热重分析原理及方法概要
热重分析法

热重分析法热重分析法(Thermogravimetric Analysis,简称TGA)是一种热分析技术,通过对样品在升温过程中的质量变化进行监测和分析,以了解样品的热稳定性、分解特性等信息。
本文将介绍热重分析法的原理、仪器设备、应用领域以及未来的发展趋势。
热重分析法是在恒定加热速率下,通过记录样品重量随温度或时间的变化,来研究样品的热衰减、热失重等热性能。
这种分析方法可以对各种材料进行测试,如聚合物、陶瓷、金属等。
它可以用于研究材料的热稳定性、热分解过程、腐蚀、氧化等热化学性质,并可以对化学反应、降解行为等进行动态监测。
热重分析法的仪器设备主要由称量装置、升温装置、传感器、数据采集和处理系统等组成。
在测试过程中,样品一般以小颗粒、薄片或粉末的形式存在,称量时要求准确并保持恒定性。
样品装入称量器后,通过升温装置以控制加热速率,并通过传感器可以实时监测样品重量的变化。
数据采集和处理系统可以将监测到的重量变化转化为曲线图或数字数据,进一步进行分析和解释。
热重分析法在许多领域有广泛的应用。
在研究材料的热稳定性方面,可以用于评估聚合物材料的耐高温性能,为材料选择、设计和改性提供依据。
在研究催化剂的活性和稳定性时,可以通过热重分析法来研究其在高温下的热失重和活性损失情况。
此外,热重分析法还可以用于纺织品的研究、煤炭和石油产品的分析、药物的稳定性研究等。
在未来,热重分析法有望得到进一步发展和广泛应用。
随着材料科学和工程技术的不断进步,对材料热性能的研究需求日益增加。
新的测试方法和装置将不断涌现,以满足更多领域对材料热性能测量的需求。
同时,热重分析法也将与其他热分析技术结合,如差热分析(Differential Scanning Calorimetry,简称DSC)、热导率测试等,以获取更准确、全面的热性能数据。
总之,热重分析法作为一种重要的热分析技术,具有广泛的应用前景和重要的科学意义。
通过研究样品在升温过程中的质量变化,可以了解材料的热稳定性、热分解特性等重要信息。
热重分析原理及方法介绍

微商热重曲线(DTG曲线)
从 热 重 法 可 派 生 出 微 商 热 重 ( Derivative Thermogravimetry),它是TG曲线对温度(或时间)的一阶 导数。 纵坐标为dm/dt,横坐标为温度或时间
A(s) B(s) C ( g ) (1) A(s) B( s) C ( g ) (2) A(s) B( g ) C (s) D( g ) (3)
在测定过程中,通入惰性气体,对 1、2是有利的,而对3不利;如果 所通气体与反应产生的气体相同, 对1有影响,而对2无影响。
(1) 试样量
(3)其它
试样的反应热、导热性、比热等因素都对TG曲线有影响。
反应热会引起试样的温度高于或低于炉温,这将对计算动力学数据 带来严重的误差。
气体分解产物在固体试样中的吸附也会影响TG曲线。可以通过无盖 大口径坩埚,薄试样层或使惰性气氛流过炉子以减少吸附。
热重曲线的分析和计算方法
热重分析的应用
CaC2O4· H2O→CaC2O4+H2O (100-200℃,失重量12.5% )
CaC2O4→CaCO3+CO (400-500℃,失重量18.5%)
CaCO3→CaO+CO2 (600-800℃,失重量30.5% )
影响热重法测定结果的因素
一、仪器因素
升温速率 炉内气氛 记录纸速 支持器及坩埚材料 炉子的几何形状 热天平灵敏度
TG与DTG的测量都要依靠热天平,主要介绍热天平及 热重测量的原理。 热天平是实现热重测量技术而制作的仪器,它是在普 通分析天平基础上发展起来的,具有一些特殊要求的 精密仪器: ( 1 )程序控温系统及加热炉,炉子的热辐射和磁场 对热重测量的影响尽可能小; (2)高精度的重量与温度测量及记录系统; ( 3 )能满足在各种气氛和真空中进行测量的要求; (4)能与其它热分析方法联用。
(完整word版)热重分析

第三节 热重分析(TG )一、基本原理热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系的一种技术,简称TG 。
