ZrO2精细陶瓷材料湿法成型工艺概述

合集下载

氧化铝陶瓷的成型工艺

氧化铝陶瓷的成型工艺

氧化铝陶瓷的成型工艺
氧化铝陶瓷的成型工艺一般包括以下几个步骤:
1. 配料:首先需要准备氧化铝陶瓷的原料。

通常使用高纯氧化铝粉末作为主要原料,还可以添
加一些助剂如玻璃粉末或有机粉末以改善成型和烧结性能。

2. 混合:将氧化铝粉末和其他助剂按一定比例混合均匀。

混合可以使用干混合或湿混合的方式,具体取决于成型工艺的要求。

3. 成型:将混合好的粉末通过成型工艺成型。

常用的成型方法包括注塑成型、挤出成型、挤压
成型、压制成型等,具体选用哪种成型方法取决于产品的形状和工艺要求。

4. 干燥:成型后的陶瓷坯体需要进行干燥处理以去除内部和表面的水分。

干燥一般采用自然干
燥或烘干的方式,烘干时需要控制温度和湿度,以避免陶瓷变形或开裂。

5. 烧结:干燥后的陶瓷坯体需要进行烧结。

烧结是将陶瓷坯体加热至高温,使其颗粒间发生熔结,形成致密的氧化铝陶瓷。

烧结一般采用电炉或气氛炉进行,具体的烧结温度和时间根据陶
瓷的要求进行控制。

6. 表面处理:烧结后的氧化铝陶瓷可以进行一些表面处理,如研磨、抛光等,以改善其表面质
量和光洁度。

以上仅是氧化铝陶瓷的一种常见成型工艺流程,具体的成型工艺可能会根据产品的特殊要求进行调整和改变。

湿法成型工艺

湿法成型工艺

湿法成型工艺全文共四篇示例,供读者参考第一篇示例:湿法成型工艺是一种常用于制作陶瓷、陶瓷瓷砖、陶瓷浴缸等制品的工艺方法。

在湿法成型过程中,原料通过混合、加水、成型、干燥等一系列工序,最终制成所需的成品。

湿法成型工艺具有成型速度快、成型精度高、能够生产大量产品等优点,被广泛应用于陶瓷行业。

湿法成型工艺的原料准备非常重要。

通常情况下,陶瓷制品的原料包括粘土、石英、长石等。

在使用之前,这些原料需要通过粉碎、研磨等方式进行处理,以确保原料颗粒的尺寸均匀,从而保证成型时的均匀性和稳定性。

湿法成型的第一步是将经过处理的原料与一定比例的水混合,形成均匀的泥浆状物质。

这一步称为混合成型。

在混合过程中,需要确保原料充分混合,且保持一定的湿度,以便后续的成型操作。

接下来是成型的过程。

通常情况下,湿法成型的方式有很多种,如注射成型、挤压成型、压制成型等。

不同的产品需要使用不同的成型方式,以确保产品能够达到设计要求的形状和尺寸。

在成型过程中,通常采用模具来帮助塑造原料成坯。

完成成型后,陶瓷制品需要进行干燥。

干燥是将成型后的陶瓷坯置于干燥室中,通过加热或自然风力等方式将水分逐渐蒸发,使陶瓷坯得到加固和硬化。

在干燥的过程中,需要控制好温度和湿度,以避免出现开裂或变形等问题。

经过干燥后的陶瓷坯即可进行烧制。

烧制是将陶瓷坯置于窑炉中,通过高温加热使其成为坚固耐用的陶瓷制品。

烧制的温度和时间通常根据产品的要求来确定,不同的陶瓷制品所需的烧制条件也可能有所不同。

湿法成型工艺是一种高效、精确的制作陶瓷制品的工艺方法。

通过对原料的处理、混合成型、干燥和烧制等一系列工序,可以制作出各种形状、尺寸和质地的陶瓷制品。

湿法成型工艺的应用使得陶瓷制品的生产更加快捷、灵活,同时也提高了产品的质量和市场竞争力。

第二篇示例:湿法成型工艺是一种常用的制造工艺,广泛应用于陶瓷、玻璃、建筑材料等领域。

湿法成型工艺利用水或其他溶剂作为介质,将原料制成糊状或流体,通过模具成型后再进行烧结或干燥,最终得到成型体。

陶瓷成型工艺原理及方法

陶瓷成型工艺原理及方法
2.干燥区 典型干燥区温度分布: 温度区(1): 80℃, 温度区(2): 60 ℃, 温 度区(3): 40℃
流延膜片的表征

流延膜片表怔 1) 表面特征:颗粒尺寸、粘合剂分布、团聚程度、孔
