高中数学教案:2.1.2 指数函数及其性质
高中数学必修1第2章第一节指数函数教案:指数函数及其性质

2.1.2指数函数及其性质教学设计(第1课时)一.教学目标:1、知识与技能:了解指数函数的定义,掌握指数函数的性质,并会用性质解决简单问题。
2、过程与方法:通过绘出函数图象、总结函数性质等教学过程,培养观察、总结,并综合运用数形结合思想解决问题的能力,并逐步形成善于与他人合作探究的团队意识。
3、情感、态度与价值观:通过观察、探究、讨论等思维活动,激发学习数学的兴趣,形成学数学、爱数学、用数学的良好习惯二.重、难点.教学重点:指数函数的图象和性质 教学难点:利用探究方式得出函数性质 三.学法与教具:①学法:观察法、讲授法及讨论法. ②教具:多媒体.[教学设想]1. 情境设计师:同学们先看两个问题(用幻灯分两屏放映)问题1、在2000年,专家预测,未来20年,我国GDP (国内生产总值)年平均增长率可望达到7.3%,那么,在2001~2020年,各年的GDP 可望为2000年的多少倍? 如果把我国2000年GDP 看成是1个单位,2001年为第一年,那么: 1年后(即2001年),我国的GDP 可望为2000年的_______倍。
2年后呢?,……,x 年后呢?问题2、一种放射性物质不断衰变为其他物质,每经过一年,剩留的质量约是原来的84%,求出这种物质的剩留量y 随时间x (单位:年)变化的函数关系。
师:请同学们朗读例题,并给出答案。
生1:经过x 年后,GDP 可望为2000年的x %)3.71(+倍。
生2:物质的剩留量y 随时间x 变化的函数关系是:x y 84.0=师:我们看到,例题中的两个函数是一种新的函数,函数的形式是指数幂的形式,它的底数是常数,而未知数x 却出现在指数位置,我们称这样的函数为指数函数。
从今天开始,我们来研究指数函数(板书:指数函数) 师:那么,指数函数是怎样定义的呢?(板书指数函数定义:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R 。
课件4:2.1.2 指数函数及其性质 第1课时

本节内容结束 更多精彩内容请登录:
解析 由图象可知③④的底数必大于 1,①②的底数必小于 1. 过点(1,0)作直线 x=1,在第一象限内分别与各曲线相交,可知 1<d<c,b<a<1,从而可知 a,b,c,d 与 1 的大小关系为 b<a<1<d<c. 答案 B
规律方法 指数函数的图象随底数变化的规律可归纳为: (1)无论指数函数的底数 a 如何变化,指数函数 y=ax(a>0,a≠1) 的图象与直线 x=1 相交于点(1,a),由图象可知:在 y 轴右侧, 图象从下到上相应的底数由小变大. (2)指数函数的底数与图象间的关系可概括记忆为:在第一象限 内,底数自下而上依次增大.
名师点睛 1.对指数函数的定义的理解 (1)因为 a>0,x 是任意一个实数时,ax 是一个确定的实数,所以函 数的定义域为实数集 R. (2)规定底数 a 大于零且不等于 1. (3)指数函数解析式的特征:ax 的系数是 1,a 为常量,x 为自变量, 有些函数貌似指数函数,实际上却不是,例如 y=ax+1(a>0,a≠1); 有些函数看起来不象指数函数,实际上却是,例如 y=a-x(a>0, a≠1),因为这可等价化归为 y=1ax其中1a>0且1a≠1.
[正解] ∵函数 y=(a2-4a+4)ax 是指数函数, ∴由指数函数的定义得aa2>-0且4aa+≠41=,1, ∴aa= >01且或aa≠=13,. ∴a=3.
指数函数要求形如:f(x)=ax(a>0 且 a≠1),即指数式 前面系数为 1,另外 a>0 且 a≠1.
