七年级数学图形的全等单元检测试题3
北师大版七年级下数学《全等三角形》单元测试(含答案)

全等三角形章节测试一、心一(每小 3 分,共36 分)1. 以下法正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A.周相等的两个三角形全等B. 面相等的两个三角形全等C. 三个角相等的两个三角形全等D.三条相等的两个三角形全等2. 以下各段能成三角形的是⋯⋯⋯⋯⋯⋯⋯⋯( )A.3cm , 3cm, 6cmB.7cm,4cm,5cmC.3cm,4cm,8cmD.4.2cm,2.8cm,7cm3. 以下形中,与已知形全等的是⋯⋯⋯⋯⋯⋯⋯⋯( )第3题图(A) (B) (C) (D)4. 如,已知△ ABC≌△ CDE,此中 AB=CD,那么以下中, A不正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯( )EA.AC=CEB. ∠ BAC=∠ CDEC. ∠ ACB=∠ ECDD. ∠B=∠ D BC D第 4 题5. 以下条件中,不可以判断三角形全等的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. 三条相等B. 两和一角相等C. 两角和此中一角的相等D. 两角和它的相等6. 如,把形沿BC折,点 A 和点 D 重合,那么中共有全等三角形⋯⋯⋯⋯⋯⋯⋯( )A.1B.2 AC.3D.4B EC7.在△ ABC 和△ A′ B′C′中,已知 AB= A′ B′,∠ B=∠ B′要保△ ABC≌△ A′B′ C′,可充的条D件是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. ∠ B+∠A=900B.AC= A ′ C′C.BC=B ′ C′D.∠ A+∠ A′ =9008.已知在△ ABC和△ A′ B′ C′中,AB= A′ B′,∠ B=∠ B′,充下边一个条件,不可以明△ ABC≌△ A′B′ C′的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. BC=B ′ C′B. AC= A ′ C′C.∠ C=∠ C′D. ∠A=∠ A′9. 如,已知 AE=CF,BE=DF要.△ ABE≌△ CDF,需增添的一个条件是⋯⋯⋯( )A. ∠ BAC=∠ ACDB. ∠ ABE=∠ CDFC. ∠ DAC=∠ BCAD. ∠ AEB=∠ CFDD C A ADEA OAFA B A B C第 9 题 A 第 11题第 10题10. 如图 AD是△ ABC的角均分线, DE是△ ABD的高, EF 是△ ACD的高,则 ( )A. ∠ B=∠CB. ∠ EDB=∠ FDCC. ∠ ADE=∠ ADFD. ∠ ADB=∠ADC11. 如图 AC与 BD订交于点 O,已知 AB=CD,AD=BC,则图中全等三角形有 ( )A.1 对B.2 对C.3 对D.4 对12. 如图 ,D 、 E 分别是 AB,AC 上一点,若∠ B=∠ C,则在以下条件中, B没法判断△ ABE≌△ ACD是( ) DA.AD=AEB.AB=ACC.BE=CDD. ∠ AEB=∠ ADC A E C第 12 题二、专心填一填:(每题 3 分,共 24 分)C F13.如图,△ ABC≌△ DEF,点 B 和点 E, 点 A 和点 D 是对应极点,则 AB=,CB=,∠C=,∠ CAB=.14.若已知两个三角形有两条边对应,则要视这两个三角形全等,还需增添的条件能够是或. A DB E15. 如图已知 AC与 BD订交于点 O, AO=CO,BO=DO,则 AB=CD请说明原因 .第 13题A B解:在△ AOB和△ COD中AO CO(已知)(对顶角相等OBO DO(已知)D C∴△ AOB≌△ COD()第 15题A ∴ AB=DC()16. 如图,已知 AO=OB,OC=OD,AD和 BC订交于点 E, C则图中全等三角形有对 .EO BD第 16题17. 在△ ABC和△ DEF中 ,AB=4, ∠ A=350, ∠ B=700,DE=4, ∠ D= , ∠ E=700, 依据判断△ ABC≌△ DEF. A DAB=DC(已知)18.如图,在△ ABC和△ DEF中BC=DA(已知)() B 第 18 题 C ∴△ ABC≌△ DEF( ) A D19. 如图∠ B=∠ DEF,AB=DE,要证明△ ABC≌△ DEF,(1) 若以“ ASA”为依照,需增添的条件是;B EC C第 19题(2) 若以“ SAS ”为依照,需增添的条件是 .A20. 如图,△ ABC 中, AB=AC=13cm , AB 的垂直均分线交 A B 于 D,交 AC 于 E, 若△ EBC 的周长为 21cm,则 BC= cm.DEBC6 小题,共 40第 20 题三、耐心答一答: (此题有 分)21.( 此题 4 分 ) 已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC ,使∠ A=∠α ,∠ B=∠β ,BC=a.22.( 此题 6 分 ) 已知 AD 均分∠ CAB,且 DC ⊥ AC, DB ⊥ AB ,那么 AB 和 AC 相等吗?请说明原因 .CDA23.( 此题 6 分 ) 如图,已知 BD=CD ,∠ 1=∠ 2.说出△ ABD ≌△ ACD 的原因 .AB1 2BD C24.( 此题 8 分) 如图,已知 AB=DC , AD=BC,说出以下判断建立的原因: (1)△ ABC ≌△ CDA (2)∠ B=∠DADBC25.( 此题 8 分 ) 如图,把大小为4× 4 的正方形方格图形分别切割成两个全等图形,比如图①,请在以下图中,沿着须先画出四种不一样的分法,把4× 4 的正方形切割成两个全等图形图①26.( 此题画法1画法28 分 ) 如图,△ ABC中, AD垂直均分 BC,H是画法AD上一点,3 画法 4连结 BH,CH.(1)AD 均分∠ BAC吗?为何?(2)你能找出几堆相等的角?请把他么写出来(不需写原因)AH一、仔细选一选:(每题 3 分,共 36 分)题号 1 2 3 4 5 6 7 8 9 10B11 12 CD答案 D B B C D C C B D C D D二、专心填一填(每题 3 分,共 24 分)13.DE,FE, ∠ F, ∠ FED. 14.3 第三边相等,这两边的夹角相等15. ∠ AOB=∠ COD,SAS,全等三角形的对应边相等16.4 17.35 0, AAS 18.AC,CA, 公共边, SSS19. ∠ A=∠ D 20.8三、耐心答一答(此题有六小题,共40 分)21. 图略 22.AB=AC 23. 略24. 略25.画法 1 画法 2 画法 3 画法 426.(1) 由△ ADB≌△ ADC(SAS)得∠ BAD=∠ CAD (4)4 对,∠ BHD=∠ CHD, ∠ ABD=∠ ACD,∠HBD=∠ HCD, ∠ BDA=∠CDA。
新北师大版七年级数学下册第三章全等三角形练习题

七年级数学周周清一、填空题1、若△ABC ≌△DEF ,△DEF 的周长为32 cm ,DE =9 cm ,EF =12 cm ,则AB =_____ cm ,BC =_____ cm,AC =_____ cm.2、若△ABC ≌△DEF ,AB =DE ,AC =DF ,∠A =80°,BC =9 cm,则∠D =_____,∠D 的对边是_____=_____ cm.3、已知如图1,在△ABF 和△DEC 中,∠A =∠D ,AB =DE ,若再添加条件_____=_____,则可根据边角边公理证得△ABF ≌△DEC .4、如图2,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CE=_____cm 。
