切线长定理、弦切角定理、切割线定理、相交弦定理
初三中考数学常用知识点整理

初三中考数学常用知识点整理求学的三个条件是:多观察、多吃苦、多研究。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。
下面是小编给大家整理的一些中考数学常用的知识点,希望对大家有所帮助。
中考数学常用知识点1.解直角三角形1.1.锐角三角函数锐角a的正弦、余弦和正切统称∠a的三角函数。
如果∠a是Rt△ABC的一个锐角,则有1.2.锐角三角函数的计算1.3.解直角三角形在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。
2.直线与圆的位置关系2.1.直线与圆的位置关系当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。
直线与圆的位置关系有以下定理:直线与圆相切的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线。
圆的切线性质:经过切点的半径垂直于圆的切线。
2.2.切线长定理从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。
切线长定理:过圆外一点所作的圆的两条切线长相等。
2.3.三角形的内切圆与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。
三角形的内心是三角形的三条角平分线的交点。
3.三视图与表面展开图3.1.投影物体在光线的照射下,在某个平面内形成的影子叫做投影。
光线叫做投影线,投影所在的平面叫做投影面。
由平行的投射线所形成的投射叫做平行投影。
可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。
3.2.简单几何体的三视图物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。
主视图、左视图和俯视图合称三视图。
产生主视图的投影线方向也叫做主视方向。
九年级中考常用数学知识点圆重点①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
中考专题切线长定理及弦切角定理

中考复习专题一一切线长定理与弦切角定理[知识要点二 1.切线长定理:过圆外一点P 做该圆的两条切线,切点为A 、Bo AB 交P0于点C,则有如下 结论:(1) PA 二PB(2) P0丄AB,且P0平分AB(3) ZAPO = ZBPO = ZOAC = ZOBC; ZAOP = ABOP = ZCAP = ZCBP2•弦切角定理:弦切角(切线与圆的夹角)等于它所夹的弧所对的圆周角 推论:若两弦切角所夹的弧相等,则这两个弦切角也相等[典型例题】【例1】如图LAB, AC 是OO 的两条切线,切点分别为B 、C 、D 是优弧BC 上的点,已知ZBAC=80<\举一反三:1 •如图2, AB 是。
O 的弦,AD 是0 O 的切线,C 为AB ±任一点,ZACB=108°,那么ZBAD= ____________________________ 2•如图3,PA,PB 切0 O 于A, B 两点,AC 丄PB •且与€> 0相交于D,若ZDBC=22°,则ZAPB= ___________________________【例2】如图,已知圆上的^AC = BD,过C 点的圆的切线与BA 的延长线交于E 点,证明:⑴ ZACEMBCD ;(2)BC 2=BExCD ・举一反三:1 •如图,曲是圆0的直径,D 为圆0上一点,过0作圆0的切线交曲那么ZBDC= ___________ .匸 图2A0 的延长线于点G 若DA=DC.求证:AB=2BC.【例3】已知:如图7 —149, PA, PB 切00于A, B 两点,AC 为直径,则图中与ZPAB 相等的角的个数为【例4】如图,AE 、AD. BC 分别切OO 于点E 、D. F,若AD=20,求AABC 的周长.A. 1 个;B. 2 个:C. 4 个;D. 5 个. 举一反三:1.如图,PA 、PB 是€)0的切线,A 、B 为切点,Z0AB=30°・(1) 求ZAPB 的度数;(2) 当0A=3时,求AP 的长.2.已知:如图,0O 内切于△ABC, ZBOC= 105° , ZACB=90° ,AB=20c m ・求 BC 、AC 的长.图 7-149AA3・已知:如图,/XABC三边BC* CA=b. AB R它的内切圆0的半径长为儿求△ABC的面积S.A4•如图,在ZkABC中,已知ZABC=90°,在AB上取一点E,以BE为直径的OO恰与AC相切于点D, 若AE=2 cm, AD=4 cm.(1)求OO的直径BE的长:⑵计算AABC的而积.[课后作业】直径,AE切00于点3,连接D3,若ZD = 20。
圆的相关定理