课堂总结 1.判断一个函数是否为指数函数只需判定其解析式是否符合y=ax(a>0且 a≠1)这一结构形式. 2.指数函数在同一直角坐标系中的图象的相对位置与底数大小的关 系.在y轴右侧,图象从上到下相应的底数由大变小;在y轴左侧,图象从 下到上相应的底数由大变小,即无论在y轴的左侧还是右侧,底数按逆时针 方向变大. 3.由于指数函数y=ax(a>0且a≠1)的定义域为R,所以函数y=af(x)(a>0且 a≠1)与函数f(x)的定义域相同,求与指数函数有关的函数的值域时,要考虑 并利用指数函数本身的要求,并利用好指数函数的单调性.
高中数学2.1.2指数函数及其性质教案新人教A版必修1

指数函数及其性质一、【教学目标】1.知识与技能:理解指数函数的概念,画出具体指数函数图象,能经过观察图象得出两类指数函数图象的地位关系;在理解函数概念的基础上,能运用所学知识解决简单的数学成绩;2.过程与方法:在教学过程中,利用画板作图加深对指数函数的认识,让先生在数学活动中感受数学思想方法之美、领会数学思想方法之重要;3.情感、态度、价值观:经过本节课自主探求研讨式教学,使先生获得研讨函数的规律和方法;培养先生自动学习、合作交流的认识。
二、【学情分析】指数函数式在先生零碎学习了函数概念,基本掌握函数性质的基础上进行研讨的,是先生对函数概念及其性质的第一次运用.教材在之前的学习中给出链各个理论的例子(GDP的增长成绩和碳14的衰减成绩),曾经让先生感遭到了指数函数的理论背景,但这两个例子的背景对于先生来说有些陌生.本节课先设计两个看似简单的成绩,但能经过得到超出想象的结果来激发先生学习新知的兴味和愿望。
三、【教材分析】本节课是《普通高中课程标准实验教科书·数学1》(人教A版)第二章第一节第二课【(2.1.2)《指数函数及其性质》.根据理论情况,将《指数函数及其性质》划分为三节课指数函数及其性质、指数函数及其性质的运用(1)、指数函数及其性质的运用(2)】,这是第一节“指数函数及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及消费理论中有着广泛的运用,所以指数函数应重点研讨。
四、【教学重难点】1.教学重点:指数函数的概念、底数互为倒数的指数函数的图象关于y轴对称。
2.教学难点:底数a的范围讨论,自变量的取值范围和由函数的图象归纳指数函数的性质。
五、【教学方法】自主预习、合作探求、体验践行。
六、 【教学装备】多媒体装备。
七、 【课时安排】第一课时(新知课)。
八、 【教学过程】(一) 创设情境,引出成绩(约3分钟)师:观察图片,你能说出这是甚么吗?生:国际象棋师:这盘象棋隐含了这么一个故事?生:....师:国王为了奖励发明者达依尔特许愿满足他提的任意一个请求,那么达伊尔提出如下要求在棋盘第一格放2粒大米,第二格放4粒大米,第三格放8粒大米,…按这个规律.最初一格棋盘上的大米数就是我要的.请问:最初一格的大米数是多少呢?生:642师:那么国王能否满足他的要求呢?【学情预设】先生会说能.也有说不能的.教师公布数据领会指数函数的爆炸增长,642粒大米是每年全世界粮食产量的1000多倍,明显国王是满足不了他的请求.师:请写出米粒数与棋盘格数的函数关系式.生:{}2,1,2,,64x y x =∈师: “一尺之棰,日取其半,万世不竭.”这句话来自著名的《庄子·天下篇》,哪位同学能用数学言语来表述它的含义?生:。
指数函数的图像与性质教案

§2.1.2指数函数及其性质(一)教学目标1、知识与技能:掌握指数函数的概念;会作指数函数的图象;归纳出指数函数的几个基本性质.2、过程与方法:通过由指数函数的图象归纳其性质的学习过程,培养学生探究、归纳分析问题的能力.3、情感、态度、价值观:通过探究体会“数形结合”的思想;感受知识之间的关联性;体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法;培养学生主动学习、合作交流的意识.教学重点和难点1、重点:指数函数的定义、图象和性质.2、难点:指数函数的定义理解;指数函数性质的归纳.教学方法 探究式教学教学手段 借助多媒体辅助教学,演示指数函数的图象教学流程设计教学过程设计情景引入问题1: 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……. 1个这样的细胞分裂 x次后,得到的细胞个数 y 与 x 的函数关系是什么?问题2: 一尺之棰,日取其半,万世不竭.(出自《庄子 天下篇》)已知一把尺子第一次截去它的一半,第二次截去剩余部分的一半,第三次截去第二次剩余部分的一半,依次下去,问截的次数x 与剩余尺子长度y 之间的函数关系如何?(假设原来长度为1个单位)问题3: 与 这类函数的解析式有何共同特征?学生思考回答,得出结论,引出指数函数知识点一:指数函数的定义一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 问题4:指数函数定义中为什么规定a >0且a≠1呢?如果不这样规定会出现什么情况呢? 