高中数学必修四导学案
高中数学必修四导学案

.§1.1.1 任意角正负和零角的概念)学习目标1.理解任意角的概念,学会在平面内建立适当的坐标系讨论任意角.2.能在0o到360o范围内,找出一个与已知角终边相问题4:能以同一条射线为始边作出下列角吗?同的角,并判定其为第几象限角.210o -150o -660o3.能写出与任一已知角终边相同的角的集合.学习过程一、课前准备(预习教材P2~ P5,找出疑惑之处)体操跳水比赛中有“转体720o,”“翻腾转体两周半”这样的问题5:上述三个角分别是第几象限角,其中哪些角的动作名称,720o在这里表示什么?终边相同.二、新课导学※探索新知问题1:在初中我们是如何定义一个角的?角的范围是问题6:具有相同终边的角彼此之间有什么关系?什么?你能写出与60o角的终边相同的角的集合吗?问题2:(1)手表慢了5 分钟,如何校准,校准后,分针转了几度?※典型例题(2)手表快了10 分钟,如何校准,校准后,分针转了例1:在0o到360o的范围内,找出与下列各角终边相同几度?的角,并分别判断它们是第几象限角:(1)650o (2)-150o (3)-990o151 问题3:任意角的定义(通过类比数的正负,定义角的.2017 年上学期◆高一月日班级:姓名:变式训练:若是第三象限角,则- ,,2 分别是2第几象限角.变式训练:(1)终边落在x轴正半轴上的角的集合如何表示?终边落在x 轴上呢?例3:如图,写出终边落在阴影部分的角的集合(包括边界).y y(2)终边落在坐标轴上的角的集合如何表示?12045O x xO210例2:若α与240o角的终边相同(1)写出终边与的终边关于直线y=x 对称的角的集合.变式训练:(1)第一象限角的范围____________.(2)第二、四象限角的范围是______________.※动手试试(2)判断是第几象限角.21.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C 关系是()2.A.B=A∩C B.B∪C=CC.A C D.A=B=C2.下列结论正确的是()A.三角形的内角必是一、二象限内的角学习评价B.第一象限的角必是锐角※当堂检测(时量:5 分钟满分:10 分)计分:C.不相等的角终边一定不同1、下列说法中,正确的是()D.| k 360 90 ,k Z =A.第一象限的角是锐角| k 180 90 ,k ZB.锐角是第一象限的角3.若角α的终边为第二象限的角平分线,则α的集合C.小于90°的角是锐角为_____________________._D.0°到90°的角是第一象限的角2、(1)终边相同的角一定相等;(2)相等的角的4.在0°到360°范围内,终边与角-60°的终边在同终边一定相同;(3)终边相同的角有无限多个;(4)一条直线上的角为.终边相同的角有有限多个.上面4 个命题,其中真命题的个数是()三、小结反思A、0 个B、1 个C、2 个D、3 个本节内容延伸的流程图为:3、终边在第二象限的角的集合可以表示为:()0o—360o的角A.{α9∣0°<α<180°}任意角:正角,负角和零角B.{α9∣0°+k·180°<α<180°+k·180°,k∈Z}象限角C.{α∣2-70°+k·180°<α<-180°+k·180°,k∈Z}D.{α∣2-70°+k·360°<α<-180°+k·360°,k∈Z}终边相同的角的表示4、与1991°终边相同的最小正角是_________绝,对值最小的角是______________._.2017 年上学期◆高一月日班级:姓名:7、角, 的终边关于x y 0 对称,且=-60°,求角.5、若角的终边为第一、三象限的角平分线,则角集合是.§1.1.2 弧度制学习目标1.理解弧度制的意义,正确地进行弧度制与角度制课后作业6、将下列落在图示部分的角(阴影部分),用集合表的换算,熟记特殊角的弧度数.示出来(包括边界). 2.了解角的集合与实数集R 之间可以建立起一一对135 y30y135 60应关系.3.掌握弧度制下的弧长公式、扇形面积公式,会利用弧xOxO度制、弧长公式、扇形面积公式解决某些简单的实际问题.学习过程一、课前准备(预习教材P6~ P9,找出疑惑之处)在初中,我们常用量角器量取角的大小,那么角的大小的度量单位为什么?4.二、新课导学限、第四象限角的集合.※探索新知问题1:什么叫角度制?问题2:角度制下扇形弧长公式是什么?扇形面积公式是什么?问题7:回忆初中弧长公式,扇形面积公式的推导过程。
