向量的加法教学设计

合集下载

《向量的加法》教案完美版

《向量的加法》教案完美版

《向量的加法》教案完美版第一章:向量的概念回顾1.1 向量的定义:向量是有大小和方向的量,通常用箭头表示。

1.2 向量的表示方法:在坐标系中,向量可以用有序数对表示,即(x, y)。

1.3 向量的模:向量的模是指向量的大小,可以用|v|表示,计算公式为|v| = √(x^2 + y^2)。

第二章:向量的加法运算2.1 向量加法的定义:两个向量a和b的加法运算,记作a + b,结果是一个新的向量,其大小等于a和b大小的和,方向等于a和b方向的矢量和。

2.2 向量加法的表示方法:在坐标系中,向量加法可以通过将两个向量的坐标分别相加得到结果向量的坐标。

2.3 向量加法的性质:向量加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。

第三章:向量加法的几何解释3.1 向量加法的几何图形:在坐标系中,向量加法可以通过将两个向量的箭头首尾相接,得到结果向量的箭头。

3.2 平行向量的加法:当两个向量平行时,它们的加法运算结果是它们的模的和(或差,取决于它们的方向是否相同)。

3.3 非平行向量的加法:当两个向量不平行时,它们的加法运算结果是一个新的向量,其大小和方向由平行四边形法则确定。

第四章:向量加法的应用4.1 力的合成:在物理学中,向量加法可以用来计算两个力的合力,即力的合成。

4.2 位移的计算:在物理学中,向量加法可以用来计算物体的位移,即起点到终点的位移向量。

4.3 速度和加速度的合成:在物理学中,向量加法可以用来计算物体的速度和加速度的合成。

第五章:向量加法的练习题第六章:向量加法在坐标系中的运算规则6.1 直角坐标系:在直角坐标系中,向量的加法可以通过对应坐标轴上的坐标值进行运算。

6.2 斜坐标系:在斜坐标系中,向量的加法需要考虑角度和半径的变化。

6.3 空间坐标系:在空间坐标系中,向量的加法涉及到三个坐标轴的运算规则。

第七章:向量加法在实际问题中的应用7.1 力学问题:在力学中,向量加法可以用来计算物体所受多力的合力。

向量的加法运算的教学设计

向量的加法运算的教学设计

向量的加法运算的教学设计教学设计:向量的加法运算一、教学目标:1.理解向量的概念和性质。

2.掌握向量的加法运算规则。

3.能够通过向量的加法运算解决简单的几何问题。

4.培养学生的逻辑思维和分析问题的能力。

二、教学准备:1.课件、投影仪等教学工具。

2.长度和方向可调节的示教仪器。

3.相关教学素材和练习题。

4.活动和实例的设计。

三、教学过程:步骤一:导入(5分钟)1.利用多媒体展示各种不同方向和长度的箭头图形,引导学生思考箭头图形的特点和表示方式。

2.提问:这些箭头图形有什么共同点?学生回答后,引导学生认识到箭头图形代表量和方向,即向量。

步骤二:概念解释(10分钟)1.通过多媒体课件展示向量的定义和性质,包括大小、方向和平行性质。

2.解释向量加法的概念,即将两个向量的长度和方向相加得到一个新的向量。

步骤三:向量加法规则(15分钟)1.利用示教仪器展示向量的加法法则。

首先定义向量的起点和终点,然后将第二个向量的起点对准第一个向量的终点,得到一个新的向量。

2.引导学生自己发现向量加法规则,并总结出向量加法规则。

步骤四:情境演示(15分钟)1.设计一个实际生活中的情境,如小明从家里出发,先向东行走100米,再向南行走50米。

请问小明最后的位置在哪里?2.让学生使用向量的加法运算解决问题,并将解题思路和结果展示给全班。

步骤五:练习与巩固(15分钟)1.分发练习题,让学生在课堂上独立完成。

练习题包括计算已知向量的和、已知向量和其相反向量的和等。

2.提供答案并进行讲解,帮助学生检查答案和理解解题思路。

步骤六:情境设计(20分钟)1.分组讨论和设计新的情境问题,要求学生利用向量的加法运算解决问题。

2.学生展示自己的情境设计,并全班学生进行讨论和互动。

步骤七:拓展应用(10分钟)1.展示一些向量加法的应用实例,如矢量力学、向量运算在地图和导航中的应用等。

2.引导学生思考向量加法在实际问题中的应用和意义。

四、教学评价:1.课堂作业的完成情况和准确性。

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版第一章:向量的概念回顾1.1 向量的定义向量是从数学和物理学中引入的概念,具有大小和方向。