图1图2 图35、如图3,△ABC ≌△ADE ,延长BC 交DA 于F ,交DE 于G ,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=____________。
6、为了使一扇旧木门不变形,木工师傅在木门的背面 加钉了一根木条,这样做的道理是 。
二、选择题1、有下列长度的三条线段,能组成三角形的是( )A 、 2cm ,3cm ,4cmB 、 1cm ,4cm ,2cmC 、1cm ,2cm ,3cmD 、 6cm ,2cm ,3cm 2、下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
A .4个 B 、3个 C 、2个 D 、1个3、已知△ABC ≌△DEF ,∠A=70°,∠E=30°,则∠F 的度数为 ( )(A ) 80° (B ) 70° (C ) 30° (D ) 100°4、如图4,△ABD 和△ACE 都是等边三角形,那么△ADC ≌△ABE 的根据是( )图4A.SSSB.SASC.ASAD.AAS 5、如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )F EDC BAA.带①去B. 带②去C. 带③去D. 带①和②去 6、下列说法:①所有的等边三角形都全等 ②斜边相等的直角三角形全等③顶角和腰长对应相等的等腰三角形全等 ④有两个锐角相等的直角三角形全等其中正确的个数是( )A .1个B .2个C .3个D .4个第7题 第8题 第9题7、如图,AB 平分∠CAD ,E 为AB 上一点,若AC=AD ,则下列结论错误的是( )A.BC=BDB.CE=DEC.BA 平分∠CBDD.图中有两对全等三角形8、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 的是( ) (A )AD=AE (B )AB=AC(C )BE=CD (D )∠AEB=∠ADC9、如图,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,则①△ABE ≌△ACF ;②△BOF ≌△COE ;③点O 在∠BAC 的角平分线上,其中正确的结论有( ) A .3个 B .2个 C .1个 D .0个10、下列条件中能确定两个三角形全等的是( )A.一边及这条边上的高相等B.一边及这条边上的中线对应相等C.两角及第三个角平分线对应相等D.两条边及夹角的平分线对应相等11、下列各组图形中,一定全等的是( )A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长都为3 cm 的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形 三、解答题1、已知,如图,∠1=∠2,BD=CD,求证:AD 是∠BAC 的平分线.2、如图,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于点F ,若∠1=∠2=∠3,AC=AE ,求证:△ABC ≌△ADEA B C D EC B A E F O3、已知线段a 和∠1,作一个△ABC ,使得AB=a ,AC=2a ,∠A=∠ 1.4、如图,已知AB =DC ,AC =DB ,E 是BC 的中点,求证:AE =DE5、如图,在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。
七年级下《全等三角形》单元测试及含答案

《全等三角形》单元测试题姓名 班级 得分一、填空题(4×10=40分)1、在△ABC 中,AC>BC>AB ,且△ABC ≌△DEF ,则在△DEF 中,______>______>_______(填边)。
2、已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_________,A ′B ′=__________。
3、如图1,△ABD ≌△BAC ,若AD=BC ,则∠BAD 的对应角是________。
4、如图2,在△ABC 和△FED ,AD=FC ,AB=FE ,当添加条件__________时,就可得到△ABC ≌△FED 。
(只需填写一个你认为正确的条件)5、如图3,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形________对。
6、如图4,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是 .7、如图5,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CF= cm.8、如图6,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____.9、P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD_____P 点到∠AOB 两边距离之和。
(填“>”,“<”或“=”)10、AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则中线AD 的取值范围是二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, 其中真命题的个数有( )A 、3个B 、2个C 、1个D 、0个 12、如图7,已知点E 在△ABC 的外部,点D 在BC 边上, DE 交AC 于F ,若∠1=∠2=∠3,AC=AE ,则有( ) A 、△ABD ≌△AFD B 、△AFE ≌△ADCC 、△AEF ≌△DFCD 、△ABC ≌△ADEAD ECB图4ABDE 图1 图2 图3图5图613、下列条件中,不能判定△ABC ≌△A ′B ′C ′的是( ) A 、AB=A ′B ′,∠A=∠A ′,AC=A ′C ′B 、AB=A ′B ′,∠A=∠A ′,∠B=∠B ′C 、AB=A ′B ′,∠A=∠A ′,∠C=∠C ′D 、∠A=∠A ′,∠B=∠B ′,∠C=∠C ′14、如图8所示,90E F ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图9),若运动方向相反,则称它们是镜面合同三角形(如图10),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图11),下列各组合同三角形中,是镜面合同三角形的是( )16、如图12,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D , 若BC=64,且BD :CD=9:7,则点D 到AB 边的距离为( ) A 、18 B 、32 C 、28 D 、24三、解答下列各题:(17-18题各8分,80分)17、如图13,点A 、B 、C 、D 在同一条直线上,AB=DC ,AE 2cm习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC 中,AB=AC ,P 是△ABC 内部任意一点,将AP 绕A 顺时针旋转至AQ ,使∠QAP=∠BAC ,连接BQ 、CP ,则BQ=CP .”