学生活动:分组讨论,各组交流成果,加深对定义的认识例1.下列函数中,哪些是指数函数?知识点二:指数函数的图象、性质类比以前讨论函数性质时的内容和方法,我们该如何研究指数函数,研究什么内容?研究方法:画出函数图,结合图象研究函数性质.研究内容:定义域、值域、单调性、奇偶性及其它.探究:用描点法画函数x y 2=与x y )21(=的图象 学生自主探究,描点画出图象学生讨论:两个函数图象有何联系与区别?(学生活动)类比以上函数的图象,总结指数函数性质.学生自主探究完成下面指数函数性质表格:a>1 0<a<1 图象性质 (1)定义域:R (2)值 域:(0,+∞) (3)过点(0,1),即x=0时,y=1(4)在R 上是增函数 (4)在R 上是减函数12x y ⎛⎫= ⎪⎝⎭2x y =x y 4=4x y =x y 4-=14+=x y o o探究: x y 2=, x y 3= , x y )21(= , xy ⎪⎭⎫ ⎝⎛=31四个函数图象特征,图象与其底数有什么规律?学生探究:通过三组图象,探究指数函数图象与底的关系,教师适当启发指导. 知识点三:指数函数性质应用例2 比较下列各题中两个值的大小:(1)5.27.1,37.1; (2)1.08.0-,2.08.0-; (3)3.07.1,1.39.0.由学生分析解题思路,教师总结.拓展迁移:已知下列不等式 , 比较 m,n 的大小 :1. 2. 3. 学生演板,然后师生共评,反馈校正.小结归纳,拓展深化(1)通过本节课的学习,你学到了哪些知识 ?(2)你又掌握了哪些研究数学的学习方法?学生总结,教师补充点评.布置作业,提高升华(1)必做题 :课本P59,A 组5、7(2)选做题: 课本P60,B 组4板书设计n m 22<n m 2.02.0>)10(≠>>a a a a n m 且教学反思:本节课充分发挥自制课件的优势,将自己的想法、新课改的理念和“知识与技能、过程与方法、情感、态度、价值观”三维目标充分融入自制课件中,使本节课的内容更加充实。
指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。
②.掌握指数函数的性质及应用。
③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。
2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。
②培养学生观察问题,分析问题的能力。
③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。
【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。
【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。
复习指数函数的图象及性质,为本节课中的内容储备知识基础。
展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。
教师随时点评,引导,欣赏,鼓励。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。
力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。
学生小组讨论,交流。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可针对展示交流成果提出问题,进一步加深理解。
所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。
指数函数及其性质教案

2.1. 2指数函数及其性质一、教材分析本节是高中数学新人教版必修1的第二章2.1.2指数函数及其性质的内容 二、三维目标1.知识与技能(1)使学生理解指数函数模型的实际背景,理解数学与现实生活及其他学科的联系; (2)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点;(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.通过与初中所学的知识(平方根、立方根)实行类比,得出n 次方根的概念,进而学习根式的性质.3.情感、态度与价值观(1)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; (2)培养学生理解、接受新事物的水平 三、教学重点教学重点:指数函数的的概念和性质. 四、教学难点教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质 五、教学策略发现教学法经历由利用根式的运算性质对根式的化简,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.