向量通常用字母表示,如\(\vec{a}\)、\(\vec{b}\) 等,也可以用箭头表示。

1.2 向量的表示方法向量可以用坐标形式表示,如\(\vec{a} = (a_x, a_y)\)。

向量还可以用图形表示,在坐标系中表示向量的起点和终点。

第二章:向量的加法运算2.1 向量加法的定义向量加法是将两个向量相加得到一个新的向量。

如果\(\vec{a} = (a_x, a_y)\) 和\(\vec{b} = (b_x, b_y)\),它们的和\(\vec{c}\) 可以表示为\(\vec{c} = \vec{a} + \vec{b} = (a_x + b_x, a_y + b_y)\)。

2.2 向量加法的几何意义向量加法可以直观地理解为在坐标系中将两个向量的终点相连,得到一个新的向量。

几何上,向量加法表示的是两个向量的位移合成。

第三章:平行向量的加法3.1 平行向量的定义平行向量是指方向相同或相反的向量。

如果两个向量平行,它们的坐标成比例。

3.2 平行向量的加法规则平行向量相加时,可以直接将它们的大小相加,方向不变。

如果\(\vec{a}\) 和\(\vec{b}\) 是平行向量,\(\vec{a} + \vec{b} = (a + b, c)\),其中\(a\) 和\(b\) 是向量的大小,\(c\) 是它们的方向。

第四章:向量的减法运算4.1 向量减法的定义向量减法是将一个向量从另一个向量中减去。

如果\(\vec{a} = (a_x, a_y)\) 和\(\vec{b} = (b_x, b_y)\),它们的差\(\vec{d}\) 可以表示为\(\vec{d} = \vec{a} \vec{b} = (a_x b_x, a_y b_y)\)。

4.2 向量减法的几何意义向量减法可以理解为从起点到终点的位移减去从起点到另一个终点的位移。

高中数学向量的加法教案

高中数学向量的加法教案

高中数学向量的加法教案教学目标:1. 理解向量的概念,掌握向量的性质和运算法则。

2. 掌握向量的加法法则和减法法则。

3. 能够通过例题熟练运用向量的加法和减法。

教学重点:1. 向量的加法法则和减法法则的理解与应用。

2. 解题方法的掌握与灵活运用。

教学难点:1. 多个向量的加法和减法。

2. 向量的坐标表示和分解。

教学准备:1. 教学课件、教学板书。

2. 向量的范例题目和练习题。

3. 制作向量的几何图形展示。

教学过程:一、引入:通过一个生活中的例子引出向量的概念,引导学生了解向量的意义和性质。

二、向量的定义与表示:1. 向量的定义:向量是具有大小和方向的量。

2. 向量的表示:以有向线段表示,常表示为AB(→),A和B分别为向量的起点和终点。

3. 向量的性质:平移、长度和方向都相同的向量相等。

三、向量的加法法则:1. 平行四边形法则:两个向量相加,结果向量的始点为第一个向量的始点,终点为第二个向量的终点,即C = A + B。

2. 共点法则:两个向量相加,结果向量为他们的和向量,即C = A + B。

四、向量的减法法则:向量的减法等价于加上对应向量的相反向量,即A - B = A + (-B)。

五、例题练习:1. 讲解范例题目,带领学生理解向量的加法和减法法则。

2. 练习学生独立解题,加深对向量运算的掌握和应用。

六、课堂小结:复习向量的加法和减法法则,梳理思路和方法。

七、作业布置:布置相关的练习题,巩固所学知识。

教学反思:通过向量的加法教学,让学生掌握向量的基本运算法则,提高学生的运算能力和解题思维。

扩充应用向量知识,拓展学生的问题解决能力。

《向量的加法》教案优秀2篇

《向量的加法》教案优秀2篇

《向量的加法》教案优秀2篇《向量的加法》教案篇一总课题平面向量总课时第18课时分课题向量的加法分课时第1 课时教学目标理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作两个向量的和,掌握加法的交换律和结合律,并会用它们进行向量的运算。