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ ≌△ACP ,从而证得BQ=CP 之后,将点P 移到等腰三角形ABC 之外,原题中的条件不变,发现“BQ=CP ”仍然成立,请你就图②给出证明. ACD B图12BA C DEAEB C F ECB D FAAB ED C B A 图7图8图13 图14图16图15图17 图18 图19图20 图21FEDCBA26.正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.27.如图,已知等边△ABC,P在AC延长线上一点,以PA为边作等边△APE,EC延长线交BP于M,连接AM,求证:(1)BP=CE;(2)试证明:EM-PM=AM.28. 如图所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.29.已知AC求证:AB=AC+BD.A BCDEF参考答案:一、⑴DF EF DE ⑵70° 15cm ⑶∠ABC ⑷∠A=∠F⑸4 ⑹150° (7)3 (8)80° (9)大于 (10)2<AD<10二、⑾C ⑿D (13)D (14)C (15)B (16)C三、(17) 略(18)①△ABD≌△ACD ∵AB=AC ∠BAC=∠CAD AD=AD②无论D在AE上或AE的反向延长线上,结论都成立,证明过程如①(19)在两条路所夹角的平分线上,由比例尺算出到B点的距离为。
北师大版七年级下数学《全等三角形》单元测试(含答案)

第1页 共5页全等三角形章节测试一、细心选一选(每小题3分,共36分)1.下列说法正确的是……………………………………( )A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等 2.下列各组线段能组成三角形的是……………………( )A.3cm ,3cm ,6cmB.7cm,4cm,5cmC.3cm,4cm,8cmD.4.2cm,2.8cm,7cm 3.下列图形中,与已知图形全等的是……………………( )4.如图,已知△ABC ≌△CDE,其中AB=CD,那么下列结论中, 不正确的是………………………( ) A.AC=CE B.∠BAC=∠CDEC.∠ACB=∠ECDD.∠B=∠D5.下列条件中,不能判定三角形全等的是……………………………………( ) A.三条边对应相等 B.两边和一角对应相等 C.两角和其中一角的对边对应相等 D.两角和它们的夹边对应相等6. 如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形…………………( )A.1对B.2对C.3对D.4对7.在△ABC 和△A ′B ′C ′中,已知AB= A ′B ′,∠B=∠B ′要保证△ABC ≌△A ′B ′C ′,可补充的条件是………………………………………………………………………………………………( )A.∠B+∠A=900B.AC= A ′C ′C.BC=B ′C ′D. ∠A+∠A ′=9008.已知在△ABC 和△A ′B ′C ′中,AB= A ′B ′,∠B=∠B ′,补充下面一个条件,不能说明△ABC ≌△A ′B ′C ′的是……………………………………………………………………………………( )(A) (B) (C)(D)第3题图DE第4题ABDCE第2页 共5页A. BC=B ′C ′B. AC= A ′C ′C. ∠C=∠C ′D. ∠A=∠A ′9.如图,已知AE=CF,BE=DF.要证△ABE ≌△CDF,还需添加的一个条件是………( ) A.∠BAC=∠ACD B.∠ABE=∠CDF C.∠DAC=∠BCA D.∠AEB=∠CFD10.如图AD 是△ABC 的角平分线,DE 是△ABD 的高,EF 是△ACD 的高,则…( ) A.∠B=∠C B.∠EDB=∠FDC C.∠ADE=∠ADF D. ∠ADB=∠ADC 11.如图AC 与BD 相交于点O ,已知AB=CD,AD=BC,则图中全等三角形有………( ) A.1对 B.2对 C.3对 D.4对 12.如图,D 、E 分别是AB,AC 上一点,若∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 是………………………………( ) A.AD=AE B.AB=ACC.BE=CDD.∠AEB=∠ADC二、专心填一填:(每小题3分,共24分)13.如图,△ABC ≌△DEF,点B 和点E, 点A 和点D 是对应顶点, 则AB= ,CB= , ∠C= ,∠CAB= . 14.若已知两个三角形有两条边对应,则要视这两个三角形全等, 还需增加的条件可以是 或 .15.如图已知AC 与BD 相交于点O ,AO=CO,BO=DO,则AB=CD 请说明理由. 解:在△AOB 和△COD 中(BO DO(AO CO ==⎧⎪⎨⎪⎩已知)(对顶角相等已知) ∴△AOB ≌△COD ( ) ∴AB=DC ( ) 16.如图,已知AO=OB,OC=OD,AD 和BC 相交于点E , 则图中全等三角形有 对.A B C DF E第9题AA AAA 第10题A BCDO第11题ABC E第12题D第13题ABCDEFA B DC O第15题OABD第16题CE第3页 共5页17.在△ABC 和△DEF 中,AB=4, ∠A=350, ∠B=700,DE=4, ∠D= , ∠E=700,根据 判定△ABC ≌△DEF.18.如图,在△ABC 和△DEF 中AB=DC(BC=DA(=⎧⎪⎨⎪⎩已知)已知)()∴△ABC ≌△DEF( )19.如图∠B=∠DEF,AB=DE,要证明△ABC ≌△DEF ,(1)若以“ASA ”为依据,需添加的条件是 ; (2)若以“SAS ”为依据,需添加的条件是 .20.如图,△ABC 中,AB=AC=13cm ,AB 的垂直平分线交AB 于D, 交AC 于E,若△EBC 的周长为21cm,则BC= cm.三、耐心答一答:(本题有6小题,共40分)21.(本题4分)已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC ,使∠A=∠α,∠B=∠β,BC=a.22.(本题6分)已知AD 平分∠CAB,且DC ⊥AC, DB ⊥AB ,那么AB 和AC 相等吗?请说明理由.第19题B CAECD第18题ADAB CE D第20题DCA B第4页 共5页23.(本题6分)如图,已知BD=CD ,∠1=∠2. 说出△ABD ≌△ACD 的理由.24.(本题8分)如图,已知AB=DC ,AD=BC,说出下列判断成立的理由: (1) △ABC ≌△CDA (2) ∠B=∠D25.(本题8分) 如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着须先画出四种不同的分法,把4×4的正方形分割成两个全等图形26.(本题8分)如图,△ABC 中,AD 垂直平分BC,H 是AD 上一点,连接BH,CH.(1)AD 平分∠BAC 吗?为什么?(2)你能找出几堆相等的角?请把他么写出来(不需写理由)ABC12DD图①画法1画法2画法3画法4ACBHD第5页 共5页一、细心选一选:(每小题3分,共36分)二、专心填一填(每小题3分,共24分)13.DE,FE,∠F, ∠FED. 14.3第三边相等,这两边的夹角相等15. ∠AOB=∠COD,SAS,全等三角形的对应边相等 16.4 17.350, 记分S 18.AC,CA,公共边,SSS 19.∠A=∠D 20.8三、耐心答一答(本题有六小题,共40分) 21.图略 22.AB=AC 23.略 24.略 25.26.(1)由△ADB ≌△ADC(SAS)得∠BAD=∠CAD (4)4对,∠BHD=∠CHD, ∠ABD=∠ACD, ∠HBD=∠HCD, ∠BDA=∠CDA画法1画法2画法3画法4。
