一些案例,以帮助读者更好地理解和应用线性代数知识。

1. 机器学习中的特征空间转换。

在机器学习领域,特征空间转换是一种常见的数据预处理方法。

通过线性代数中的矩阵运算,可以将原始的高维特征空间转换为新的低维特征空间,从而实现对数据的降维处理。

这种方法不仅可以减少数据的维度,还可以保留数据的主要特征,提高机器学习模型的训练效果。

2. 图像处理中的矩阵变换。

在图像处理领域,矩阵变换是一种常用的技术。

通过线性代数中矩阵的旋转、缩放、平移等运算,可以实现对图像的各种变换操作,如图像的旋转、放大缩小、平移等。

这些操作可以帮助我们实现图像的处理和增强,提高图像的质量和美观度。

3. 电路分析中的矩阵方程。

在电路分析中,线性代数的矩阵方程是一种常用的建模和求解方法。

通过建立电路元件的电压电流关系,并转化为矩阵方程组,可以利用线性代数的方法求解电路中各个节点的电压和电流。

这种方法不仅简化了电路分析的复杂度,还可以有效地分析和设计各种复杂电路。

4. 控制系统中的状态空间模型。

在控制系统领域,线性代数的状态空间模型是一种常用的描述和分析方法。

通过线性代数的矩阵运算,可以将控制系统的动态方程转化为状态空间模型,从而实现对控制系统的建模和分析。

这种方法不仅可以方便地进行系统的稳定性和性能分析,还可以实现对控制系统的设计和优化。

5. 金融工程中的投资组合优化。

在金融工程领域,线性代数的投资组合优化是一种常见的方法。

通过建立投资组合的收益和风险之间的线性关系,并利用线性代数的优化方法,可以实现对投资组合的优化配置。

这种方法不仅可以帮助投资者实现收益和风险的平衡,还可以提高投资组合的收益率和稳定性。

总结。

线性代数作为一门重要的数学学科,其在实际应用中发挥着重要的作用。

线性代数在天气预报中的应用 案例解析

线性代数在天气预报中的应用 案例解析

线性代数在天气预报中的应用案例解析线性代数是一门数学分支,与线性方程组、线性变换以及向量空间等概念相关。

尽管它看起来可能与天气预报没有任何关系,但实际上,线性代数在天气预报中有着重要的应用。

本文将通过案例解析,介绍线性代数在天气预报中的具体应用。

案例一:温度预测温度预测是天气预报中最常见的任务之一。

我们常常需要根据过去几天的气温数据,通过建立数学模型来预测未来几天的气温变化。

线性代数提供了一种有效的方法来解决这个问题。

假设我们有一组数据,包含过去7天的气温情况,分别是28°C、25°C、27°C、26°C、29°C、31°C和30°C。

我们将这组数据表示为向量(28, 25, 27, 26, 29, 31, 30)。

为了建立一个能够预测未来气温的模型,我们利用线性代数中的最小二乘法来拟合一条直线。

我们假设直线的方程为 y = a + bx,其中 y 表示温度,x 表示天数。

通过最小二乘法,我们可以求得最佳拟合直线的参数 a 和 b。

根据这个模型,我们可以预测未来几天的温度。

案例二:风向风速预测风向和风速的预测对于许多行业和领域都有着重要的意义,例如风力发电、飞行器安全等。

线性代数也可以应用于风向风速的预测中。

所示:(80°, 3m/s)(90°, 4m/s)(75°, 3.5m/s)(85°, 3.2m/s)(70°, 2.8m/s)我们将这组数据表示为矩阵形式:[80 3][90 4][75 3.5][85 3.2][70 2.8]为了预测未来的风向和风速,我们可以使用线性代数中的回归分析方法。

通过将矩阵进行分解和计算得到的拟合方程,我们可以得到预测模型。

案例三:降水量预测对于农业、水资源管理等领域来说,降水量的准确预测十分重要。

线性代数可以提供一种有效的方法来建立降水量预测模型。

应用线性代数解决实际问题

应用线性代数解决实际问题

应用线性代数解决实际问题线性代数作为数学的一个重要分支,广泛应用于各个领域,包括计算机科学、物理学、经济学等。

它不仅是数学家们研究的重要工具,更是解决实际问题的有效途径。

本文将通过具体案例,介绍线性代数在实际问题中的应用,从而展示其强大的解决能力。

案例一:网络流量优化现代社会离不开互联网,而网络流量的优化是提高互联网服务质量的重要问题之一。

假设我们有一组服务器,每个服务器的带宽和消耗成本有所不同,现在需要将用户的请求合理地分配到这些服务器上,以最大化带宽利用率并最小化消耗成本。

这就可以转化为一个线性代数中的线性规划问题。

首先,我们可以用一个向量表示服务器的带宽,用另一个向量表示服务器的消耗成本。

设请求到达的向量为x,那么我们的目标就是最大化带宽利用率和最小化消耗成本,可以构建如下优化模型:maximize cᵀx subject to Ax ≤ b其中,c是服务器的消耗成本向量,x是请求到达的向量,A是服务器带宽的矩阵,b是服务器的带宽上限。