重点难点向量加法的三角形法则和平行四边形法则。

向量加法的交换律和结合律。

引入新课问题1、利用向量的表示,从景点到景点的位移为,从景点到景点的位移为,那么经过这两次位移后游艇的合位移是(如图)这里,向量,,三者之间有什么关系?1、向量加法的定义2、向量加法的三角形法则具体步骤:(1)把两个向量平移后,使两个向量的一个起点与另一个起点相连。

(2)将剩下的起点与终点相连,并指向终点,则该向量为两个向量的和。

简记为“首尾相连,首是首,尾是尾”3、向量加法的平行四边形法则4、对于零向量和任一向量有,对于相反向量有5、向量加法的运算律交换律结合律6、如果平面内有个向量依次首尾连接组成一条封闭折线,那么这个向量的和是什么?例题剖析例1、作出下列向量的和:例2、如图,为正六边形的中心,作出下列向量:(1) (2) (3)例3、在长江南岸某渡口处,江水以的速度向东流,渡船的速度为。

渡船要垂直地渡过长江,其航向应如何确定?巩固练习1、化简。

2、已知点是平行四边形对角线的交点,则下面结论中正确的是( )A、B、C、D、3、在△ 中,求证;4、一质点从点出发,先向北偏东方向运动了,到达点,再从点向正西方向运动了到达点,又从点向西南方向运动了到达点,试画出向量以及。

课堂小结1、向量加法的定义。

2、向量加法的三角形法则和平行四边形法则。

3、向量加法的运算律。

课后训练班级:高一( )班姓名一、基础题1、已知正方形的边长为,则( )A、B、C、D、2、设点是△ 内一点,若,则必有( )A、点是△ 的垂心B、点是△ 的外心C、点是△ 的。

重心D、点是△ 的内心3、当时,; 时,平分之间的夹角。

《向量的加法》教学设计方案

《向量的加法》教学设计方案

《向量的加法》教学设计方案一、教学目标:1.认识向量的概念,理解向量的定义和性质;2.学会向量的加法的几何和代数方法;3.掌握向量的几何和代数运算法则;4.培养学生的逻辑思维和几何推理能力。

二、教学内容:1.向量的定义和性质;2.向量的加法的几何方法和代数方法;3.向量的几何运算法则和代数运算法则。

三、教学重难点:1.向量的加法的几何方法和代数方法;2.向量的几何运算法则和代数运算法则。

四、教学过程:第一步:导入新知1.引导学生回忆平面向量、几何向量和代数向量的定义及符号表示;2.提问:你知道向量的加法有哪几种方法吗?第二步:向量的定义和性质1.讲解向量的定义:有大小和方向的量叫向量;2.引导学生发现向量的性质:向量的大小用数表示,方向用箭头表示,有共线向量和相等向量的概念;3.提示:向量的大小叫做模,方向叫做方向角;4.讲解向量相等的判定方法:两个向量如果大小相等且方向相同,则这两个向量相等。

第三步:向量的几何加法1.引导学生观察和比较各种几何方法的例子;2.讲解三角形法则:将两个向量的起点相连,以两个向量的末点为另外两条边,形成一个三角形,将这两个向量相加的和向量就是这个三角形的第三条边;3.引导学生观察平行四边形法则:将两个向量以相同的起点相连,形成一个平行四边形,对角线就是这两个向量相加的和向量;4.练习:通过画图求和向量。

第四步:向量的代数加法1.物理方法:将同一直线上的向量相加时,只需将它们的大小相加,方向不变;2.已知向量相等,则有方向相反的向量之和为零向量;3.正负向量相加:加一负号相当于减一个正号。