2014年苏教版七年级下册数学单元测试卷第十一章_图形的全等_测试卷

2014年苏教版七年级下册数学单元测试卷第十一章图形的全等测试卷一、选择题(每题2分,共24分)1.下列命题中,正确的是( ) A.三个角对应相等的两个三角形全等B.面积相等的两个三角形全等C.全等三角形的面积相等D.两边和其中一边的对角对应相等的两个三角形全等2.小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的四个图案中,符合图示胶滚涂出的图案是( )3.如图,AB//CO,且AB=CD,AC交DB于点O,过点O的直线EF分别交AB、CD与点E、F,则图中全等的三角形有( )A.6对B.5对C.4对D.3对4.如图,在△ABC中,F为AC中点,E为AB上一点,D为EF延长线上一点,∠A= ∠ACD,则CD与AE的关系为( )A.相等B.平行C.平行且相等D.以上都不是5.如图,在△ABC中,∠ABC=∠BAC,D是AB的中点,EC//AB,DE//BC,AC与DE交于点O.下列结论中,不一定成立的是( )A.AC=DE B.AB=ACC.AD=EC D.OA=OE6.如果Rt△ABC的三边长分别为3、4、5,那么这个三角形两个角的平分线的交点到其中一边的距离是( )A.1 B.2 C 2.5 D.37.如图,一扇窗户打开售,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.N点确定一条直线D.垂线段最短8.如图,在, △ABC 与△DEF 中,给出以下六个条件:①AB=DE; ②BC=EF ;③AC=DF ;④∠A=∠D ;⑤∠B=∠E ;⑥∠C=∠F ,以其中三个作为已知条件,不能判断△ABC 与△DEF 全等的是 ( )A .①②⑤B .①②③C .①④⑥D .②③④9.如图,∠1=∠2,AC=AD ,增加下列条件:①AB=AE ;②BC=ED ③∠C=∠D ;④∠B=∠E .其中能使△ABC ≌△AED 的条件有 ( ) A .4个 B .3个 C .2个 D .1个10.如图,∠DBC 和∠ECB 是△ABC 的两个外角,点P 是∠DBC 、∠ECB 两角的平分线的交点,PM 、PN 、PQ 分别是P 点到AB 、AC 、BC 三边的垂线段,PM 、PN 、PQ 的数量关系为 ( )A .PM>PN>PQB .PM<PN<PQC .PM=PN=PQD .PM=PN>PQ11.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M,N ,有如下结论:①△ACE ≌△DCB ;②CM=CN ;③AC=DN .其中正确的结论有 ( ) A .3个 B .2个 C .1个 D .0个12.如图,在△ABC 中,AB=AC ,∠BAC=90o .直角∠EPF 的顶点P 是BC 中点,PE 、PF 分别交AB 、AC 于点E 、F .给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③S 四边形AEPF =12S △ABC ;④EF=AP .当∠EPF 在△ABc 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有 ( )A .1个B .2个C .3个D .4个 二、填空题(每题2分,共20分)13.已知△ABC ≌△DEF ,△ABC 的周长为100 cm ,DE=30 cm ,DF=25 cm ,那么BC= ___________________.14.如图,若△ABC ≌△ADE ,∠EAC=35o ,则∠BAD=________.15.如图,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,AB=10cm ,则BC=__________cm .16.如图,AB ⊥BD 于B ,ED ⊥BD 于D ,AB=CD,BC=DE ,则∠ACE__________. 17.如图,将长方形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=7 cm ,∠DAM=15o ,则AN________cm ,∠NAB______________.18.如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△EDC≌△ABC,则∠BCE:∠BCD=___________.19.如图,△ABE和△ACD是△ABC分别沿着AB、AC边翻折180o形成的,若∠BAC= 150o,则∠θ=___________.20.如图所示,∠E=∠F=90o,∠B=∠C,AE=AF,给出下列结论:①∠l=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是________.(写出正确答案的序号)21.在如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=___________.22.BD、EH分别为△ABC与△DEF的高,且AB=DE,BC=EF,BD=EH,若∠ACB =60o,则∠DFE_____________.三、解答题(共56分)23.(4分)如图①,把大小为4×4的正方形方格图形分割成两个全等图形,请在图②中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.24.(6分)如图,△ABO≌△CDO,点B在CD上,AO//CD, ∠BOD=30o,求∠A的度数.25.(7分)如图,AB//ED,点F、C在AD上,AB=DE,AF=DC试说明BC=EF.26.(7分)如图,在△ABC中,点E在BC上,点D在AE上,, ∠ABD=∠ACD,∠BDE=∠CDE.试说明BE=CE.27.(7分)如图,在△ABC中,∠ACB=90o,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)试说明AE=CD;(2)若AC=12 cm,求BD的长.28.(7分)如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连结D、E、F,得到△DEF为等边三角形.(1)试说明△AEF≌△CDE;(2) △ABC是等边三角形吗?请说明你的理由.29.(8分)已知AD为△ABC中线,∠ADB和∠ADC的平分线交AB、AC于E、F.试说明.BE+CF>EF.30.(10分)如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABc中,∠ACB是直角,∠B=60o,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,在(1)中所得结论是否仍然成立?请说明理由.第十一章图形的全等测试卷参考答案一、1.C 2.A 3.A 4.C5.B 6.A 7.A8.D 9.B10.C 11.B12.C二、13.45 cm 14.35o 15.20 16.90o 17.7 60o18.1:4 19.60o 20.①、②、③21.315o 22.60o或120o三、23.答案不惟一,如图所示:24.∠A=30o25.解析:可以先说明△ABC≌△DEF,再确定BC=EF.26.解析:可以先说明△ABD≌△ACD,则BD=CD.,再说明△BDE≌△CDE,从而确定BE=CE.27.(1)解析:可以说明.△ACE≌△CBD,则AE=CD.(2)6 cm解析:由(1)可以知道BD=CE=12BC=12AC=6cm.28.(1)因为BF=AC,AB=AE,所以FA=EC因为△DEF是等边三角形,所以EF=DE.又因为AE=CD。