六、教学准备回顾初中时的整数指数幂及运算性质,0,1(0)n a a a a a a a =⋅⋅⋅⋅⋅=≠七、教学环节 引入课题1. (合作讨论)人口问题是世界性问题,因为世界人口迅猛增加,已引起全世界注重.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,世界范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.为了控制人口过快增长,很多国家都实行了计划生育.我国人口问题更为突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.所以,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.○1 按照上述材料中的1%的增长率,从2000年起,x 年后我国的人口将达到2000年的多少倍?○2 到2050年我国的人口将达到多少? ○3 你认为人口的过快增长会给社会的发展带来什么样的影响? 2. 上一节中GDP 问题中时间x 与GDP 值y 的对应关系y=1.073x (x ∈N *,x≤20)能否构成函数?3. 一种放射性物质持续变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x 年为自变量,残留量y 的函数关系式是什么? 4. 上面的几个函数有什么共同特征? 新课教学(一)指数函数的概念一般地,函数)1a ,0a (a y x≠>=且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .注意:○1 指数函数的定义是一个形式定义,要引导学生辨析; ○2 注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和1.巩固练习:利用指数函数的定义解决(教材P 68例2、3) (二)指数函数的图象和性质问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗? 研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 探索研究:1.在同一坐标系中画出以下函数的图象:(1)x )31(y = (2)x)21(y =(3)x2y = (4)x 3y = (5)x 5y =2.从画出的图象中你能发现函数x2y =的图象和函数x)21(y =的图象有什么关系?可否利用x2y =的图象画出x)21(y =的图象?3.从画出的图象(x2y =、x3y =和x5y =)中,你能发现函数的图象与其底数之间有什么样的规律?4.你能根据指数函数的图象的特征归纳出指数函数的性质吗? 图象特征函数性质1a > 1a 0<< 1a >1a 0<<向x 、y 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数 函数图象都在x 轴上方 函数的值域为R +函数图象都过定点(0,1) 1a 0=自左向右看, 图象逐渐上升 自左向右看,图象逐渐下降 增函数减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1 1a ,0x x >> 1a ,0x x <>在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于11a ,0x x << 1a ,0x x ><图象上升趋势是越来越陡图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快;函数值开始减小极快,到了某一值后减小速度较慢;5. 利用函数的单调性,结合图象还能够看出:(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =; (4)当1a >时,若21x x <,则)x (f )x (f 21<;(三)典型例题例1.在以下的关系式中,哪些是指数函数,为什么? (1)y =2x +2;(2)y =(-2)x ;(3)y =-2x ;(4)y =πx ; (5)y =x 2;(6)y =(a -1)x (a >1,且a ≠2).解 只有(4),(6)是指数函数,因它们满足指数函数的定义;(1)中解析式可变形为y =2x ·22=4·2x ,不满足指数函数的形式;(2)中底数为负,所以不是;(3)中解析式中多一负号,所以不是;(5)中指数为常数,所以不是;6)中令b =a -1,则y =b x ,b >0且b ≠1,所以是.例2 截止到1999年底,我们人口约13亿,假设今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?解 设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿, 1999年底,我国人口约为13亿;经过1年(即2000年)人口数为13+13×1%=13(1+1%)亿;经过2年(即2001年)人口数为13×(1+1%)+13×(1+1%)×1%=13(1+1%)2亿; 经过3年(即2002年)人口数为13(1+1%)2+13×(1+1%)2×1%=13(1+1%)3亿; ……经过x 年人口数为13(1+1%)x 亿;则y =13(1+1%)x . 