洞、裂纹(光学显微镜、电子显微镜)
2) 柔韧性:手工反复折叠 3) 强度:拉力仪 4) 厚度:测厚仪 5) 密度:阿基米德定律测量
厚 膜: 刮刀口间隙↑料浆液面↑载体线速↓料浆粘度↓
薄 膜: 相反
Hale Waihona Puke 瓷流延带的干燥开始时失重(蒸发速率保持恒定),在临界点之后开始第二个干燥阶 段,其特征是蒸发速率下降 主要的物理过程
Tape weight
Water LNT particle
1.浆料内部的液体移动到表面 2.表面溶剂挥发 3.蒸汽从接近浆料表面的区域被带走
羧酸盐:硬脂酸钠、丙烯酸共聚物 阴离子型
颗粒表面带正电的 中性或弱碱性料浆
磺酸盐:烷基磺酸钠、木质素磺酸盐 磷酸酯盐:高级醇磷酸酯二钠 硫酸酯盐:十二烷基硫酸钠 伯(仲、叔)胺盐:RNH3Cl, R(CH3)NH2X 、R(R’)2NHX 季胺盐:RN(R’)3X 砒啶盐:R(C5H5N)X 氨基酸:十二烷基氨基丙烯酸钠 甜菜碱:十八烷基二甲基甜菜碱 咪唑啉:R-[CNH(CH2)2N+]-CH2COO聚氧乙烯:脂肪醇聚氧乙烯醚
其沸点应该高于200℃

增塑剂量一般大于粘合剂,但加入塑性剂会使素坯膜的强度降低 玻璃化转变温度(Tg)就是聚合物的性能产生明显变化时的温度, 高于 这个温度聚合物转变成橡胶态, 低于这个温度聚合物转变成玻璃态。玻 璃化转变温度是高分子聚合物的特征温度之一
流延成型的粘合剂和增塑剂的选择
粘合剂 乙基纤维素 PVA PVAc+PVC PVB 塑性剂 二乙基草酸酯 甘油,三乙烯乙二醇 邻苯二甲酸二丁酯(DBP),聚乙二醇 聚乙二醇, 邻苯二甲酸二辛酯(DOP),邻苯二甲 酸二丁酯(DBP),己 烷 邻苯二甲酸二辛酯,邻苯二甲酸二丁酯, 聚乙二醇 邻苯二甲酸二丁酯,聚乙二醇,甘 油

氧化铝陶瓷制作工艺简介

氧化铝陶瓷制作工艺简介

氧化铝陶瓷制作工艺简介氧化铝氧化铝陶瓷陶瓷目前分为高纯型与普通型两种。

高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,9%以上的陶瓷材料,由于其烧结温度高达1650由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。

普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、同分为99瓷、95瓷、95瓷、95瓷、90瓷、85瓷等品种,90瓷、85瓷等品种,90瓷、85瓷等品种,有时Al2O3含量在80%或75%者有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。

其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与、铌、钽等金属封接,有的用作电真空装置器件。

其制作工艺如下:用作电真空装置器件。

其制作工艺如下:一 粉体制备:粉体制备:将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料.粉体粒度在1μm微米以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,99%外,还需超细粉碎且使其粒径分布均匀。

采用挤压成型或注射成型时,采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,粉料中需引入粘结剂与可塑剂,粉料中需引入粘结剂与可塑剂,一般为重量一般为重量比在10—30%的热塑性塑胶或树脂有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。