(新课标)华东师大版七年级数学下册图形的全等章末测试题(考点+分析+点评)

2017-2018学年(新课标)华东师大版七年级下册10.5图形的全等一.选择题(共9小题)1.我们把两个能够完全重合的图形称为全等图形,则下列命题中真命题是()A.有一条边长对应相等的两个矩形是全等图形B.有一个内角对应相等的两个菱形是全等图形C.有两条对角线对应相等的两个矩形是全等图形D.有两条对角线对应相等的两个菱形是全等图形2.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是()A.球B.圆柱C.三棱柱D.圆锥3.用两个全等的直角三角形拼成凸四边形,拼法共有()A. 3种B.4种C.5种D.6种4.全等三角形又叫做合同三角形.平面内的合同三角形分为真正合同三角形和镜面合同三角形.假如△ABC和△A′B′C′是全等三角形,且点A与点A′对应,点B与点B′对应,点C与点C′对应.当沿周界A﹣B﹣C﹣A及A′﹣B′﹣C′﹣A′环绕时,若运动方向相同,则称它们是真正合同三角形(如图①);若运动方向相反,则称它们是镜面合同三角形(如图②).两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中的一个翻转180度.下列各组合同三角形中,属于镜面合同三角形的是()A.B.C.D.5.下列说法不成立的是()A.两个全等三角形能重合B.两个全等三角形沿某一直线折叠能重合C.两个全等三角形的面积相等D.两个全等三角形的周长相等6.如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同B.形状大小均相同C.大小相同,但形状不同D.形状大小均不相同7.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A. 150°B.180° C 210°D.225°8.如图,与左边正方形图案属于全等的图案是()A.B.C.D.9.如图,△ABC≌△DEF,则此图中相等的线段有()A. 1对B.2对C.3对D.4对二.填空题(共8小题)10.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2= _________ 度.11.如图所示的方格中,∠1+∠2+∠3= _________ 度.12.下列图形中全等图形是_________ (填标号).13.能够_________ 的两个图形叫做全等图形.14.如图,观察下面两组图形,它们是不是全等图形:(1)_________ ;(2)_________ .(只需答“是”或“不是”)15.已知A与A′,B与B′是对应点,则△ABC和△A′B′C′全等用符号语言表示为:_________ .16.如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,P,Q,M的四个图形,试按照“哪个正方形剪开后与哪个图形”的对应关系填空:A与_________ 对应;B与_________ 对应;C与_________ 对应;D与_________ 对应.17.与下左图所示图形全等的是_________ .三.解答题(共4小题)18.易知周长相等的两圆相同,周长相等的两个正方形相同,那么,周长相等的两个三角形全等吗?19.下列图形中的全等图形共有_________ 对.20.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.21.找出图中全等的图形.10.5图形的全等参考答案与试题解析一.选择题(共9小题)1.我们把两个能够完全重合的图形称为全等图形,则下列命题中真命题是()A.有一条边长对应相等的两个矩形是全等图形B.有一个内角对应相等的两个菱形是全等图形C.有两条对角线对应相等的两个矩形是全等图形D.有两条对角线对应相等的两个菱形是全等图形考点:全等图形;命题与定理.菁优网版权所有分析:根据全等图形的定义及特点,结合各选项进行判断即可.解答:解:A、有一条边长对应相等的两个矩形是全等图形,命题不正确,故本选项错误;B、有一个内角对应相等的两个菱形是全等图形,命题不正确,故本选项错误;C、有两条对角线对应相等的两个矩形是全等图形,命题不正确,故本选项错误;D、两条对角线对应相等的两个菱形是全等图形,是真命题,故本选项正确.故选D.点评:本题考查了全等图形的知识,注意掌握全等图形的定义,属于基础题.2.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是()A.球B.圆柱 C 三棱柱D.圆锥考点:全等图形;简单几何体的三视图.菁优网版权所有分析:主视图、左视图、俯视图是分别从物体正面、正面和上面看,所得到的图形.解答:解:A、球的三视图是相等圆形,故A符合题意;B、圆柱的三视图分别为长方形,长方形,圆,故B不符合题意;C、三棱柱三视图分别为长方形,长方形,三角形,故C不符合题意;D、圆锥的三视图分别为三角形,三角形,圆及圆心,故D不符合题意.故选:A.点评:本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.3.用两个全等的直角三角形拼成凸四边形,拼法共有()A. 3种 B 4种 C 5种D.6种考点:全等图形.菁优网版权所有专题:作图题.分析:拿两个“90°、60°、30°”的三角板试一试即可得.解答:解:可拼成如上图所示的四种凸四边形.故选B.点评:要注意不同边的组合方式,不要遗漏任何一种可能性.本题是一个操作题,动手做一做即可.4.全等三角形又叫做合同三角形.平面内的合同三角形分为真正合同三角形和镜面合同三角形.假如△ABC和△A′B′C′是全等三角形,且点A与点A′对应,点B与点B′对应,点C与点C′对应.当沿周界A﹣B﹣C﹣A及A′﹣B′﹣C′﹣A′环绕时,若运动方向相同,则称它们是真正合同三角形(如图①);若运动方向相反,则称它们是镜面合同三角形(如图②).两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中的一个翻转180度.下列各组合同三角形中,属于镜面合同三角形的是()A.B.C.D.考点:全等图形.菁优网版权所有专题:新定义.分析:认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.解答:解:由题意知真正合同三角形和镜面合同三角形的特点,可判断要使C组的两个三角形重合必须将其中的一个翻转180°;而其它组的全等三角形可以在平面内通过平移或旋转使它们重合.故选C.点评:此题考查了学生的阅读理解能力及空间想象能力,较灵活.认真读题,透彻理解题意是正确解决本题的关键.5.下列说法不成立的是()A.两个全等三角形能重合B.两个全等三角形沿某一直线折叠能重合C.两个全等三角形的面积相等D.两个全等三角形的周长相等考点:全等图形.菁优网版权所有分析:能够完全重合的两个图形叫做全等形,由此可判断各选项.