圆幂定理定义圆幂=PO^2-R^2(该结论为欧拉公式)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD。
统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。
相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)相交弦说明几何语言:若弦AB、CD交于点P则PA·PB=PC·PD(相交弦定理)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的例中项几何语言:若AB是直径,CD垂直AB于点P,则PC^2=PA·PB(相交弦定理推论)切割线定理定义从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
是圆幂定理的一种。
几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT的平方=PA·PB(切割线定理)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,PBA,PDC是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)(割线定理)由上可知:PT∧2(平方)=PA·PB=PC·PD证明切割线定理证明:设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT^2=PA·PB证明:连接AT, BT∵∠PTB=∠PAT(弦切角定理)∠P=∠P(公共角)∴△PBT∽△PTA(两角对应相等,两三角形相似)则PB:PT=PT:AP即:PT^2=PB·PA割线定理定义从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段[学习目标]1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。
(PA长)2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。
3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。
直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。
5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。
6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。
7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB.(特殊情况)用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理(记忆的方法方法)圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。
弦切角定理圆幂定理之割线相交弦切割线定理

弦切角定理及其应用极点在圆上,一边和圆订交,另一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)弦切角定义图1如右图所示,直线 PT 切圆 O 于点 C,BC 、AC 为圆 O 的弦,∠TCB 、∠ TCA 、∠PCA 、∠PCB 都为弦切角。
弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.如上图,∠ PCA=1/2 ∠ COA= ∠ CBA弦切角定理证明:证明一:设圆心为O,连结 OC, OB, 。
∵∠ TCB=90 ° -∠ OCB∵∠ BOC=180 ° -2 ∠ OCB∴,∠ BOC=2 ∠ TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠ BOC=2 ∠CAB (同一弧所对的圆心角等于圆周角的两倍)∴∠ TCB= ∠ CAB (定理:弦切角的度数等于它所夹的弧的圆周角)证明已知: AC 是⊙ O 的弦, AB 是⊙ O 的切线, A 为切点,弧是弦切角∠BAC 所夹的弧.求证:(弦切角定理)证明:分三种状况:(1)圆心 O 在∠ BAC 的一边 AC 上∵ AC 为直径, AB 切⊙ O 于 A ,∴弧 CmA= 弧 CA∵为半圆 ,∴∠ CAB=90= 弦 CA 所对的圆周角( 2)圆心 O 在∠ BAC 的内部 . (B点应在A点左边)过 A 作直径 AD 交⊙ O 于 D,若在优弧 m 所对的劣弧上有一点 E那么,连结 EC 、ED 、 EA则有:∠ CED= ∠CAD 、∠ DEA= ∠DAB∴ ∠ CEA= ∠CAB∴ (弦切角定理)( 3)圆心 O 在∠ BAC 的外面 ,过 A 作直径 AD 交⊙ O 于 D那么∠ CDA+ ∠CAD= ∠ CAB+ ∠ CAD=90 °∴∠ CDA= ∠ CAB∴(弦切角定理)3弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在⊙ O 中,⊙ O 的切线 AC 、 BC 交与点C ,求证:∠ CAB= ∠ CBA 。
3.4+相交弦定理、切割线定理、弦切角定理(1课时)

九年级数学导学稿第3章对圆的进一步认识课题:3.4+相交弦定理、切割线定理、弦切角定理(1课时)郭家屯初中初三编写学习目标1.掌握相交弦定理及推论、切割线定理及推论、弦切角定理,并会灵活应用。
2.会用相交弦定理及推论、切割线定理及推论、弦切角定理进行证明和计算。
难点:定理及推论的应用【温故知新】1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。
2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。
3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。
直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。
5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。
6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。
7.与圆有关的比例线段相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
相交弦定理推论:如果弦与直径垂直相交,那么弦长的一半是它分直径所成的两条线段长的比例中项。
切割线定理:从圆外一点引圆的一条割线和一条切线,这一点到割线与圆的交点的两条线段长的乘积等于切线长的平方。
切割线定理推论:从圆外一点引圆的两条割线,这一点到每一条割线与圆的交点的两条线段长的乘积相等。
【探索定理新知】图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD.连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB. 用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理学一学【典型例题】例1.如图1,正方形ABCD 的边长为1,以BC 为直径。
最新北师大版九年级下册数学 第3章 圆 第5节 切线定理与圆幂定理 讲义

1
5. 如图 4, PA 切⊙ O 于 A, AB PO, P 300, AB 6, 则⊙ O 的半径为__________.
A
E D
D O
C
B
O
图3
A C
图4
B
E
图5
图6
【典型例题】
例 1.①如图 5, CD 是⊙O 的直径, AE 切⊙O 于点 B, DC 的延长线交 AB 于点 A, A 200 ,则
的长为____________. A
B A
OM C
O
C
B
图 13
图
A
D
O
F
B
C
E 图 14
例 2.①12如图 15,从圆 O 外一点 P 引圆的切线 PA 和 PB ,切点分别是 A 和 B ,如果 APB 700 , 那么这
两条切线所夹 AB 的度数是( )
A. 1100
B.70
C.55
D.35
DBE =_______. ②如图 6, ABC 是圆内接三角形, BC 是圆的直径, B 350 , MN 是过 A 点的切线,那么
C =________; CAM =________; BAM =________. ③如图 7, ABC 内接于⊙O, AB AC, BOC 1000 , MN 是过 B 点而垂直 OB 的直线,
半径长为_________.
3. RTABC 的斜边 AB 5, 直角边 AC 3, 若 AB 与⊙ C 相切,则⊙ C 的半径是__________.
4.如图 3,已知半圆的圆心在 RTABC 的斜边上,且半圆分别切 AB, AC 于 D, E, AB 3cm, AC 4cm ,
数学总结—定理大全