通过求解这个线性规划问题,我们可以得到最佳的请求分配方案,从而实现网络流量的优化。

案例二:图像处理线性代数在图像处理中有着广泛的应用。

以黑白图片为例,可以将其表示为一个矩阵,其中的元素代表每个像素点的灰度值。

通过矩阵的加减、乘除运算,以及线性变换等操作,可以实现图像的平移、旋转、缩放等处理效果。

举个例子,假设我们想要将一张黑白图片的亮度增加一倍。

我们可以将这张图片表示为一个矩阵A,然后构造一个倍增矩阵B,即每个元素都是2。

通过这两个矩阵的乘法运算,即可实现亮度的增加。

这个过程可以用下面的表达式表示:A' = BA其中,A'表示亮度增加后的图像矩阵。

通过线性代数的运算,我们可以方便地实现图像处理中的各种效果。

总结线性代数作为数学的重要分支,具有广泛的应用领域。

本文通过网络流量优化和图像处理两个具体案例,展示了线性代数在实际问题中的应用。

线性代数的强大解决能力不仅能帮助我们解决现实生活中的问题,同时也为我们提供了一种思维方式和方法论。

线性代数在工程技术中的应用 案例解析

线性代数在工程技术中的应用 案例解析

线性代数在工程技术中的应用案例解析一、简介线性代数是数学中的一个重要分支,它的应用十分广泛,尤其在工程技术领域中发挥着重要的作用。

本文将通过几个具体的案例,探讨线性代数在工程技术中的应用,并进行详细的解析。

二、案例一:图像处理中的矩阵变换在图像处理领域,矩阵变换是一项常用的技术。

例如,通过线性代数中的矩阵乘法运算,可以实现图像的旋转、平移、缩放等操作。

假设我们有一张图片,我们可以将其表示为一个二维矩阵,每个像素点对应矩阵中的一个元素。

通过对这个二维矩阵进行线性代数运算,我们可以实现对图像的各种变换操作。

以旋转为例,我们可以通过构造旋转矩阵,将原始图像进行旋转,从而得到新的图像。

这样的应用不仅可以用于图像处理软件,还可以应用于计算机游戏、计算机图形学等领域。

三、案例二:机器学习中的线性回归在机器学习中,线性回归是一个重要的算法。

线性回归可以用于建立输入变量与输出变量之间的线性关系模型。

这个模型可以通过线性方程来表示,其中输入变量和输出变量都可以表示为向量形式。

线性回归的目标是找到最佳拟合的线性方程,从而实现对未知数据的预测。

在实际应用中,线性回归可以用于预测房价、股票价格、销售额等各种实际问题。

线性回归利用线性代数中的矩阵运算方法,通过求解最小二乘法问题,得到最佳的回归参数。

四、案例三:控制系统中的状态空间法在控制系统中,状态空间法是一种常用的分析与设计方法。

状态空间模型可以用线性代数中的矩阵形式来表示。

通过将系统的状态、输入、输出表示为向量形式,并通过状态方程和输出方程来描述系统的动态行为,可以利用线性代数方法分析系统的稳定性、可控性、可观测性等特性,并进行系统控制器的设计与优化。

这种方法广泛应用于电力系统、机械系统、飞行器控制等领域。

五、案例四:密码学中的线性代数在密码学中,线性代数常常用来构造密码算法。

例如,RSA加密算法中,使用了大数的乘法和模运算,这是线性代数中的矩阵乘法与模运算的扩展。

线性代数应用案例

线性代数应用案例

线性代数应用案例案例1、指派问题某所大学打算在暑假期间对三幢教学大楼进行维修,该校让三个建筑公司对每幢大楼的修理费用进行报价承包,见下列表格(以1万元人民币为单位)报价数目(万元)教学1楼教学2楼教学3楼建一公司 13 24 10建二公司 17 19 15建三公司 20 22 21在暑假期间每个建筑公司只能修理一幢教学大楼,因此该大学必须把各教学大楼指派给不同的建筑公司,为了使报价的总和最小,应指定建筑公司承包哪一幢教学大楼?解这个问题的效率矩阵为这里有3!=6种可能指派,我们计算每种指派(方案)的费用。