如熔融、结晶和玻璃化转变之类的热行为,试样确无质量变化,而分解、升华、还原、解吸附、吸附、蒸发等伴有质量改变的热变化可用TG 来测。
如果在程序升温的条件下不断记录试样的重量的变化,即可得到TG 曲线。
如图1所示。
一般可以观察到二到三个台阶,第一个失重台阶W 0—W 2多数发生在100℃以下,这多半是由于试样的吸附水或试样内残留的溶剂挥发所致。
第二个台阶往往是试样内添加的小分子助剂,如高聚物增塑剂、抗老剂和其他助剂的挥发(如纯物质试样则无此部分)。
第三个台阶发生在高温是属于试样本体的分解。
为了清楚地观察到每阶段失重最快的温度。
经常用微分热重曲线DTG (如图1b )。
这种/dW dt 曲线可以利用电子微分电路在绘制TG 曲线的同时绘出。
对于分解不完全的物质常常留下残留物W R 。
在某种特殊的情况下还会发生增重现象,这可能是物质与环境气体(如空气中的氧)进行了反应所致。
另外目前又出现了一种等温TG 曲线。
这是在某一定温度条件下,观察试样的重量随时间的变化,所以又称“等温热失重法”即:W=f (t )(温度为定值)W 0 W 1 W 2 W 3重量图1 热重分析曲线(a )与微商热重曲线(b )微量天平计算机温度程序器试样和坩埚炉子图2-1 热天平方块图它能提供很多有用的信息,如在某温度下物体的分解速度或某成分的挥发速度等。
二、基本结构热重法的仪器称为热天平,给出的曲线为热重曲线。
热重曲线以时间t 或炉温T 为横坐标,以试样的质量变化(损失)为纵坐标。
热天平的基本单元是微量天平、炉子、温度程序器、气氛控制器以及同时记录这些输出的仪器。
热天平的示意图如图2-1所示。
通常是先由计算机存储一系列质量和温度与时间关系的数据完成测量后,再由时间转换成温度。
三、影响因素虽然由于技术的进步,在设计TG 仪器时进行了周密的考虑,尽量减少各种因素的影响,但是客观上这些因素还不同程度在存在着,为了数据的可靠性,有必要分述如下:1.坩埚的影响坩埚是用来盛装试样的,坩埚具有各种尺寸、形状并由不同材质制成。
热重分析仪的原理分析及应用

热重分析仪的原理分析及应用一、仪器介绍热重分析仪是一种常用的化学分析仪器,主要用于研究样品在升温过程中失去的质量和热重曲线,从而确定样品的热稳定性、化学稳定性、热分解机理、含水量等信息。
该仪器通常由样品室、电子天平、加热室、热电偶、温度控制器、数据采集器和计算机等组成。
二、原理分析热重分析仪的原理基于热重学原理,即样品在加热过程中会失去质量,因为其组成物质分解、挥发或发生化学反应而失去质量。
通过将样品放置在热重分析仪的样品室中,加热样品室,将样品加热到一定温度,同时测量样品失去的质量随时间变化的曲线,就可以得到热重曲线。
通过分析热重曲线,可以确定样品的热分解温度、吸水性、热稳定性、化学稳定性等信息。
热重分析仪的原理可以描述为以下的过程:1.将样品放入称量盘中并称量,确定样品的质量;2.将称量盘放入样品室中;3.通过电子天平实时测量样品的质量;4.对样品加热到一定温度,实时记录样品质量随温度变化的曲线。
三、应用1. 确定物质的重量变化通过热重分析仪可以确定物质在加热过程中的重量变化,从而得到物质的热稳定性和化学稳定性等信息。
例如,可以用热重分析仪来确定燃料的燃烧特性,以及橡胶、塑料等材料的热稳定性。
2. 确定水分含量热重分析仪还可用于确定样品中的水分含量。
在热重分析过程中,如果样品中含有水分,则可以通过测量样品的重量随温度变化的曲线,确定样品中的水分含量。
这对一些粉末状物质中的水分含量的测定十分有用。
3. 确定材料的分解机理通过热重分析仪可以确定物质的分解机理以及其热稳定性。
这对于材料的生产和研究非常重要。
例如,在高分子材料的研究中,可以通过对其热重曲线的分析,确定其分解机理和分解温度等信息。
4. 用于药物研究热重分析仪除了在材料研究中有广泛应用外,在药物研究领域中也有很多应用。
例如,可以用热重分析仪来测定某种药物的重量和水分含量,并通过分析热重曲线找出药物的热分解温度等参数,从而确定药物的热稳定性和化学稳定性。
实验二十一__热重分析法

实验二十一热重分析法一、实验目的1.掌握热重分析的原理。