当x =20时,y =13(1+1%)20≈16(亿). 答 经过20年后,我国人口数最多为16亿. 作业布置1.已知指数函数y =a x (a >0,且a ≠1)在[0,1]上的最大值与最小值的和为3,则a 等于( ) A.12B .2C .4 D.14解析:∵指数函数在其定义域内是单调函数,∴端点处取得最大、小值, ∴a 0+a =3,故a =2. 答案:B2.函数f(x)=a x(a>0且a≠1),对于任意实数x,y都有()A.f(xy)=f(x)f(y)B.f(xy)=f(x)+f(y)C.f(x+y)=f(x)f(y)D.f(x+y)=f(x)+f(y)解析:f(x+y)=a x+y=a x a y=f(x)f(y).应选C.答案:C3.某厂去年生产某种规格的电子元件a个,计划从今年开始的m年内,每年生产此种元件的产量比上一年增长p%,此种规格电子元件年产量y随年数x变化的函数关系是____________________.答案:y=a(1+p%)x(0≤x≤m)4.已知a,b>1,f(x)=a x,g(x)=b x,当f(x1)=g(x2)=2时,有x1>x2,则a,b的大小关系是()A.a=b B.a>bC.a<b D.不能确定解析:∵a>1,b>1,由图示知b>a.答案:C八、板书设计第二章基本初等函数(I)2.1 指数函数2.1. 2指数函数及其性质九、教学反思通过本堂课的学习,同学们能够独立完成相关习题。
2.1.2指数函数及其性质教案doc

2.1.2指数函数及其性质一、教学目标知识与技能:理解指数函数的概念、意义和性质,会画具体指数函数的图象。
过程与方法:利用实际背景,通过自主探索,培养学生观察、分析、归纳等抽象思维能力,通过具体的函数图象归纳出指数函数的性质,体会数形结合和分类讨论思想以及从特殊到一般的抽象概括的方法 。
情感、态度与价值观:通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,充分发挥学生的主观能动性,培养他们勇于提问、善于探索的数学思维品质。
认识到数学来源于生活,并且服务于生活。
二、教学重点和难点重点:指数函数的概念和性质。
难点:用数形结合的方法,从具体到一般的探索、概括指数函数的性质。
三、教学过程(一) 创设情境、导入新课老师:在本章的开始,给出了两个问题:问题一:据国务院发展研究中心2000年发表的《未来20年我国前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%,那么,在2001--2020年,各年的GDP 可望为2000年的多少倍?问题二:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”。
根据此规律,人们获得了碳14含量P 和死亡年数t 的之间对应关系.关系,为引出指数函数的模型 xa y =(a>0,a ≠1)做准备,以利于学生体会指数函数的概念来自于生活,并且服务于生活。
(二) 师生互动、探究新知1.指数函数的定义老师:提出探究问题1:上述问题中的两个对应关系能否构成函数关系? 提出探究问题2:上述两个函数有什么样的共同特征?学生:通过思考讨论不难得出探究1的结论:能够构成函数关系。
引导学生通过观察得出两个函数的共同特征:(1)幂的形式都一样;(2)幂的底数都是一个正常数; (3)幂的指数都是一个变量。
老师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成x a y =的形式,自变量在指数位置,我们把具有这种形式的函数叫做指数函数。
高中数学2.1.2第1课时 指数函数及其性质1优秀教案

2.1.2 指数函数及其性质(一)一、根底过关1. 以下以x 为自变量的函数中,是指数函数的是 ( )A .y =(-4)xB .y =λx (λ>1)C .y =-4xD .y =a x +2(a >0且a ≠1)2. 函数f (x )=(a 2-3a +3)a x 是指数函数,则有 ( )A .a =1或a =2B .a =1C .a =2D .a >0且a ≠13. 函数y =12x 的值域是 ( )A .(0,+∞)B .(0,1)C .(0,1)∪(1,+∞)D .(1,+∞)4. 如果某林区森林木材蓄积量每年平均比上一年增长11.3%,经过x 年可以增长到原来的y 倍,则函数y =f (x )的图象大致为 ( )5. 函数f (x )=a x 的图象经过点(2,4),则f (-3)的值为____.6. 函数y =8-23-x (x ≥0)的值域是________.7. 比拟以下各组数中两个值的大小:(1);(2)1314⎛⎫ ⎪⎝⎭和2314⎛⎫ ⎪⎝⎭; (3)2和3.8. 判断以下函数在(-∞,+∞)内是增函数,还是减函数:(1)y =4x ; (2)y =⎝⎛⎭⎫14x ; (3)32x y =.