下面对6种指派所对应矩阵的元素打方框,并计算它们的和。

由上面分析可见报价数的范围是从最小值49万元到最大值62万元。

由于从两种指派方案(4)与(6)得到最小报价总数49万元,因此,该大学应在下列两种方案中选定一种为建筑公司承包的项目:或案例2、交通问题设有A,B,C三国,它们的城市,之间的交通联接情况(不考虑国内交通)如图:根据上图,A国和B国城市之间交通联接情况可用矩阵表示,其中同样,B国和C国城市之间的交通情况可用矩阵用P来表示矩阵M与N的乘积,那么可算出案例3、圆锥曲线方程平面上圆锥曲线(椭圆、双曲线、抛物线)的一般方程为这方程含有六个待定系数,用它们之中不为零的任意一个系数去除其它系数,实际上此方程只有五个独立的待定系数。

用与上面类似的方法,通过五个不同点:的一般圆锥曲线方程为:(9)例一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立一个以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(1天文单位为地球到太阳的平均距离:9300万里)。

他五个不同时间对小行星作五次观测,得到轨道上五个点的坐标分别为(5.764,0.648)(6.286,1.202)(6.759,1.823)(7.168,2.562)与(7.408,3.360)。

由开普勒第一定律知小行星轨道为一椭圆,试建立它的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数应用实例 ● 求插值多项式右表给出函数()f t 上4个点的值,试求三次插值多项式230123()p t a a t a t a t =+++,并求(1.5)f 的近似值。

解:令三次多项式函数230123()p t a a t a t a t =+++过表中已知的4点,可以得到四元线性方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=+++=+++=627931842033210321032100a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。

应该用计算机求解了,键入:>>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1得到01233,2,2,1a a a a ==-=-=,三次多项函数为23()322p t t t t =--+,故(1.5)f 近似等于23(1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。

在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+上的值()i f t 时,就可以用n 次多项式2012()n n p t a a t a t a t =++++对()f t 进行插值。

● 在数字信号处理中的应用----- 数字滤波器系统函数数字滤波器的网络结构图实际上也是一种信号流图。

它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线性算子,它的标注符号为z -1。

根据这样的结构图,也可以用类似于例7.4的方法,求它的输入输出之间的传递函数,在数字信号处理中称为系统函数。

图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。

先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

由于迟延算子z -1不是数,要用符号代替,所以取q = z -1,按照图示情况,可以写出:1223312311844x qx ux q x u x x =+⎛⎫=-+ ⎪⎝⎭=写成矩阵形式为11223300231100844010q x x x q x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎛⎫⎢⎥⎢⎥⎢⎥⎢⎥==-+⇒ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦x u x =Qx -Pu经过移项后,系统函数W 可以写成:W =x/u =inv(I -Q)*P 现在可以列写计算系统函数的MATLAB 程序ea705,syms q% 规定符号变量Q(1,2)=q; Q(2,3)=3/8*q -1/4; Q(3,1)=1; % 给非零元素赋值 Q(3,3)=0;% 给右下角元素Q (3,3)赋值后,矩阵中未赋值元素都自动置零P=[2;1/4;0]% 给P 赋值W=inv(eye(3)-Q)*P% 用信号流图求传递函数的公式程序运行的结果为W = [-16/(-8+3*q^2-2*q)-2*q/(-8+3*q^2-2*q) ][ -2*(3*q -2)/(-8+3*q^2-2*q)-2/(-8+3*q^2-2*q)] [-16/(-8+3*q^2-2*q)-2*q/(-8+3*q^2-2*q)]我们关心的是以y =x3作为输出的系统函数,故再键入 pretty(W(3)) 整理后得到 1222116288(3)832 1.54 1.54y q q z W u q q q q z z -----++====-+--++-++ 用线性代数方法的好处是适用于任何复杂系统,并能用计算机解决问题。

信号与系统课程中的应用-----线性时不变系统的零输入响应描述n 阶线性时不变(LTI )连续系统的微分方程为,d d d d d d d d d d 111121u b t u b tu b y a t y a t y a t y a m m m m n n n n n ++-+++=++++ n ≥m已知y 及其各阶导数的初始值为y (0),y (1)(0),…,y (n-1)(0),求系统的零输入响应。

解:当LTI 系统的输入为零时,其零输入响应为微分方程的齐次解(即令微分方程等号右端为0),其形式为(设特征根均为单根)t p n t p t p n C C C t y e e e )(2121+++=其中p 1,p 2,…,p n 是特征方程a 1λn +a 2λn -1+…+ a n λ+ a n +1=0的根,它们可用roots(a)语句求得。