采用热压工艺成型的粉体原料则不需加入粘结剂。

采用热压工艺成型的粉体原料则不需加入粘结剂。

若采用若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。

氧化锆陶瓷生产工艺

氧化锆陶瓷生产工艺

氧化锆陶瓷生产工艺目录一、概述 (2)二、氧化锆陶瓷的特征 (2)三、氧化锆陶瓷的应用 (3)四、普通氧化锆陶瓷产品制备工艺 (4)五、氧化锆陶瓷产品注塑件制备工艺 (10)六、氧化锆陶瓷优势 (12)一、概述氧化锆陶瓷呈白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。

在常压下纯ZrO2共有三种晶态。

■ 低温型单斜晶(m-ZrO2)■ 中温型四方晶(t-ZrO2)■ 高温型立方晶(c-ZrO2)上述三种晶型存在于不同的温度范围,并存在如下相互转化关系:二、氧化锆陶瓷的特征高熔点氧化锆的熔点为:2715℃,可作为高温耐火材料硬度大、耐磨性好按莫氏硬度:蓝宝石>氧化锆陶瓷>康宁玻璃>铝镁合金>钢化玻璃>聚碳酸酯强度、韧性大氧化锆的强度可达:1500MPa热导率和膨胀系数低在常见陶瓷材料中,其热导率最低(1.6-2.03W/(m.k)),热膨胀系数与金属接近。

电学性能好氧化锆的介电常数是蓝宝石的3倍,信号更灵敏。

三、氧化锆陶瓷的应用氧化锆陶瓷广泛运用于3C电子、光通讯、智能穿戴、生物医用、珠宝首饰、日常生活、耐火材料等领域。

四、普通氧化锆陶瓷产品制备工艺一般生产制备流程(一)、氧化锆陶瓷粉体的制备微晶陶瓷是一种通过加热玻璃晶化能得到一种含有大量微晶相和少量玻璃相的复合固体材料。

微晶锆系陶瓷简称为微晶锆,具有耐磨、耐腐蚀、高强高韧等性质。

微晶锆陶瓷粉体的质量要求如下:1、粒度分布是正态分布,分级精度要高;2、颗粒形状接近圆形,颗粒强度高,应力均匀;3、分散性要好,无团聚或很少团聚;4、纯度要高有害杂质的含量要尽可能低。

(二)、将氧化锆陶瓷粉体加工成型:目前工艺上主要有下面四种加工成型方法:1、注射成型注射成型是通过在粉体中添加流动助剂,充模得到所需形状胚体。

主要生产外形复杂,尺寸精确或带嵌件的小型精密陶瓷件。

2、模压成型模压成型是将经过造粒、流动性好、粒配合适的粉料,装入磨具内,通过压机的柱塞施加外力使粉料制成一定形状的胚体。

氧化锆陶瓷概述.

氧化锆陶瓷概述.

氧化锆陶瓷概述摘要:ZrO2 具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质,上个世纪二十年代开始就被用来作为熔化玻璃、冶炼钢铁等的耐火材料。

并且由于TZP 陶瓷具有高韧性、抗弯强度和耐磨性,以及优异的隔热性能,甚至其热膨胀系数接近于金属等优点,因此TZP 陶瓷被广泛应用于结构陶瓷领域。

本文介绍了氧化锆的基本性质、氧化锆超细粉体的制备方法、高性能氧化锆陶瓷材料的成型工艺以及其在各领域的应用情况。

关键词:氧化锆;高性能陶瓷;制备;应用1 引言锆在地壳中的储量超过Cu、Zn、Sn、Ni 等金属的储量,资源丰富。

世界上已探明的锆资源约为1900 万吨(以金属锆计),矿石品种约有20 种,主要含有如下几种化合物:(1)二氧化锆(单斜锆及其各种变体);(2)正硅酸锆(锆英石及其各种变体);(3)锆硅酸钠、钙、铁等化合物(异性石、负异性石、锆钻石)。