2.用热天平测CuSO4·5H2O样品的热重曲线,学会使用WRT-3P高温微量热天平。
二、实验原理热重分析法(Thermogravimetric Analysis,简称TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。
许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。
1.TG和DTG的基本原理与仪器进行热重分析的基本仪器为热天平。
热天平一般包括天平、炉子、程序控温系统、记录系统等部分。
有的热天平还配有通入气氛或真空装置。
典型的热天平示意图见图l。
除热天平外,还有弹簧秤。
国内已有TG和DTG(微商热重法)联用的示差天平。
热重分析法通常可分为两大类:静态法和动态法。
静态法是等压质量变化的测定,是指一物质的挥发性产物在恒定分压下,物质平衡与温度T的函数关系。
以失重为纵坐标,温度T为横坐标作等压质量变化曲线图。
等温质量变化的测定是指一物质在恒温下,物质质量变化与时间t的依赖关系,以质量变化为纵坐标,以时间为横坐标,获得等温质量变化曲线图。
动态法是在程序升温的情况下,测量物质质量的变化对时间的函数关系。
1一机械减码;2一吊挂系统;3一密封管;4一出气口5一加热丝;6一试样盘;7一热电偶8一光学读数;9一进气口;10一试样;1l一管状电阻炉;12一温度读数表头;13一温控加热单元图l 热天平原理图控制温度下,试样受热后重量减轻,天平(或弹簧秤)向上移动,使变压器内磁场移动输电功能改变;另一方面加热电炉温度缓慢升高时热电偶所产生的电位差输入温度控制器,经放大后由信号接收系统绘出TG热分析图谱。
2曲线a所示。
TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。
DTG是TG对温度(或时间)的一阶导数。
热重分析的原理

热重分析的原理
热重分析是一种通过加热样品并测量其质量变化来研究样品性质的分析方法。
它可以用于研究材料的热稳定性、吸附、脱附、氧化、分解和化学反应等。
热重分析的原理基于样品在升温过程中发生质量变化的基本规律,通过对这些质量变化的监测和分析,可以得到样品的热学性质、化学性质和物理性质等重要信息。
热重分析的基本原理是利用热天平仪器对样品进行加热,并测量样品的质量随
温度变化的情况。
在加热过程中,样品会发生吸附、脱附、分解、氧化等反应,从而导致质量的变化。
通过监测样品质量的变化,可以得到样品在不同温度下的热学性质和化学性质。
热重分析的原理可以用于研究材料的热稳定性。
在升温过程中,如果样品发生
分解、氧化等反应,会导致质量的减少;而吸附反应则会导致质量的增加。
通过监测样品质量的变化,可以确定样品的热稳定性,为材料的应用提供重要参考。
此外,热重分析的原理也可以用于研究材料的吸附、脱附等性质。
在升温过程中,样品会发生吸附、脱附等反应,从而导致质量的变化。
通过监测样品质量的变化,可以得到样品的吸附、脱附等性质,为材料的表面性质研究提供重要信息。
总之,热重分析的原理是通过监测样品在加热过程中的质量变化,来研究样品
的热学性质、化学性质和物理性质。
这种分析方法简单、快速、准确,广泛应用于材料科学、化学、生物学等领域。
希望本文对热重分析的原理有所帮助,谢谢阅读。
《热重分析法TGA》课件

热重分析法可以用于物质的热稳定性以及其他相关性质的研究,是当前热分 析领域中最为普及的实验方法之一。
热重分析的原理和定义
热重分析就是利用样品在加热条件下质量的变化情况来研究材料的性质。主要用于探究材料在高温和氧化条件下 的热稳定性和降解性,以及其他相关的物理和化学性质。
热重分析仪的组成和工作原理
热重分析在实验中的操作步骤和注意事项
选择样品
样品应该随机选取以保证分 析结果的可靠性。同时,需 要根据实验需要来决定样品 的形态和质量。
制备样品
样品的制备需要根据实验需 要来决定。例如,如果需要 分析样品的热稳定性,则需 要制备纯净的样品。如果需 要研究样品的热分解机理, 则可以选择研磨或压缩样品。