解答:解:两个全等三角形能重合,成立;B、两个全等三角形沿某一直线折叠能重合,不一定成立.C、两个全等三角形的面积相等,成立;D、两个全等三角形的周长相等,成立;故选B.点评:本题考查了全等图形的知识,解答本题的关键是掌握全等图形的定义.6.如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同B.形状大小均相同C.大小相同,但形状不同D.形状大小均不相同考点:全等图形.菁优网版权所有分析:根据全等图形的定义,能够完全重合的两个图形是全等图形解答即可.解答:解:如果两个图形全等,则这个图形必定是形状大小完全相同.故选B.点评:本题主要考查了全等图形的定义,是基础题,比较简单.7.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A. 150°B.180°C.210°D.225°考点:全等图形.菁优网版权所有专题:压轴题;数形结合.分析:根据SAS可证得△ABC≌△EDC,可得出∠BAC=∠DEC,继而可得出答案.解答:解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC,∴∠BAC=∠DEC,∠1+∠2=180°.故选B.点评:本题考查全等图形的知识,比较简单,解答本题的关键是判断出△ABC ≌△EDC.8.如图,与左边正方形图案属于全等的图案是()A. B C.D.考点:全等图形.菁优网版权所有分析:根据全等形是能够完全重合的两个图形进行分析判断,对选择项逐个与原图对比验证.解答:解:能够完全重合的两个图形叫做全等形.A、B、D图案均与题干中的图形不重合,所以不属于全等的图案,C中的图案旋转180°后与题干中的图形重合.故选c.点评:本题考查的是全等形的识别,主要根据全等图形的定义做题,属于较容易的基础题.9.如图,△ABC≌△DEF,则此图中相等的线段有()A. 1对B.2对C.3对D.4对考点:全等图形.菁优网版权所有分析:根据两个三角形全等,可以得到3对三角形的边相等,根据BC=EF,又可以得到BE=CF可得答案是4对.解答:解:∵△ABC≌△DEF∴AB=DE,AC=DF,BC=EF∵BC=EF,即BE+EC=CF+EC∴BE=CF即有4对相等的线段故选D.点评:本题主要考查了全等三角形的对应边相等问题;做题时,结合已知,认真观察图形,得到BE=CF是正确解答本题的关键.二.填空题(共8小题)10.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2= 90 度.考点:全等图形.菁优网版权所有专题:数形结合.分析:根据图形可判断出△ACM≌△BAN,从而可得出∠1和∠2互余,继而可得出答案.解答:解:在△ACM和△BAN中,,∴△ACM≌△BAN,∴∠2=∠CAM,即可得∠1+∠2=90°.故答案为:90.点评:此题考查了全等图形的知识,解答本题的关键是判断出△ACM≌△BAN,可得出∠1和∠2互余,难度一般.11.如图所示的方格中,∠1+∠2+∠3= 135 度.考点:全等图形.菁优网版权所有专题:图表型.分析:标注字母,然后根据网格结构可得∠1与∠3所在的三角形全等,然后根据全等三角形对应角相等可以推出∠1+∠3=90°,再根据∠2所在的三角形是等腰直角三角形可得∠2=45°,然后进行计算即可得解.解答:解:如图,根据网格结构可知,在△ABC与△ADE中,,∴△ABC≌△ADE(SSS),∴∠1=∠DAE,∴∠1+∠3=∠DAE+∠3=90°,又∵AD=DF,AD⊥DF,∴△ADF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.点评:本题主要考查了全等图形,根据网格结构的特点找出全等三角形以及等腰直角三角形是解题的关键.12.下列图形中全等图形是⑤和⑦(填标号).考点:全等图形.菁优网版权所有分析:要认真观察图形,从①开始找寻,看后面的谁与之全等,然后是②,看后面的哪一个与它全等,如此找寻,可得答案.解答:解:由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合.故答案为:⑤和⑦.点评:本题考查的是全等形的识别,做题时一定要看是否重合,属于较容易的基础题.13.能够完全重合的两个图形叫做全等图形.考点:全等图形.菁优网版权所有分析:根据全等图形是能够完全重合的两个图形进行解答.解答:解:能够完全重合的两个图形叫做全等图形.故答案为完全重合.点评:本题考查全等形的概念:能够完全重合的两个图形叫做全等形,比较简单.14.如图,观察下面两组图形,它们是不是全等图形:(1)不是;(2)不是.(只需答“是”或“不是”)考点:全等图形.菁优网版权所有分析:根据全等图形的定义进而判断得出即可.解答:解:(1)图①不是全等图形;(2)图②不是全等图形;故答案为:不是,不是.点评:此题主要考查了全等图形的判定,利用定义能够完全重合的两个图形叫做全等形得出是解题关键.15.已知A与A′,B与B′是对应点,则△ABC和△A′B′C′全等用符号语言表示为:△ABC≌△A′B′C′.考点:全等图形.菁优网版权所有分析:“全等”用符号“≌”表示.在记两个三角形全等时,通常把对应顶点写在对应位置上.解答:解:∵A与A′,B与B′是对应点,∴△ABC≌△A′B′C′,故答案为:△ABC≌△A′B′C′.点评:此题主要考查了全等的表示方法,关键是掌握对应顶点写在对应位置上.16.如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,P,Q,M的四个图形,试按照“哪个正方形剪开后与哪个图形”的对应关系填空:A与M 对应;B与N 对应;C与Q 对应;D与P 对应.考点:全等图形.菁优网版权所有分析:能够完全重合的两个图形叫做全等形.按照剪开前后各基本图形是重合的原则进行逐个验证、排查.解答:解:由全等形的概念可知:A是三个三角形,与M对应;B是一个三角形和两个直角梯形,与N对应;C是一个三角形和两个四边形,与Q对应;D是两个三角形和一个四边形,与P对应故分别填入M,N,Q,P.点评:本题考查的是全等形的识别,注意辩别组成图形的基础图形的形状.17.与下左图所示图形全等的是(1)、(2)、(4).考点:全等图形.菁优网版权所有分析:能够完全重合的两个图形叫做全等形.1是由右图逆时旋转90度得到的,2是右图逆时旋转180度得到的,4与右图能够重合,共有3个,解答:解:由全等形的概念可知:(1),(2),(4)与左图完全相同,只是(2)(3)的位置发生了变化.点评:本题考查的是全等形的识别,属于较容易的基础题.三.解答题(共4小题)18.易知周长相等的两圆相同,周长相等的两个正方形相同,那么,周长相等的两个三角形全等吗?考点:全等图形.菁优网版权所有分析:能够完全重合的两个三角形叫做全等三角形,周长相等的两个三角形,构成三角形的三条边不一定全部相等,可得周长相等的两个三角形不一定全等.解答:解:不一定全等,例如,两个三角形的周长均为10,一个三角形的三边长为4,3,3,而另一个三角形的三边长为4,4,2,这两个三角形显然不全等,但当两个三角形为正三角形时,这两个三角形全等.点评:本题考查了全等图形的知识,要求同学们熟练掌握全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.19.下列图形中的全等图形共有 4 对.考点:全等图形.菁优网版权所有分析:要认真观察图形,从(1)开始找寻,看后面的谁与之全等,然后是(2),看后面的哪一个与它全等,如此找寻,可得答案.