高中数学 新人教A版必修4导学案全套

任意角高中数学1.1.1任意角导学案新人教A版必修4一、学习目标:1.理解并掌握任意角、象限角、终边相同的角的定义。
2.会写终边相同的角的集合并且会利用终边相同的角的集合判断任意角所在的象限。
二、重点、难点:任意角、象限角、终边相同的角的定义是本节课的重点,用集合和符号来表示终边相同的角是本节课的难点三、知识链接:1.初中是如何定义角的?2.什么是周角,平角,直角,锐角,钝角?四、学习过程:(一)阅读课本1-3页解决下列问题。
问题1、按方向旋转形成的角叫做正角,按 - 方向旋转形成的角叫做负角,如果一条射线没有作____旋转,我们称它形成了一个零角。
零角的与重合。
如果α是零角,那么α= 。
问题2、问题3、象限角与象限界角为了讨论问题的方便,我们总是把任意大小的角放到平面直角坐标系内加以讨论,具体做法是:(1)使角的顶点和坐标重合;(2)使角的始边和x轴重合.这时,角的终边落在第几象限,就说这个角是的角(有时也称这个角属于第几象限);如果这个角的终边落在坐标轴上,那么这个角就叫做,这个角不属于任何一个象限。
问题4、在平面直角坐标系中作出下列各角并指出它们是第几象限角:(1)420o (2) -75o(3) 855o(4) -510o问题6、以上各角的终边有什么关系?这些有相同的始边和终边的角,叫做 。
把与-32o角终边相同的所有角都表示为 ,所有与角α 终边相同的角,连同角α 在内可构成集合为 .。
即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
例1. 在0︒~360︒之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:(1)︒480; (2)︒-760; (3)03932'︒.变式练习 1、 在0︒~360︒之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:(1)420 º (2)—54 º18′ (3)395º 8 ′ (4)—1190º 30′2、写出与下列各角终边相同的角的集合,并把集合中适合不等式-720oβ≤<360o 的元素写出来:(1)1303o 18, (2)--225o问题8、(1)写出终边在x 轴上角的集合 (2) 写出终边在y 轴上角的集合变式练习 写出终边在直线y =x 上角的集合s,并把s 中适合不等式-360≤β<720o 元素β写出来。
(人教版)高中数学必修四导学案例全集

第一章三角函数1.1 任意角和弧度制1.1.1 任意角一、授课目的:1、知识与技术〔1〕实行角的见解、引入大于360 角和负角;〔2〕理解并掌握正角、负角、零角的定义;〔 3〕理解任意角以及象限角的见解;(4) 掌握全部与角终边相同的角〔包括角〕的表示方法;〔5〕成立运动变化见解,深刻理解实行后的角的见解;〔6〕揭穿知识背景,惹起学生学习兴趣 . 〔7〕创立问题状况,激发学生解析、研究的学习态度,增强学生的参加意识 .2、过程与方法经过创立情境:“转体 720 ,逆〔顺〕时针旋转〞,角有大于 360 角、零角和旋转方向不相同所形成的角等,引入正角、负角和零角的见解;角的见解获取实行今后,将角放入平面直角坐标系,引入象限角、非象限角的见解及象限角的判断方法;列出几个终边相同的角,画出终边所在的地址,找出它们的关系,研究拥有相同终边的角的表示;讲解例题,总结方法,牢固练习.3、神情与价值经过本节的学习,使同学们对角的见解有了一个新的认识,即有正角、负角和零角之分 . 角的见解实行今后,知道角之间的关系 . 理解掌握终边相同角的表示方法,学会运用运动变化的见解认识事物.二、授课重、难点重点 :理解正角、负角和零角的定义,掌握终边相同角的表示法.难点 :终边相同的角的表示.三、学法与授课用具从前的学习使我们知道最大的角是周角 , 最小的角是零角 . 经过回忆和观察平常生活中实质例子 , 把对角的理解进行了实行 . 把角放入坐标系环境中今后 , 认识象限角的见解 . 经过角终边的旋转掌握终边相同角的表示方法 . 