热重分析仪通常由天平、加热炉和控温系统等部分组 成。当样品放置在热重分析仪中进行加热时,控温系 统可以记录样品失重的情况。通过对不同温度下的质 量变化进行分析,可以了解样品的热稳定性和降解性 失重数据的分析,可以得出多个数据结论。例 如,失重曲线图可以通过样品在不同温度下失重的趋 势发现不同的失重阶段以及相应的材料性质。除此之 外,还可以根据温度程序和气氛条件来推断样品的组 成、化学反应以及热分解动力学常数等信息。
材料科学
热重分析能够探究材料的热稳定 性、降解、光、热等性质,为材 料科学的研究提供有力支持。
质量控制
热重分析在医药、化工、电子、 新能源等领域的应用较为广泛, 实现根据热稳定性选择合适的物 料。
环境保护
环境科学中,热重分析用于研究 有机物的热分解机理,以及热解 过程中的异味、毒性等问题,为 环境保护工作提供有力手段。
热重分析的优势和局限性
优势
• 不需要理论模型,可直观得出样品的热分解 规律。
热重法的测试原理

热重法的测试原理热重法是一种常用的物质分析方法,通过对样品在控制加热条件下的质量变化进行监测和分析,来研究样品的热性质、热稳定性以及其他相关性质。
该方法主要利用样品在加热过程中可能发生的质量损失或质量增加来推测其组成及性质变化。
热重法的测试原理基于质量守恒定律和热力学原理。
当样品加热时,其温度会逐渐升高,同时发生质量变化。
这是因为样品中含有的水分、挥发性物质、分解产物等在加热过程中可能发生蒸发、分解或化学反应等变化。
这些变化导致样品的质量发生变化,可以通过称量仪器测量得到。
热重法的测试过程主要包括以下几个步骤:1. 样品称重:将需要测试的样品称重,并记录其初始质量。
2. 加热过程:将样品放入热重仪器中,通过加热炉或其他方式对样品进行加热。
在加热过程中,可以通过测量样品温度的变化来了解其热性质。
3. 质量变化监测:在加热过程中,热重仪器会实时监测和记录样品的质量变化情况。
质量变化可以通过实时称量样品来得到。
4. 数据分析:将质量变化数据与温度变化数据进行关联分析,可以得到样品在不同温度下的质量变化曲线。
通过分析曲线的特征,可以推测样品的热性质和热稳定性,比如热分解温度、失重率等。
热重法的测试原理基于几个基本假设和基本方程式:1. 质量守恒定律:在样品加热的过程中,样品中的物质不会消失或增加,质量的变化只是由于物质的转化或蒸发。
2. 热力学原理:热力学定律可以用来揭示样品在加热过程中发生的物质转化或分解反应的动力学变化。
3. 质量变化关联:样品的质量变化与温度的变化具有一定的关联性,可以通过对质量变化数据与温度变化数据进行关联分析来研究样品的热性质。
通过热重法分析样品可以得到很多有用的信息。
比如可以利用热重分析确定样品中的各种成分的含量,比如水分含量、挥发性物质含量等。
同时,还可以通过热分解曲线分析样品的热稳定性和热分解温度。
此外,热重法还可以用于研究样品的反应性质,比如在一定加热条件下观察样品发生的化学反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
热分析的应用类型
成份分析:无机物、有机物、药物和高聚 物的鉴别和分析以及它们的相图研究。 稳定性测定:物质的热稳定性、抗氧化性 能的测定等。 化学反应的研究:比如固 - 气反应研究、 催化性能测定、反应动力学研究、反应热 测定、相变和结晶过程研究。
2018/11/15 9
热重法 (Thermogravimetry TG )
2018/11/15 15
热天平种类
根据试样与天平横梁支撑点之间的相对 位臵,热天平可分为下皿式,上皿式与 水平式三种。
2018/11/15
16
热天平测量原理
2018/11/15
17
热天平测量原理
当天平左边称盘中试样因受热产生重量 变化时,天平横梁连同光栏则向上或向 下摆动,此时接收元件(光敏三极管) 接收到的光源照射强度发生变化,使其 输出的电信号发生变化。这种变化的电 信号送给测重单元,经放大后再送给磁 铁外线圈,使磁铁产生与重量变化相反 的作用力,天平达到平衡状态。因此, 只要测量通过线圈电流的大小变化,就 能知道试样重量的变化。
2018/11/15 30
2018/11/15
31
2018/11/15