数学定理大全正弦定理:在一个三角形中,各边和它所对角的正弦之比相等,该比值等于该三角形外接圆的直径长度。
即:余弦定理:、、勾股定理:在任何一个的直角三角形中,两条直角边的长度的平方和等于斜边长度的平方。
即:a2+ b2= c2。
垂径定理:垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
海伦公式:平面内,任意三角形的面积:()哥德巴赫猜测:任一大于5的整数都可写成三个素数之和。
即任一大于2的偶数都可写成两个素数之和(强),或任一大于7的奇数都可写成三个素数之和的猜测(弱)。
射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:若两条直线都与第三条直线平行,那么这两条直线也互相平行。
三垂线定理:在平面内的一条直线,假如和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
圆周角定理:同弧或等弧所对圆周角等于它所对圆心角的一半。
推论一:在同圆或等圆中,同弧或等弧所对的圆周角相等。
推论二:半圆(直径)所对的圆周角是直角。
推论三:90°的圆周角所对的弦是直径。
弦切角定理:弦切角的度数等于它所夹的弧的度数的一半。
切线长定理:从圆外一点能够引圆的两条切线,它们的切线长相等。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:圆外点P引两条割线与圆交于A、B;C、D,则有PA·PB=PC·PD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段[学习目标]1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。
2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。
3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。
直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。
5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。
6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。
7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB. 用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。
【典型例题】例1.如图1,正方形ABCD的边长为1,以BC为直径。
在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。
图1解:由切线长定理知:AF=AB=1,EF=CE设CE为x,在Rt△ADE中,由勾股定理∴,,例2.⊙O中的两条弦AB与CD相交于E,若AE=6cm,BE=2cm,CD=7cm,那么CE=_________cm。
图2解:由相交弦定理,得AE·BE=CE·DE∵AE=6cm,BE=2cm,CD=7cm,,∴,即∴CE=3cm或CE=4cm。
故应填3或4。
点拨:相交弦定理是较重要定理,结果要注意两种情况的取舍。
例3.已知PA是圆的切线,PCB是圆的割线,则________。
解:∵∠P=∠P∠PAC=∠B,∴△PAC∽△PBA,∴,∴。
又∵PA是圆的切线,PCB是圆的割线,由切割线定理,得∴,即,故应填PC。
点拨:利用相似得出比例关系式后要注意变形,推出所需结论。
例4.如图3,P是⊙O外一点,PC切⊙O于点C,PAB是⊙O的割线,交⊙O于A、B两点,如果PA:PB=1:4,PC=12cm,⊙O的半径为10cm,则圆心O到AB的距离是___________cm。
图3解:∵PC是⊙O的切线,PAB是⊙O的割线,且PA:PB=1:4∴PB=4PA又∵PC=12cm由切割线定理,得∴∴,∴∴PB=4×6=24(cm)∴AB=24-6=18(cm)设圆心O到AB距离为d cm,由勾股定理,得故应填。
例5.如图4,AB为⊙O的直径,过B点作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D,(1)求证:;(2)若AB=BC=2厘米,求CE、CD的长。
图4点悟:要证,即要证△CED∽△CBE。
证明:(1)连结BE(2)。
又∵,∴厘米。
点拨:有切线,并需寻找角的关系时常添辅助线,为利用弦切角定理创造条件。