异性石和负异性石矿中含锆量非常低,无工业价值,因而锆的主要来源为单斜锆矿和锆英石矿,其中以锆英石矿分布广[1]。

纯ZrO2 为白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。

单斜ZrO2 密度5.6g/cm3,熔点2715℃。

ZrO2 具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。

上个世纪二十年代开始就被用来作为熔化玻璃、冶炼钢铁等的耐火材料,从上个世纪七十年代以来,随着对ZrO2 有了更深刻的了解,人们进一步研究开发ZrO2 作为结构材料和功能材料。

1975 年澳大利亚R.G.Garvie 以CaO 为稳定剂制得部分稳定氧化锆陶瓷(Ca-PSZ),并首次利用ZrO2 马氏体相变的增韧效应提高了韧性和强度,极大的扩展了ZrO2 在结构陶瓷领域的应用[2]。

1973 年美国R.Zechnall,G.Baumarm,H.Fisele 制得ZrO2 电解质氧传感器,此传感器能正确显示汽车发动机的空气、燃料比,1980 年把它应用于钢铁工业。

二氧化锆陶瓷的制备及性能分析

二氧化锆陶瓷的制备及性能分析

二氧化锆陶瓷的制备及性能分析二氧化锆陶瓷(ZrO2)是一种重要的结构材料,具有高温稳定性、优异的机械性能和优良的化学稳定性,因此在许多应用领域具有广泛的应用前景,如热障涂层、高温结构材料、生物医学材料等。

本文将介绍二氧化锆陶瓷的制备方法以及其性能分析。

二氧化锆陶瓷的制备方法主要包括固相反应法、水热法和溶胶-凝胶法等。

固相反应法是最常用的方法之一,其步骤主要包括将适当比例的锆粉和稳定剂混合、研磨混合均匀之后,在高温(约1300-1600℃)下烧结获得锆粉颗粒之间的结合,形成致密的二氧化锆陶瓷。

水热法则是通过在高温高压的水环境下,将锆盐溶解于水中,经过一系列的化学反应形成二氧化锆的纳米粒子,并在特定的条件下,通过后续的热处理制备得到二氧化锆陶瓷。

溶胶-凝胶法是一种常用的制备纳米颗粒的方法,通过将锆酸醋酸盐等无机盐溶解于溶剂中,得到溶胶,然后通过控制其凝胶过程形成凝胶,最后经过热处理获得二氧化锆陶瓷。

二氧化锆陶瓷的性能分析主要包括物理性能、力学性能和化学性能等。

物理性能主要包括晶体结构和晶型、晶粒大小和分布、密度等。

力学性能主要包括抗压强度、弹性模量和硬度等。

化学性能主要包括化学稳定性和生物相容性等。

在物理性能方面,二氧化锆陶瓷具有良好的热稳定性和机械稳定性,其晶体结构为立方相或四方相,晶粒通常在纳米级别,有利于提高材料的力学性能和化学稳定性。

在力学性能方面,二氧化锆陶瓷具有高抗压强度和硬度,其抗压强度通常在1000-2000MPa之间,硬度在8-12GPa之间。

这使得它适用于各种高强度和高温环境下的应用。

在化学性能方面,二氧化锆陶瓷具有较好的化学稳定性和生物相容性,能够在酸碱环境和生物体内保持稳定。

这使得它在生物医学领域有着广泛的应用,如人工关节、骨修复材料等。

综上所述,二氧化锆陶瓷具有优异的物理性能、力学性能和化学性能,制备方法多样,可以通过调控工艺参数和添加适宜的添加剂来改善其性能。

随着科学技术的进步,二氧化锆陶瓷在材料科学和工程领域的应用前景将更加广阔。

凝胶注模成型Al2O3ZrO2泡沫陶瓷的制备与表征

凝胶注模成型Al2O3ZrO2泡沫陶瓷的制备与表征

第5期张小珍等:凝胶注模成型AI:0,-ZrO:泡沫陶瓷的制备与表征1207图2不同相对密度ZTA泡沫陶瓷的SEM图Fig.2SEMcross・sectionsofZTAfoamceramicwithrelativedensityof(a)22%and(b)13%图3不同相对密度ZTA泡沫陶瓷的孔径分布Fig.3CellsizedistributionofZTAfoamceramicswithdifferentrelativedensiyRelativedensity/%图4ZTA泡沫陶瓷相对密度对抗弯强度的影响Fig.4FlexuralstrengthofZTAfoamceramicsproducedwithdifferentrelativedensity3.2ZTA泡沫陶瓷的强度泡沫陶瓷的强度主要取决于泡沫陶瓷制备工艺和相关结构参数,如其相对密度、孑L隙率和孑L壁厚度等h91。