解答:解:由全等形的概念可知:共有4对图形全等,即(1)与(10)、(5)与(9)、(4)与(8)、(2)与(12)能够重合.故填4点评:本题考查的是全等形的识别,做题时一定要看是否重合,属于较容易的基础题.20.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.考点:全等图形.菁优网版权所有专题:方案型.分析:根据正方形的性质,①两条对角线把正方形分成四个全等的三角形;②作一组对边的平行线也能把正方形分成四个全等的矩形;③连接一组对边的中点,把正方形分成两个全等的矩形,再作矩形的对角线就把每个矩形都分成两个全等的三角形,这样就分成了四个全等的三角形;④过正方形的中心做互相垂直的两条线也能把正方形分成四个全等的四边形.解答:解:设计方案如下:点评:本题主要考查了全等图形的意义,要利用正方形及全等形的性质解答,方案多种多样,只要是满足要求就可以.21.找出图中全等的图形.考点:全等图形.菁优网版权所有分析:利用能够完全重合的两个图形称为全等图形,全等图形的大小和形状都相同,进而判断即可.解答:解:如图所示:1和2全等,3和4全等.点评:本题考查了全等形的概念和性质,正确判断出全等图形是解题关键.美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!。
七年级数学下册 第二十四章图形的全等测试题 冀教版
A B C D E 12第二十四章图形的全等测试题班级________姓名___________座号_____成绩________一、填空题:(每小题3分,共18分)1、给定两个三角形全等除用定义外,还有几种方法,它们分别可以简写成_______;_______;_______;_______;_________。
2、如图(1), AB=AC ,∠1=∠2,AD=AE ,则BD= ,∠BAE=3、命题“对顶角相等”,改写成“如果……,那么……”的形式: 。
题设是 ,结论是 。
4、如图(2), △ABC ≌△ADE ,∠B =35°,∠EAB =21°,∠C =29°,则∠D = ° ,∠DAC= °5、如图(3)、在正方形网格上有一个ΔABC ,①、作一个与它全等的三角形。
②、如每一个小正方形的边长为1,则ΔABC 的面积是:图(3)则D 点到BC 的距离是_______. .A .AB =DE,BC =EF, ∠A =∠D ; B.∠A =∠D, ∠C =∠F,AC =EF ; C.∠A =∠D,∠B=∠E,∠C =∠F ;D、AB =DE, BC =EF, △ABC 周长=△DEF 周长2.如图,D 在AB 上,E 在AC 上,且∠B =∠C,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD 的是( ).A .AD =AE . B.∠AEB =∠ADC . C.BE =CD . D.AB =AC .3. 若△ABC ≌△DEF ,且△ABC 的周长为20,AB =5,BC =8,则DF 长为( ). A.5; B.8; C.7; C.5或8.4. 下列各条件中,不能作出唯一三角形的条件是( )A. 已知两边和夹角B. 已知两边和其中一条边所对的角C. 已知两角和夹边D. 已知两角和其中一角的对边5、在ΔABC 中,∠A=50°,BO 、CO 分别是∠ABC 、∠ACB 的平分线,则∠BOC 的度数 是( )A. 115°B. 110°C. 105°D. 130°6.下列命题中,真命题是( )A.对角线相等的四边形是矩形;B.底角相等的两个等腰三角形全等C.一条对角线将平行四边形分成的两个三角形相似D.圆是中心对称图形而不是轴对称图形D F C AE B 三解答题(第1-2题,每题7分;第3-7,每题10分;共64分)1. (7分)如图所示,已知在四边形ABCD 中,E 是AC 上一点,∠BAC=∠DAC,∠BCA= ∠DCA. 求证:∠DEC=∠BEC.AC E B D2、(7分)如图2,ABCD 是正方形,点E 在BC 上,DF ⊥AE 于F ,请你在AE 上确定一点G ,使△ABG ≌△DAF ,并给予证明。
七年级下册数学全等试卷
一、选择题(每题3分,共15分)1. 下列哪组图形能够完全重合?A. 两个等腰三角形B. 两个矩形C. 两个等边三角形D. 两个等腰梯形2. 下列哪个命题是正确的?A. 全等图形的面积一定相等B. 全等图形的形状一定相同C. 全等图形的大小一定相同D. 全等图形的位置一定相同3. 如果两个三角形的三边分别对应相等,那么这两个三角形一定是:A. 相似三角形B. 全等三角形C. 相似或全等三角形D. 无法确定4. 下列哪个图形可以通过旋转、平移或翻转后与原图形重合?A. 正方形B. 等腰三角形C. 等边三角形D. 正五边形5. 在全等三角形中,对应角相等,对应边也相等,这个性质称为:A. 角角边(AAS)全等B. 边边边(SSS)全等C. 边角边(SAS)全等D. 角边角(ASA)全等二、填空题(每题5分,共20分)6. 若三角形ABC与三角形DEF全等,则AB=______,AC=______,BC=______。
7. 全等三角形的性质有:对应边相等、对应角相等、面积相等、周长相等。
8. 两个全等三角形的相似比是______,它们的面积比是______。
9. 如果一个三角形的两边长分别为5cm和7cm,第三边长为6cm,那么这个三角形是______三角形。
10. 在全等三角形中,如果两个角相等,那么这两个角是______角。
三、解答题(每题10分,共30分)11. (10分)已知三角形ABC与三角形DEF全等,且AB=6cm,BC=8cm,AC=10cm。
求三角形DEF的周长。
12. (10分)如图,已知三角形ABC与三角形DEF全等,其中∠ABC=70°,AB=8cm,BC=6cm。
求∠DEF的度数。
13. (10分)在三角形ABC中,AB=AC,AD是BC边上的高。
若AB=10cm,求三角形ABC的面积。
四、应用题(10分)14. (10分)小明在画图时,不小心将一个直角三角形的直角边AB画成了AC。
北师大版七年级数学下册图形的全等测试题
北师大版七年级数学测试卷(考试题)《图形的全等》练习一、选择——基础知识运用1.下列说法正确的是()A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是等边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等2.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°4.下列命题①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.其中正确的个数为()A.1个B.2个C.3个D.4个5.已知:如图△ABC≌△DCB,其中点A与点D,点B与点C分别是对应顶点,如果AB=2,AC=3,CB=4,那么DC的长为()A.2 B.3 C.4 D.不确定6.下列四个图形中,全等的图形是()A.①和②B.①和③C.②和③D.③和④二、解答——知识提高运用7.如图,方格纸中是4个相同的正方形,婉婷同学在这张方格纸上画了∠1、∠2、∠3三个角,那么∠1+∠2+∠3= 度。
8.找出七巧板中(如图)全等的图形。
9.请看下图,并回答下面的问题:(1)在图(1)中,两个足球的形状相同吗?它们的大小呢?(2)在图(2)中,两个正方形物体的形状相同吗?10.如图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF的长度为多少?11.如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为多少。