例6.如图5,AB为⊙O的直径,弦CD∥AB,AE切⊙O于A,交CD的延长线于E。
图5求证:证明:连结BD,∵AE切⊙O于A,∴∠EAD=∠ABD∵AE⊥AB,又AB∥CD,∴AE⊥CD∵AB为⊙O的直径∴∠ADB=90°∴∠E=∠ADB=90°∴△ADE∽△BAD∴∴∵CD∥AB∴AD=BC,∴例7.如图6,PA、PC切⊙O于A、C,PDB为割线。
求证:AD·BC=CD·AB图6点悟:由结论AD·BC=CD·AB得,显然要证△PAD∽△PBA和△PCD∽△PBC证明:∵PA切⊙O于A,∴∠PAD=∠PBA又∠APD=∠BPA,∴△PAD∽△PBA∴同理可证△PCD∽△PBC∴∵PA、PC分别切⊙O于A、C∴PA=PC∴∴AD·BC=DC·AB例8.如图7,在直角三角形ABC中,∠A=90°,以AB边为直径作⊙O,交斜边BC于点D,过D点作⊙O的切线交AC于E。
图7求证:BC=2OE。
点悟:由要证结论易想到应证OE是△ABC的中位线。
而OA=OB,只须证AE=CE。
证明:连结OD。
∵AC⊥AB,AB为直径∴AC为⊙O的切线,又DE切⊙O于D∴EA=ED,OD⊥DE∵OB=OD,∴∠B=∠ODB在Rt△ABC中,∠C=90°-∠B∵∠ODE=90°∴∴∠C=∠EDC∴ED=EC∴AE=EC∴OE是△ABC的中位线∴BC=2OE例9.如图8,在正方形ABCD中,AB=1,是以点B为圆心,AB长为半径的圆的一段弧。
点E是边AD上的任意一点(点E与点A、D不重合),过E作所在圆的切线,交边DC于点F,G 为切点。
当∠DEF=45°时,求证点G为线段EF的中点;图8解:由∠DEF=45°,得,∴∠DFE=∠DEF∴DE=DF又∵AD=DC∴AE=FC因为AB是圆B的半径,AD⊥AB,所以AD切圆B于点A;同理,CD切圆B于点C。
又因为EF切圆B于点G,所以AE=EG,FC=FG。
因此EG=FG,即点G为线段EF的中点。
【模拟试题】(答题时间:40分钟)一、选择题1.已知:PA、PB切⊙O于点A、B,连结AB,若AB=8,弦AB的弦心距3,则PA=()A. B. C. 5 D. 82.下列图形一定有内切圆的是()A.平行四边形B.矩形C.菱形D.梯形3.已知:如图1直线MN与⊙O相切于C,AB为直径,∠CAB=40°,则∠MCA的度数()图1A. 50°B. 40°C. 60°D. 55°4.圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1:4,则另一弦长为()A. 8cmB. 10cmC. 12cmD. 16cm5.在△ABC中,D是BC边上的点,AD,BD=3cm,DC=4cm,如果E是AD的延长线与△ABC的外接圆的交点,那么DE长等于()A. B.C. D.6. PT切⊙O于T,CT为直径,D为OC上一点,直线PD交⊙O于B和A,B在线段PD上,若CD =2,AD=3,BD=4,则PB等于()A. 20B. 10C. 5D.二、填空题7. AB、CD是⊙O切线,AB∥CD,EF是⊙O的切线,它和AB、CD分别交于E、F,则∠EOF=_____________度。
8.已知:⊙O和不在⊙O上的一点P,过P的直线交⊙O于A、B两点,若PA·PB=24,OP=5,则⊙O的半径长为_____________。
9.若PA为⊙O的切线,A为切点,PBC割线交⊙O于B、C,若BC=20,,则PC的长为_____________。
10.正△ABC内接于⊙O,M、N分别为AB、AC中点,延长MN交⊙O于点D,连结BD交AC于P,则_____________。
三、解答题11.如图2,△ABC中,AC=2cm,周长为8cm,F、K、N是△ABC与内切圆的切点,DE切⊙O于点M,且DE∥AC,求DE的长。
图212.如图3,已知P为⊙O的直径AB延长线上一点,PC切⊙O于C,CD⊥AB于D,求证:CB平分∠DCP。
图313.如图4,已知AD为⊙O的直径,AB是⊙O的切线,过B的割线BMN交AD的延长线于C,且BM=MN=NC,若AB,求⊙O的半径。
图4【试题答案】一、选择题1. A2. C3. A4. B5. B6. A二、填空题7. 90 8. 1 9. 30 10.三、解答题:11.由切线长定理得△BDE周长为4,由△BDE∽△BAC,得DE=1cm12.证明:连结AC,则AC⊥CB∵CD⊥AB,∴△ACB∽△CDB,∴∠A=∠1∵PC为⊙O的切线,∴∠A=∠2,又∠1=∠2,∴BC平分∠DCP13.设BM=MN=NC=xcm又∵∴又∵OA是过切点A的半径,∴OA⊥AB即AC⊥AB在Rt△AB C中,由勾股定理,得,由割线定理:,又∵∴∴半径为。