图4为ZTA泡沫陶瓷相对密度与其抗弯强度的关系曲线。

由图可见,泡沫陶瓷相对密度的降低使其承受载荷有效面积减小,从而导致泡沫陶瓷的抗弯强度也相应减小。

根据Gibson和Ashby提出的描述开孔多孔泡沫陶瓷模型,脆性泡沫陶瓷强度与密度的关系可用幂函数表示为‘11|:矿。

,/orb=Cl(p/p。

)1’5(1)其中矿。

,为泡沫陶瓷的脆性破坏应力,仃h为泡沫陶瓷骨架断裂模量,C,为常数,与孑L的几何形状有关;p为泡沫陶瓷体积密度,P。

为骨架密度。

SepulvedaP和OliveiraF.A.Costa等¨2。

141采用一个类似的实验方程(2)很好的描述了泡沫陶瓷强度和密度间关系:tr/o"。

=c=(p/p。

)“(2)其中盯为泡沫陶瓷强度,盯。

为泡沫陶瓷骨架强度,C:和n为常数。

方程式(2)可进一步简化为方程式(3):矿=C3P,4(3)其中c,为一系数,相当于方程式(2)中C:和盯。

的乘积;p,为泡沫陶瓷的相对密度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ZrO2精细陶瓷材料湿法成型工艺概述
摘要:Zr02具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下为导体等良性质。

在20世纪70年代出现了氧化锆陶瓷增韧材料,使氧化锆陶瓷材料的力学性能获得了大幅度的提高,极大的扩展了Zr02在结构陶瓷领域的应用。

本文主要介绍了论述了氧化锆精细陶瓷材料的湿法成型工艺的有关研究现状,分析了不同工艺方法的优缺点和应用领域。

关键词:关氧化错高性能陶瓷制备应用
就目前陶瓷制备工艺的发展水平来看,成型工艺在整个陶瓷材料的制备过程中起着承上启下的作用,是保证陶瓷材料及部件的性能可靠性及生产可重复性的关键,与规模化和工业化生产直接相关。

下面介绍氧化锆精细陶瓷材料湿法成型较为常用的几种方法。

一、注浆成型
注浆成型属于传统工艺,适合制备形状复杂的大型陶瓷部件,但坯体质量,包括外形、密度、强度等都较差,工人劳动强度大且不适合自动化作业。

二、热压铸成型
热压铸成型是在较高温度下使陶瓷粉体与粘结剂(石蜡)混合,获得热压铸用的浆料,浆料在压缩空气的作用下注入金属模具,保压冷却,脱模得到蜡坯,蜡坯在惰性粉料保护下脱蜡后得到素坯,素坯再经高温烧结成瓷。

热压铸成型的生坯尺寸精确。

内部结构均匀,模具磨损较小,生产效率高,适合各种原料。

蜡浆和模具的温度需严格控制,否则会引起欠注和变形,因此不适合用来制造大型部件,同时两步烧成工艺较为复杂,能耗较高。

三、流延成型
流延成型是把陶瓷粉料与大量的有机粘结剂、增塑剂、分散剂等充分混合,得到可以流动的粘稠浆料,把浆料加人流延机的料斗,用刮刀控制厚度,经加料嘴向传送带流出.烘干后得到膜坯。