第五步:向量运算的性质1.满足交换律和结合律;2.零向量是加法的单位元。

第六步:小结归纳1.整理和总结向量加法的几何方法和代数方法;2.写出向量加法的法则和性质。

五、课堂练习:1.出示一些向量图形,要求学生画出相应的和向量;2.给出一些向量的数值,要求学生计算出相应的和向量。

六、板书设计:向量的加法:1.几何方法:三角形法则,平行四边形法则;2.代数方法:物理法则,负向量和零向量;3.运算法则:交换律,结合律;4.运算性质:单位元零向量。

中职数学教案:向量的加法运算(全2课时)

中等专业学校2024-2025-1教案教学内容通情况发现成昆之间的高速公路严重拥堵,只好改变出行路线,先驾车到重庆,再从重庆到成都.小张自驾旅程中的位移情况如图所示,其中,点A 、B、C分别代表昆明、重庆和成都三地.试问,小张从点A经点B到达点C接连两次位移,AB、BC的结果,与原计划从点A直接到达点C的位移AC有什么关系?三、探索新知可以看出,这两种方式的位移结果是一样的,都是从昆明到成都.因此我们可以把位移AC看作两次位移AB与BC的和.=AB a,=BC b,得到一个新的向量AC,称向量AC为向量a与向量b的和,记作a+b .一般地,对于平面内给定的两个不平行的非零向量a、b,在平面上任取一点A,依次做=AB a,教学内容=BC b,得到一个△ABC,称向量AC为向量a与向量b的和,也称为向量a与向量b的和向量,记作a+b,如图所示. 即a+b=AC=AB+BC.求两个向量的和的运算称为向量的加法.上述把两个非零向量表示成有向线段并借助于三角形作出其和向量的方法,称为向量加法的三角形法则.当非零向量平行时,在平面上任取一点A,依次作规定:a+b=0+a=a;a+(−a)=0 . 由上面的分析可知,表示各个向量的有向线段首尾相接,由起点指向终点的有向线段表示的向量就是这些向量的和向量,这是向量加法的几何意义,如图所示 .四、典型例题例1 如图所示,在⏥ABCD中,用向量AB、AD表示向量AC.解根据向量加法的三角形法则可知,AC=AB+BC.1. 如图所示,已知向量a、b、c,则板书设计教后札记中等专业学校2024-2025-1教案编号:备课组别数学组课程名称向量的加法运算所在年级主备教师授课教师授课系部人授课班级授课日期课题 2.2.1向量的加法运算(第二课时)教学目标通过学习,理解向量的加法、减法、数乘运算及其几何意义;能按要求作出两个向量的和向量、差向量;会判定两个非零向量是否平行;逐步提升直观想象、数学运算和数学抽象等核心素养.重点向量加法的运算、减法、数乘运算及其几何意义.难点向量减法法则.教法讲授法教学设备一体机教学环节教学活动内容及组织过程个案补充教学内容前面,我们利用双曲线的标准方程获得了双曲线的几何性质,是否可以利用抛物线的标准方程研究抛物线的几何性质呢?下面以抛物线的标准方程y²=2px为例,研究抛物线的几何性质.1.范围在方程y²=2px中,由p>0,y²≥0,可知x≥0. 这表明,抛物线在y轴的右侧,如图所示. 当x的值增大时,y²的值也随着教学内容又因为⏥ABCD中,AD=BC,所以AC=AB+AD.五、探索新知一般地,给定两个非零向量AB与AD,以线段AB和AD为邻边作⏥ABCD,则向量AC就是向量AB与AD的和,这种作两个向量的和向量的方法称为向量加法的平行四边形法则.可以验证,向量的加法满足以下运算律:a+b=b+a;(交换律)a+(b+c)= a+(b+c) .(结合律)六、典型例题例2 已知向量a、b,如图(1)所示,试分别用向量加法的三角形法则和平行四边形法则作向量a+b.解(1)运用三角形法则.如图(2)所示,在平面内任取一点O,作=OA a,=AB b,则=OB a+b;(2)运用平行四边形法则.如图(3)所示,在平面内任取一点O,作=OA a,=OB b,以OA、OB为邻边作⏥ABCD,连接OC,则=OC OA OB=a+b.例3一艘渡轮要从南岸到北岸,它在静水中速度的大小为12km/h,方向正北. 若水流速度的大小为 12km/h,方向正东,求渡轮实际航行的速度.解如图所示,AC表示船在静水中的速度, AB为水流速度. 以AB、AC为邻边作⏥ABCD,由向量加法的平行四边形法则可知,AD是船的实际航行速度.在RtΔABC中,教学内容因此, 船实际航行的速度大小是13km/h,方向为北偏东22°37’.七、巩固练习练习2.2.1如图所示,分别求作下列情形下的向量a+b2. 如图所示,已知向量a、b、c,则教学内容3.化简.4.某同学从A地向东走2km到达B地,又向北走2km到达C地.试求该同学的位移AC的大小和方向.八、布置作业1.书面作业:完成课后习题和《学习指导与练习》;2.查漏补缺:根据个人情况对课堂学习复习与回顾;3.拓展作业:阅读教材扩展延伸内容.板书设计教后札记。