各系数C 1,…,C n 由y 及其各阶导数的初始值来确定。

对此有C 1+ C 2+…+C n = y 0 y 0 = y (0)p 1C 1+ p 2C 2+…+ p n C n =D y 0 (D y 0表示y 的导数的初始值y (1)(0))…………………………………011212111D y C p C p C p n n n n n n ----=+++写成矩阵形式为 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----0100211121121D D 111y y y C C C p p p p p p n n n n n n n 即 V ·C = Y 0 , 其解为 C =V \ Y 0式中 112000[,,,];[,D ,,D ]n n C C C y y y -==T T 0C Y⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=---1121121111n n n n n p p p p p pV V 为范德蒙矩阵,在MATLAB 的特殊矩阵库中有vander 函数可直接生成。

MATLAB 程序ea703.ma=input('输入分母系数向量a=[a1,a2,...]= '); n=length(a)-1;Y0=input('输入初始条件向量 Y0=[y0,Dy0,D2y0,...]= '); p=roots(a);V=rot90(vander(p));c= V\Y0'; dt=input('dt='); tf=input('tf= ') t=0:dt:tf; y=zeros(1,length(t)); for k=1:n y= y+c(k)*exp(p(k)*t);end plot(t ,y),grid⏹ 程序运行结果用这个通用程序来解一个三阶系统,运行此程序并输入a=[3,5,7,1]; dt=0.2; tf=8;而Y0取[1,0,0];[0,1,0];[0,0,1]三种情况,用hold on 语句使三次运行生成的图形画在一幅图上,得到图2。

● 减肥配方的实现设三种食物每100克中蛋白质、碳水化合物和脂肪的含量如下表,表中还给出了80年代美国流行的剑桥大学医学院的简捷营养处方。

现在的问题是:如果用这三种食物作为每天的主要食物,那么它们的用量应各取多少?才能全面准确地实现这个营养要求。

12用量为x 3个单位(100g ),表中的三个营养成分列向量为:图2 三阶系统的零输入响应12136511352,34,74,07 1.1a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则它们的组合所具有的营养为11223312336511352347407 1.1x a x a x a x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦使这个合成的营养与剑桥配方的要求相等,就可以得到以下的矩阵方程:123365113335234744507 1.13x x Ax b x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⇒=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦用MATLAB 解这个问题非常方便,列出程序ag763如下:A=[36,51,13;52,34,74;0,7,1.1] b=[33;45;3] x=A\b程序执行的结果为:0.2772 0.3919 0.2332x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦即脱脂牛奶的用量为27.7g ,大豆面粉的用量为39.2g ,乳清的用量为23.3g ,就能保证所需的综合营养量。

人口迁徙模型设在一个大城市中的总人口是固定的。

人口的分布则因居民在市区和郊区之间迁徙而变化。

每年有6%的市区居民搬到郊区去住,而有2%的郊区居民搬到市区。

假如开始时有30%的居民住在市区,70%的居民住在郊区,问十年后市区和郊区的居民人口比例是多少?30年、50年后又如何?这个问题可以用矩阵乘法来描述。

把人口变量用市区和郊区两个分量表示,即,ck k sk x x x ⎡⎤=⎢⎥⎣⎦其中x c 为市区人口所占比例,x s 为郊区人口所占比例,k 表示年份的次序。

在k=0的初始状态:0000.30.7c s x x x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦。

一年以后,市区人口为x c1= (1-0.02) x c0+0.06x s0,郊区人口x s1= 0.02x c0 + (1-0.06)x s0,用矩阵乘法来描述,可写成:11010.940.020.3 0.29600.060.980.7 0.7040c s x x Ax x ⎡⎤⎡⎤⎡⎤⎡⎤==⋅==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦此关系可以从初始时间到k 年,扩展为2120k k k k x Ax A x A x --====,用下列MATLAB程序进行计算:A=[0.94,0.02;0.06,0.98] x0=[0.3;0.7] x1=A*x0, x10=A^10*x0 x30=A^30*x0 x50=A^50*x0程序运行的结果为:1103050 0.2960 0.2717 0.2541 0.2508,,,, 0.7040 0.7283 0.7459 0.7492x x x x ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦无限增加时间k ,市区和郊区人口之比将趋向一组常数 0.25/0.75。

为了弄清为什么这个过程趋向于一个稳态值,我们改变一下坐标系统。

在这个坐标系统中可以更清楚地看到乘以矩阵A 的效果。

选u 1为稳态向量[0.25,0.75]T 的任意一个倍数,令u 1=[1,3]T 和u 2=[-1,1]T。

可以看到,用A 乘以这两个向量的结果不过是改变向量的长度,不影响其相角(方向):110.940.02110.060.9833Au u ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦220.940.0210.920.920.060.9810.92Au u --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦初始向量x0可以写成这两个基向量u1和u2的线性组合;0120.30110.250.050.250.050.7031x u u -⎡⎤⎡⎤⎡⎤==⋅-⋅=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦因此0120.250.05(0.82)k k k x A x u u ==-式中的第二项会随着k 的增大趋向于零。

相关文档
最新文档