此工艺适合制备薄膜材料,为了获得较好的柔韧性而加入大量的有机物,要求严格控制工艺参数,否则易造成起皮、条纹、薄膜强度低和不易剥离等缺陷。

所用的有机物有毒性,会产生环境污染,应尽可能采用无毒或少毒体系,减少环境污染。

四、直接凝固注模成型
直接凝固注模成型是由苏黎世联邦工学院开发的一种成型技术。

将溶剂水、陶瓷粉体和有机添加剂充分混合形成静电稳定、低粘度、高固相含量的浆料,在其中加入可改变浆料pH值或增加电解质浓度的化学物质,然后将浆料注入到无孔模中。

工艺过程中控制化学反应的进行,使注模前反应缓慢,浆料保持低粘度,注模后反应速度加快,使流态的浆料转变为固态的坯体。

得到的生坯具有很好的机械性能,强度可以达5×103Pa。

生坯经脱模、干燥、烧结后,形成所需形状的陶瓷部件。

其优点是不需或只需少量的有机添加剂(小于1%),坯体不需脱脂,密度均匀,相对密度高(55~70%),可以成型大尺寸、形状复杂的陶瓷部件。

其缺点是添加剂价格昂贵,反应过程中一般有气体放出。

五、注射成型
注射成型在20世纪70年代末80年代初开始应用于陶瓷零部件的成型。

该方法通过添加大量有机物来实现瘠性物料的塑性成型,是陶瓷可塑成型工艺中最普遍的一种方法。

在成形过程中,除了使用热塑性有机物(如聚乙烯、聚苯乙烯)
或热固性有机物(如环氧树脂、酚醛树脂),或水溶性的聚合物作为主要的粘结剂以外,还必须加入一定数量的增塑剂、润滑剂和偶联剂等工艺助剂,以改善陶瓷注射悬浮体的流动性,并保证注射成型坯体的质量。

注射成型工艺具有自动化程度高、成型坯体尺寸精密等优点。

但注射成型陶瓷部件的生坯中有机物含量多达50%(体积分数),在后续烧结过程要排除这些有机物需要很长时间,甚至长达几天到数十天,而且容易造成质量缺陷。

因此,排胶始终是制约其应用的一个关键环节,至今尚未完全突破。

六、胶态注射成型
为解决传统注射成型工艺中有机物加入量大、排除困难等问题,清华大学创造性地提出了陶瓷胶态注射成型新工艺,并自主开发了胶态注射成型样机,实现了瘠性陶瓷料浆的注射成型。

其基本思路是将液态成型与注射成型相结合,利用专用的注射成型设备和胶态原位凝固成型的固化技术,进行陶瓷材料的注射成型。

这一新工艺,使用的有机物最多不超过4%(质量分数),利用水基悬浮体中少量的有机单体或有机化合物在注人模具后快速诱发有机单体聚合生成有机网络骨架,将陶瓷粉体均匀包裹其中,不但使排胶时间大为缩短,同时也大大降低了排胶开裂的可能性。

既具有胶态原位凝固成型坯体均匀性好,有机物含量低的特色,又具有注射成型自动化程度高的优点,是胶态成型工艺的一种质的升华,将成为高技术陶瓷走向产业化的希望所在。

不同的工艺方法试用与不同的领域和环境,只有采用事宜的方法,才能展现不同工艺的优越性,提高产品性能。

同时,不断涌现的新技术也给我们更多的启示,为制造性能更为优良的材料提供新的思路和方法。

参考文献
[l]Garcie R C’Harmlnk R H2aseoe R T Cerma_Licstee|NatureⅡ],1975,258:703~704.
[2]王零森.陶瓷工程[J],1997,31(1):40~44.
[3]Wo]ton G M et aj J Am Ceram SocⅡ]’1963,46(9):418~422.
[4]王钢,等.西北轻工业学院学报[J].2000,18(1):99~103.
[5]李蔚,等无机材料学报[J],1999,14(1):161~164.
[6]EL Yuan ef a/.Solid State Inoics[J].1998(1):119~123.
[7]黄勇,等.现代技术陶瓷[J],1995,16(4):4~11.
[8]Young AC,et越J Am.Ceraw.SocⅡ].1991,74(3):612~618.
[9]杨金龙陶瓷胶态成型工艺及其原位凝固机制的研究
北京:清华大学.1996.
[10]李家驹.陶瓷工艺学.北京:中国轻工业出版社,2001.。

相关文档
最新文档