高中数学向量加法讲解教案

高中数学向量加法讲解教案一、教学目标:1.了解向量的定义和性质;2.掌握向量的加法法则;3.能够应用向量加法解决实际问题。

二、教学重点与难点:重点:向量的加法法则;难点:应用向量加法解决实际问题。

三、教学内容与步骤:1. 向量的定义和性质:向量是有大小和方向的量,通常用带箭头的线段表示。

同时向量还具有平行移动性,即如果两个向量大小相等,方向相同,那么它们是相等的。

1)零向量:大小为0的向量,通常表示为0或者$\vec{0}$;2)平行向量:具有相同或相反方向的向量;3)共线向量:在同一条直线上的向量;4)自由向量:位置可以移动的向量。

2. 向量的加法法则:向量的加法满足三角形法则,即若有三个向量$\vec{a}$,$\vec{b}$,$\vec{c}$,则$\vec{a}+\vec{b}+\vec{c}$构成一个封闭的三角形。

根据这个法则,向量的加法运算可以通过平行四边形法则进行:若有两个向量$\vec{a}$和$\vec{b}$,它们的和为$\vec{c}$,则以$\vec{a}$、$\vec{b}$为邻边构造一个平行四边形,$\vec{c}$为对角线的向量即为$\vec{c} = \vec{a} + \vec{b}$。

3. 应用向量加法解决实际问题:通过实际问题,引导学生建立对向量加法的应用认识,如通过物体的位移、速度等概念,引导学生解决真实场景中的向量运算问题。

四、教学方法:1. 教师讲解结合示范;2. 学生合作探究;3. 实际问题解析。

五、教学辅助工具:1. 板书;2. 教学PPT。

六、教学反馈:通过课堂练习、小组合作讨论及互动问答等方式,及时检验学生的理解情况。

同时,鼓励学生提出疑问并解答。

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版第一章:向量的概念回顾1.1 向量的定义1.2 向量的表示方法1.3 向量的长度和方向第二章:向量的加法运算2.1 向量加法的定义2.2 向量加法的几何意义2.3 向量加法的三角形法则2.4 向量加法的平行四边形法则第三章:向量加法的性质3.1 交换律3.2 结合律3.3 存在零向量3.4 存在相反向量第四章:向量的减法运算4.1 向量减法的定义4.2 向量减法的几何意义4.3 向量减法的三角形法则4.4 向量减法的平行四边形法则第五章:向量减法的性质5.1 减去一个向量等于加上它的相反向量5.2 减去两个向量等于减去它们的和5.3 减法运算与加法运算的关系第六章:向量的数乘运算6.1 向量的数乘定义6.2 向量的数乘几何意义6.3 向量的数乘与向量长度的关系6.4 向量的数乘与向量方向的关系第七章:向量的数乘运算性质7.1 数乘运算的分配律7.2 数乘运算的结合律7.3 数乘运算的单位元7.4 数乘运算的逆元第八章:向量的点积运算8.1 向量点积的定义8.2 向量点积的几何意义8.3 向量点积的计算公式8.4 向量点积的性质第九章:向量的叉积运算9.1 向量叉积的定义9.2 向量叉积的几何意义9.3 向量叉积的计算公式9.4 向量叉积的性质第十章:向量的应用10.1 向量在几何中的应用10.2 向量在物理中的应用10.3 向量在其他领域中的应用10.4 向量的进一步研究第六章:向量的线性组合与基底6.1 向量的线性组合定义6.2 向量的线性组合的几何意义6.3 基底的概念6.4 基底的选取方法第七章:向量空间与线性相关性7.1 向量空间的概念7.2 线性相关的定义7.3 线性无关的定义7.4 线性相关性与线性无关性的判断方法第八章:向量的坐标表示8.1 坐标系的概念8.2 向量的坐标表示方法8.3 坐标变换与向量的关系8.4 坐标表示在几何中的应用第九章:向量组的线性表示9.1 向量组的线性表示概念9.2 矩阵与向量组的关系9.3 矩阵的基本运算9.4 矩阵的逆与向量组的线性表示第十章:向量的进一步研究10.1 向量范数的概念10.2 向量范数的性质10.3 向量内积的概念10.4 向量内积的性质10.5 向量组的内积空间重点和难点解析一、向量的概念回顾:重点关注向量的定义、表示方法、长度和方向,为学生奠定扎实的向量基础。