32
(2) 气氛的影响
热重法通常可在静态气氛或动态气氛下进行测 定。在静态气氛下,如果测定的是一个可逆的 分解反应,随着温度的升高,分解速率增大。 但由于试样周围气体浓度增加会使分解速率下 降。另外炉内气体的对流可造成样品周围的气 体浓度不断变化。这些因素会严重影响实验结 果,所以通常不采用静态气氛。为了获得重复 性好的实验结果,一般在严格控制的条件下采 用动态气氛。 试样周围气氛对热分解过程有较大的影响,气 氛对TG曲线的影响与反应类型、分解产物的 性质和气氛的种类有关。
2018/11/15 5
分 类
热分析方法的种类是多种多样的,根据ICTA 的归纳和分类,目前的热分析方法共分为9类 17种。
2018/11/15
6
ICTA对热分析技术的分类
物理 性质 1.质量 分析技术名称 1)热重法 2)等压质量变化 测定 3)逸出气体检测 4)逸出气体分析 5)放射热分析 6)热微粒分析 2.温度 7)加热曲线测定 8)差热分析
2018/11/15 4
1915年日本的本多光太郎提出了“热天平”概 念并设计了世界上第一台热天平(热重分析) ;测定了 MnSO4.4H2O等无机化合物的热分解 反应。 二十年代,差热分析在粘土、矿物和硅酸盐的 研究中使用得比较普遍。从热分析总的发展来 看,四十年代以前是比较缓慢的.例如热天平 直到四十年代后期才用于无机重量分析和广泛 应用于煤炭高温裂解反应。 20世纪40年代末商业化电子管式差热分析仪问 世 , 60 年 代 又 实 现 了 微 量 化 。 1964 年 , Watson 和 O’Neill 等人提出了“差示扫描量热 ”的概念,进而发展成为差示扫描量热技术, 使得热分析技术不断发展和壮大。
2018/11/15 18
设 试 样 质 量 为 m , 则 其 所 受 重 力 为 F1=mg,而线圈中电流 I在磁场作用下对 磁铁的作用力为:F2= nBI (n为线圈匝 数,B为磁场强度),天平平衡时,
g I m nB
或 I km
若将此电流输送给记录仪记录下来,可 获得试样质量随温度的变化曲线,即TG 曲线。
2018/11/15
3
发展史
热分析起始于 1887 午,德国人 H.Lechatelier 用一个热电偶插入受热粘土试样中,测量粘土 的热变化;所记录的数据并不是试样和参比物 之间的温度差。 1899 年 , 英 国 人 Roberts 和 Austen 改 良 了 Lechatelier装臵,采用两个热电偶反相连接, 采用差热分析的方法研究钢铁等金属材料。直 接记录样品和参比物之间的温差随时间变化规 律;首次采用示差热电偶记录试样与参比物间 产生的温度差.这即目前广泛应用的差热分析 法的原始模型。
2018/11/15 25
例:含有一个结晶水的草酸钙的 TG 曲线和 DTG
曲线
2018/11/15
26
CaC2O4· H2O→CaC2O4+H2O (100-200℃,失重量12.5% ) CaC2O4→CaCO3+CO (400-500℃,失重量18.5%) CaCO3→CaO+CO2 (600-800℃,失重量30.5% )
2018/11/15 33
热重法所研究的反应大致有下列三种类型:
A( s ) B( s ) C ( g ) A( s ) B( s ) C ( g ) A( s ) B( g ) C ( s ) D( g ) (1) (2) (3)
在测定过程中,通入惰性气体,对 1、2是有利的,而对3不利;如果所通 气体与反应产生的气体相同,对1有影 响,而对2无影响。
2018/11/15 19
热重与微商热重曲线
TG 曲线:理想的 TG 曲线是一些直角台阶 ,台阶大小表示重量变化量,一个台阶表 示一个热失重,两个台阶之间的水平区域 代表试样稳定存在的温度范围,这是假定 试样的热失重是在某一个温度下同时发生 和完成,显然实际过程是不存在的,试样 的热分解反应不可能在某一温度下同时发 生和完成,而是有一个过程。在曲线上表 现为曲线的过渡和斜坡,甚至两次失重之 间有重叠区。
2018/11/15 44
热重曲线的分析和计算方法
2018/11/15
材料分析与检测