二、能力提升9. 设函数f (x )=⎩⎪⎨⎪⎧2x , x <0,g (x ), x >0.假设f (x )是奇函数,则g (2)的值是 ( ) A .-14 B .-4 C.14D .410.函数y =a |x |(a >1)的图象是 ( )11.假设f (x )=⎩⎪⎨⎪⎧ a x ,x >1,⎝⎛⎭⎫4-a 2x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围为________.12.求函数22212x x y ⎛⎫=⎪⎝⎭-+ (0≤x ≤3)的值域.三、探究与拓展13.当a >1时,求证函数y =a x +1a x -1是奇函数.2.1.2 指数函数及其性质(一) 答案1.B 5.186.[0,8) 7. 解 (1)考查函数y x .因为0<0.2<1,所以函数y x 在实数集R 上是单调减函数..(2)考查函数y =(14)x .因为0<14<1,所以函数y =(14)x 在实数集R 上是单调减函数. 又因为13<23,所以(14)13>(14)23. (3)2<20,即2<1;30<3,即1<3,所以2<3.8. 解 (1)因为4>1,所以函数y =4x 在(-∞,+∞)内是增函数;(2)因为0<14<1,所以函数y =⎝⎛⎭⎫14x 在(-∞,+∞)内是减函数; (3)由于2x 3=(32)x ,并且32>1,所以函数y =2x 3在(-∞,+∞)内是增函数. 9.A 10.B 11.[4,8)12.解 令t =x 2-2x +2,则y =⎝⎛⎭⎫12t ,又t =x 2-2x +2=(x -1)2+1,∵0≤x ≤3,∴当x =1时,t min =1;当x =3时,t max ≤t ≤5,∴⎝⎛⎭⎫125≤y ≤⎝⎛⎭⎫121,故所求函数的值域为⎣⎡⎦⎤132,12. 13.证明 由a x -1≠0,得x ≠0,故函数定义域为{x |x ≠0},易判断其定义域关于原点对称.又f (-x )=a -x +1a -x -1=(a -x +1)a x (a -x -1)a x =1+a x1-a x=-f (x ), ∴f (-x )=-f (x ).∴函数y =a x +1a x -1是奇函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2 指数函数及其性质
知识目标:理解指数函数的定义,掌握指数函数的图像、性质及其简单应用.
能力目标:通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类
讨论的思想以及从特殊到一般的数学讨论的方法 ,增强识图用图的能力.
情感目标:通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐
的课堂氛围,培养学生勇于提问,善于探索的思维品质.
教学重点:指数函数的图像、性质及其简单运用.
教学难点:指数函数图像和性质的发现过程,及指数函数图像与底的关系.
教学方法:探究式教学法.
教学手段:采用多媒体辅助教学.
教学过程:
一、创设情景,引出课题
前面我们学习过函数的概念、函数的有关性质及指数的运算,今天我们将在此基础上学习一类新的基本函数.
问题1:我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。
我们来看一种球菌的分裂过程:
动画演示:某种球菌分裂时,由1分裂成2个,2个分裂成4个,------.一个这样的球菌分裂x 次后,得到的球菌的个数y 与x 的关系式是:x y 2=.
问题2:某种机器设备每年按%6的折旧率折旧,设机器的原来价值为1,经过x 年后,机器的价值为原来的y 倍,则y 与x 的关系为x y 94.0=.
思考:你能从以上的两个例子中得到的关系式里找到什么异同点吗?
共同点:变量x 与y 构成函数关系式,是指数的形式,自变量在指数位置,底数是常数; 不同点:底数的取值不同.
大家能给这样的函数起个名字吗?(想让学生对数学的形式化有一认识)
(指数函数)
这就是我们今天所要研究的一个新的基本函数——指数函数.(引出课题)
二、探索研究
(一)指数函数的概念:
函数)1,0(≠>=a a a y x 且叫做指数函数.其中x 是自变量.函数的定义域为R .
在以前我们学过的函数中,一次函数用形如)0(≠+=k b kx y 的形式表示,反比例函数用形如)0(≠=k x
k y 的形式表示,二次函数用)0(2≠++=a c bx ax y 的形式表示.这些函数对其一般形式上的系数都有相应的限制.给定一个函数要注意它的实际意义与研究价值. 思考:为什么指数函数对底数有这样的要求呢?
若0=a ,当0>x 时,x a 恒等于0,没有研究价值;当0≤x 时,x a 无意义;
若0<a ,例如当21,2=
-=x a 时,2-无意义,没有研究价值; 若1=a ,则11=x ,x a 是一个常量,也没有研究的必要.
很好,所以有规定10≠>a a 且(对指数函数有一初步的认识).