参考答案一、选择——基础知识运用1.【答案】BD【解析】全等三角形的三条对应边相等,三个对应角也相等,A不正确;判定两个三角形全等的条件中至少有一个是等边,B正确;面积相等的两个图形不一定是全等形,C不正确;全等三角形的面积和周长都相等,D正确,故选:B、D。
最新北师大版七年级下册三角形全等的证明单元测试试题以及答案(共5套题)
七年级下册三角形全等的证明单元测试试题一、选择题。
(共12道选择题,每道选择题只有一个正确答案)1、如图,△AEM ≌△AFN ,下列结论中,其中错误的是( )。
A 、CF=BEB 、∠CMD=∠ANFC 、AM=AFD 、∠ANC=∠AMB2、如图,DF=21EF ,BC=2BD ,下列说法:①BF ∥EC ;②1:1 ADC ABD S S △△:;③△BDF ≌△DCE ;④△ABD ≌△ACD ;⑤∠BAD=∠CAD ,其中正确结论有( )个。
A 、1B、2C、3D、43、如图,下图是由三个全等三角形组成,则图中∠1+∠2+∠3的和是()。
A、90°B、180°C、270°D、360°4、下列条件中,能证明△ABC≌△DMN的是()。
A、AB=DM,BC=MN,∠A=∠DB、∠A=∠D,∠C=∠N,AC=MNC、AB=DM,BC=MN,△ABC的周长=△DMN的周长D、∠A=∠D,∠B=∠M,∠C=∠N5、下列各组线段中,能够成三角形的是()。
A、5厘米、6厘米、11厘米B、4厘米、6厘米、12厘米C、3厘米、15厘米、10厘米D、3厘米、3厘米、3厘米6、下列结论错误的是()。
A、全等三角形对应边上的高相等B、全等三角形对应边上的角平风险和中线相等C、两个直角三角形中,如果有一个边和一个锐角对应相等,则两个直角三角形全等D、两个直角三角形中,如果两个锐角对应相等,则两个直角三角形全等7、下列说法中:①如果三角形的三个内角比是1:2:6,这个三角形是直角三角形;②如果三角形的三条高线交于三角形的一个顶点处,这个三角形是钝角三角形或直角三角形;③如果三角形的一个内角等于另外两个内角的差,这个三角形是直角三角形;④三角形的三条高线、角平分线和中线一定都是线段;⑤等边三角形的三条高线、角平分线和中线一定分别相等。
其中错误的有()个。
A、1B、2C、3D、48、在△ABC中,CD、BE是AB、AC边上的高,∠A=70°,则∠BPC 等于()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七(下)数学下第11章图形的全等 A卷
一、选择题(每题4分,共20分)
1.全等图形是指两个图形( )
A.大小相同 B.形状相同 C.能够重合D.相等
2.如图,△ABC≌△ECD,∠A=48°,∠D=62°点B、C、D在同一直线上,则图中∠ACE的度数是
( )
A.38° B.48° C.132°D.62°
3.下列各组的条件,能判定△ABC≌△A′B′C′的是( )
A.AB=A′B′,AC=A′C′,∠C=∠C′
B.AB=A′B′,AC=A′C′,∠B=∠B′
C.AB=A′B′,AC=A′C′,∠A=∠A′
D.∠A=∠A′,∠B=∠B′,∠C=∠C′
4.如图,已知AB=AC,BD⊥AC于点D,CE⊥AB于点E,图中全等三角形的组数是
( )
A.5 B.4 C.3 D.2
5.说法错误的是
( )
A.如果两个三角形中,有一角及这个角的平分线以及这个角所
对边上的高对应相等,
那么这两个三角形全等
B.如果两个三角形中,有两条边和第三边上的高对应相等,那
么这两个三角形全等
C.如果两个三角形中,有一边及该边上的高和中线对应相等,
那么这两个三角形全等
D.如果两个三角形中,有两个角和其中一角的平分线对应相等,
那么这两个三角形
全等
二、填空题(第6~10题,每题4分,第11题8分,共28分)
6.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共
有______对全等三角形.
7.如图,△ABC≌△ADE,则,AB=_________,∠E=∠________.若
∠BAE=120°,∠BAD=40°,则∠BAC=_________°.8.如图,在△ABC中,AD平分∠BAC,D为BC边的中点,DE⊥AB于点E,DF⊥AC于点F,图中有_________对相等的线段,
它们是_______________________.
9.两根钢条AB′、BA′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5 cm,则槽宽为
__________cm.
10.如图,在△ABC和△ABD中,∠C=∠D=90,若利用“AAS”证明△ABC≌△ABD,则需要加条件________或________;若利
用“HL”证明△ABC≌△ABD,则需要加条件___________或
____________.
11.如图,已知∠ACB=∠BDA=90°,要使△ABC≌△BAD还需要增加一个什么条件?把增加的条件在横线上,并将相应的
根据填在后面的括号内.
(1)_______________; (2)_________________;
(3)_______________; (4)_________________.
三、解答题(第12、13题,每题8分,第14~17题,每题9分,共52分)
12.如图,∠A=∠D,∠C=∠F,要使△ABC≌DEF,还要增加什么
条件?试说明你的
理由.
13.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3 cm,求∠DFE的度数和EC的长.
14.如图,△ABC中,AB=AC,D是BC的中点,试说明AD⊥BC.
15.如图,A、B两点是湖两岸上的两点,为测A、B两点距离,由于不能直接测量,请你设计一种方案,测出A、B两点的距离,并说明你的方案的可行性.(8分)
16.已知:如图.AB=CD,AF=CE,BE=DF,试说明∠B=∠C.你认为本题还可以得到哪些结论,尽可能多地写出来.
17.将一个正方形分割成4个全等的部分.你有几种分割的方法?在每一种方法中,每一个全等部分是怎样得到另一个全等部分的?请你至少提供三种不同的方案.
参考答案
—、1.C 2.B 3.C 4.B 5.B
二、6.3 7.AD,∠C,80 8.5,AB=AC、AE=AF、BE=CF、BD=CD、DE=DF 9.5 10.∠CAB=∠DAB,∠ABC=∠ABD.AC=AD,BC=BD 11.AC=BD,BC=AD,SAS∠BAC=∠ABD,AC=BD,ASA;∠BAC=∠ABD,BC=AD,AAS;AC=BD,HL
三、12.只要增加一对边相等即可,利用“AAS”或“ASA”证明两三角形全等. 13.∠DFE=90°,CE=3 cm 14.由已知得△ABD
≌△ACD,则∠ADB=∠ADC,进而得AD⊥BC 15.构造以AB为一边的三角形以及这个三角形的全等三角形,如过A作河岸的平行线AC,过B作AC的垂直线BD.AC、BD交于点O.在OC上取点C使OC=OA.过C作∠ACD=∠BAC.CD交BD于点D.由“ASA”得△OCD≌△OAB,则有AB=CD,只要测量出CD的长,即可. 16.由AF=CE,得AE=CF,则可证△ABE≌△CDF,即∠B=∠C还可以得到∠D=∠B,∠AEB=∠CFD 17.分割成如图1、图2或图3均可(答案不唯一).其中图1、图2的全等部分可以看作是平移得到的;图l、图3的全等部分可以看作是旋转得到的.。