热失重分析(TG)
DMA研究生
1
主要参考书目
热分析,李余增,清华大学出版社
现代仪器分析,杜廷发,国防科技
大学出版社 热分析及其应用,陈镜泓,科学出 版社 材料结构表征及应用,吴刚,化学 工业出版社
2018/11/15 2
热分析概述
定义
热分析是在程序控制温度下,测量物质的物理 性质与温度关系的一类技术。国际热分析协会ICTA (International Confederation for Thermal Analysis) 所谓“程序控制温度”是指用固定的速率加热 或冷却,所谓“物理性质”则包括物质的质量、温 度、热焓、尺寸、机械、电学及磁学性质等。
23
2018/11/15
24
DTG曲线的优点
能准确反映出起始反应温度 Ti,最大反应速率 温度Te和Tf 。 更能清楚地区分相继发生的热重变化反应, DTG比TG分辨率更高。 DTG曲线峰的面积精确对应着变化了的样品重 量,较TG能更精确地进行定量分析。 能方便地为反应动力学计算提供反应速率( dw/dt)数据。 DTG与DTA具有可比性,通过比较,能判断出 是重量变化引起的峰还是热量变化引起的峰。 TG对此无能为力。
2018/11/15 42
2018/11/15
43
(3)其它
试样的反应热、导热性、比热等因素都 对TG曲线有影响。 反应热会引起试样的温度高于或低于炉 温,这将对计算动力学数据带来严重的 误差。 气体分解产物在固体试样中的吸附也会 影响TG曲线。可以通过无盖大口径坩埚 ,薄试样层或使惰性气氛流过炉子以减 少吸附。
定义:在程序控制温度下,测量物质质量 与温度关系的一种技术。
m = f(T)
是使用最多、最广泛的热分析技术。 类型: 两种 1.等温(或静态)热重法:恒温 2.非等温(或动态)热重法:程序升温
2018/11/15 10
热重曲线(TG曲线)
由 TG 实验获得的曲线。记录质量变化对温度 的关系曲线。 纵坐标是质量(从上向下表示质量减少) ,横 坐标为温度或时间。
2018/11/15 20
2018/11/15
21
AB段:热重基线 B点:Ti 起始温度 C点:Tf 终止温度 D 点 : Te 外 推 起 始 温度,外推基线与 TG线最大斜率切线 交点。
DTG曲线上出现的各种峰对应着TG线的各个 重量变化阶段。
2018/11/15 22
2018/11/15
2018/11/15 34
2018/11/15
35
2018/11/15
36
2018/11/15
37
试样因素
试样对热重分析的影响很复杂 试样用量、粒度
2018/11/15
38
(1) 试样量
试样用量的影响大致有下列三个方面: 试样吸热或放热反应会引起试样温度偏离线 性程序温度,发生偏差,越大影响越大。 反应产生的气体通过试样粒子间空隙向外扩 散速率受试样量的影响,试样量越大,扩散 阻力越大。 试样量越大,本身的温度梯度越大。 试样用量大对热传导和气体扩散都不利。应 在热重分析仪灵敏度范围尽量小。
2018/11/15 39
2018/11/15
40
用量少 , 所测 结果较好 , 反 映热分解反 应中间过程 的平台很明 显。 为 提 高 检 测 中间产物的 灵敏度应采 用少量试样 。
2018/11/15
41
(2)试样粒度
对热传导,气体扩散有较大影响。如粒度的不同会 引起气体产物的扩散过程较大的变化,这种变化可 导致反应速率和TG曲线形状的改变。 粒度越小,反应速率越快,使TG曲线上的 Ti和Tf温 度降低,反应区间变窄。 试样粒度大往往得不到较好的TG曲线。粒度减小不 仅使热分解温度下降,而且也使分解反应进行的很 完全。
TMA
12)动态热机械分析 DMA
7
应
用
在上述热分析技术中,热重法、差热分析 以及差示扫描量热法应用的最为广泛。 研究物理变化(如晶型转变、熔融、升华 、吸附等)和化学变化(脱水、分解、氧 化和还原等)。 范围:无机物(金属、矿物、陶瓷材料等 ) → 有机物、高聚物、药物、络合物、液 晶和生物高分子等。 应用领域:化学化工、冶金、地质、物理 、陶瓷、建材、生物化学、药物、地球化 学、航天、石油、煤炭、环保、考古、食 品等。 2018/11/15