(二)对数函数的图像与性质:
学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像和性质去解决数学问题和实际问题.
思考1:你能类比前面讨论函数性质的思路,提出研究指数函数性质的内容和方法吗? 研究方法:画出函数的图像,结合图像研究函数的性质.
研究内容:定义域、值域、图像、单调性、奇偶性.
思考2:如何来画指数函数的图像呢?
画函数图像通常采用:列表、描点、连线.有时,也可以利用函数的有关性质画图.
思考3:画出指数函数x y 2=、x y )2
1
(=的图像并观察图像有什么特征?
函数x
y 2=的图像位于x 轴的上方,向左无限接近x 轴,向上无限延伸, 从左向右看,图像是上升的,与y 轴交于(0,1)点. 函数x y )2
1
(=的图像位于x 轴的上方,向右无限接近x 轴,向上无限延伸,从左向右看,图像是下降的,与y 轴交于(0,1)点.
思考4:函数12()2x x y y ==与的图象有什么关系?能否由2x y =的图像得到x y )21(=的图
像?
关于y 轴对称.所以可以先画其中一个函数的图像,利用轴对称的性质可以得到另一个函数的图像,同学们一定要掌握这种作图的方法,对以后的学习非常有用.
思考5:选取底数a 的若干个不同的值,在同一平面坐标系内作出相应的指数函数的图像.观察图像,你能发现他们有哪些共同特征?
教师演示课件,以不同的底,作出函数的图像,描绘出其几何特征,将函数的图像和性质对应起来.利用几何画板,通过改变a 的值,让学生观察图像的变化规律.
思考6:通过你们画的图像以及老师的演示,你们能发现怎样的规律呢?
底数分1>a 和10<<a 两种情况.
很好,那么,你们能否归纳总结一下它们的性质呢?
引导学生观察函数x y 2=的图像特征,并总结函数x y 2=的性质.
思考7:从特殊到一般,指数函数)1(>=a a
y x 有哪些性质?并类比得出)
10(<<=a a y x 的性质.
师生共同归纳:
指数函数)10(≠>=a a a y x 且的图像与性质:
强调:利用函数图像研究函数性质是一种直观而形象的方法,记忆指数函数性质时可以联想它的图像,记住性质的关键在于要脑中有图.
三、应用举例:
数学源于生活,还要服务于生活.学习函数的一个重要目标是应用.指数函数是生产生活中常见的一类函数,指数函数一直是科学工作者,特别是工程技术人员必备的工具.这节课我们先来了解一下它的简单应用.
利用单调性比较大小.
例1. 比较下列各组数中各个值的大小:
(1)5.27.1 ,37.1 ; (2) 1.08.0-,2.08
.0-; (3))1,0(,2131
≠>a a a a 且 ; (4) 3.07.1,1.39.0,1.
分析:对于这样两个数比大小,学生可能会觉得困难,提示学生观察两个数的形式特征(底数相同,指数不同),联想指数函数,提出构造函数法,即把这两个数看作某个函数的函数值,利用函数的单调性比较大小.
1a > 01a <<
图 象
性
质 (1)定义域:(,)-∞+∞ (2)值域: (0,)+∞
(3)过定点(0,1),即当0=x 时,1=y
(4)在(,)-∞+∞上是增函数
(4)在(,)-∞+∞上是减函数
说明:
1. 当底数相同且明确底数a 与1的大小关系时:直接用函数的单调性来解.
2.当底数相同但不明确底数a 与1的大小关系时: 要分情况讨论.
3.当底数不同不能直接比较时:可借助中间数,间接比较上述两个数的大小.
四、反馈练习:
比较下列各组数中两个值的大小:
五、归纳小结,强化思想:
本小节的目的要求是掌握指数函数的概念、图像和性质.在理解指数函数的定义的基础上,掌握指数函数的图像和性质是本小节的重点.
1.数学知识点:指数函数的概念、图像和性质.
2.研究函数的一般步骤:定义→图像→性质→应用.
3.数学思想方法:数形结合,分类讨论的数学思想.
六、布置作业:
;
,)(3.25.01.31.31;)()()(24.03.032,322--.
2.03.231.05.0--,)(。