6.2.1向量的加法运算 教案

6.2.1向量的加法运算教学目标:1.理解并掌握向量加法的概念,了解向量加法的几何意义及运算律2.掌握向量加法运算法则,能熟练地进行向量加法运算3.理解数的加法与向量的加法的联系与区别教学重点:掌握向量加法运算法则,能熟练地进行向量加法运算教学难点:从集合角度给出向量加法的三角形法则和平行四边形法则教学过程:一、导入新课,板书课题我们知道,数能进行运算,因为有了运算而使数的威力无穷,那么,向量是否也能像数一样进行运算呢?接下来我们来学习一下向量的加法运算【板书:向量的加法运算】二、出示目标,明确任务1.理解并掌握向量加法的概念,了解向量加法的几何意义及运算律2.掌握向量加法运算法则,能熟练地进行向量加法运算3.理解数的加法与向量的加法的联系与区别三、学生自学,独立思考学生看书,教师巡视,督促学生认真看书(4min)下面,阅读课本P7-P10页练习以上内容,思考如下问题:1.找出阅读内容中的知识点。

2.找出阅读内容中的重点。

3.找出阅读内容中的困惑点,疑难点。

四、自学指导,紧扣教材1.自学指导1(5min)阅读课本7-8页的内容,思考并完成如下问题(1)如图6.2-1,某质点从点A经过点B到点C,这个质点的位移如何表示?(2)由位移的合成,你认为如何进行两个向量的加法运算?(3)如图6.2-3在光滑的平面上,物体同时受到两个外力F1与F2的作用,你能做出这个物体所受的合力F 吗?(4)向量加法的平行四边形法则与三角形法则一致吗?为什么?(5)如果向量a,b 共线,他们的加法与数的加法有什么关系?你能做出向量a+b 吗?(6)通过例1的学习,总结两种方法做题时的方法及关键点?审题: 关键词: 知识点: 关联知识点: 作答:2.自学指导2(5min )阅读课本9-10页练习以上的内容,思考并完成以下问题(1)结合例1,探索b a b a ,, 之间的关系?(2)数的加法满足交换律、结合律,向量的加法是否也满足交换律和结合律呢?试着验证(a+b )+c=a+(b+c)?(3)在例2中,理解题意,提取关键信息,画出简图进行分析,将实际问题用向量的图形语言表征,从而与解直接三角形建立联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1.2 向量的加法
【教学目标】
1. 理解并掌握向量的加法运算并理解其几何意义,掌握向量加法的运算律.
2. 会用向量加法的三角形法则和平行四边形法则求作两个向量的和.
3. 通过教学,养成学生规范的作图习惯,培养学生数形结合的能力.
【教学重点】
利用向量加法的三角形法则和平行四边形法则,作两个向量的和向量.
【教学难点】
对向量加法定义的理解.
【教学方法】
这节课主要采用启发式教学和讲练结合的教学方法.创设问题情境,激发学生的好奇心与求知欲.并在教学过程中始终注重数形结合,引导学生思考,使问题处于学生思维的最近发展区,以此较好地培养学生发现问题、提出问题、解决问题的能力.
【教学过程】。

相关文档
最新文档