我们在学习这局部内容时 , 第一要弄清楚角的表示符号 , 以及正负角的表示 . 其他还有相同终边角的会集的表示等 .授课用具 : 电脑、投影机、三角板四、授课设想【创立情境】思虑 : 你的手表慢了 5 分钟,你是怎样将它校准的?假设你的手表快了小时,你应该怎样将它校准?当时间校准今后,分针转了多少度?[ 取出一个钟表 , 实质操作 ] 我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上, 这就是说角已不能是限制于 0 360 之间,这正是我们这节课要研究的主要内容——任意角.【研究新知】1.初中时,我们已学习了0360 角的见解,它是怎样定义的呢?[ 展现投影 ] 角能够看作平面内一条射线绕着端点从一个地址旋转到另一个地址所成的图形 . 如图 1.1-1 ,一条射线由原来的地址OA,绕着它的端点 O 按逆时针方向旋转到停止地址 OB ,就形成角.旋转开始时的射线 OA 叫做角的始边, OB 叫终边,射线的端点 O 叫做叫的极点 .2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体 720 〞〔即转体2周〕,“转体 1080 〞〔即转体 3 周〕等 , 都是遇到大于360的角以及按不相同方向旋转而成的角.同学们思虑一下: 可否再举出几个现实生活中“大于360的角或按不相同方向旋转而成的角〞的例子 , 这些说了然什么问题 ?又该怎样区分和表示这些角呢 ?[ 展现课件 ] 如自行车车轮、螺丝扳手等按不相同方向旋转时成不相同的角 ,这些都说了然我们研究实行角见解的必要性.为了差异起见,我们规定 : 按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).若是一条射线没有做任何旋转 , 我们称它形成了一个零角(zero angle).[ 展现课件 ] 如教材图 1.1.3(1)中的角是一个正角,它等于750;图 1.1.3(2)中,正角210 ,负角150 ,660 ;这样,我们就把角的见解实行到了任意角〔any angle 〕, 包括正角、负角和零角 . 为了简单起见,在不惹起混淆的前提下,“角〞或“ 〞可简记为 .3.在今后的学习中,我们常在直角坐标系内谈论角,为此我们必定认识象限角这个见解 .角的极点与原点重合,角的始边与x 轴的非负半轴重合。
数学高中必修4导学案

数学高中必修4导学案第一节:直线和圆在高中数学必修4中,直线和圆是最基础的几何概念之一。
直线是一条长无限延伸的曲线,而圆则是平面上到一个固定点距离相等的所有点的集合。
直线和圆在几何图形的研究中起着至关重要的作用。
直线和圆的性质:1. 直线的性质:直线没有起点和终点,是由无限多个点组成的。
直线的两点确定一条直线,在平面几何中,两条不重合的直线要么平行,要么相交于一点。
2. 圆的性质:圆由圆心和半径确定,圆上的所有点到圆心的距离都相等。
圆的直径是通过圆心的一条直线,圆的周长是直径乘以π,面积是半径的平方乘以π。
直线和圆的相关定理:1. 直线的平行定理:如果两条直线与第三条直线的交点角相等,则这两条直线平行。
2. 圆的切线定理:切线与半径垂直,切线与切点的连线在切点处与圆相切。
3. 圆的弦定理:一个圆的两条弦如果等长,则弦上的弧也等长。
通过对直线和圆的学习,我们可以更深入地理解几何图形的性质和关系,为学习高等数学打下坚实的基础。
第二节:函数与方程在高中数学必修4课程中,函数与方程是一大重要内容。
函数是一个映射关系,将自变量映射到因变量上。
方程则是含有未知数的等式,通过解方程可以求解未知数的值。
函数与方程的概念:1. 函数的定义:函数通常表示为y=f(x),其中x是自变量,y是因变量。
函数的定义域为所有可能的自变量取值,值域为因变量的所有可能取值。
2. 方程的类型:方程包括线性方程、二次方程、多项式方程等,通过解方程可以求解出未知数的值。
函数与方程的运算:1. 函数的运算:函数的加减乘除运算与普通数的运算类似,同时还包括函数的复合运算和反函数的概念。
2. 方程的求解:通过代数方法可以求解各种类型的方程,如一元一次方程、二元一次方程等。
函数与方程在数学中有着广泛应用,在自然科学、社会科学等领域都扮演着重要的角色。
第三节:三角函数与解三角形三角函数是高中数学必修4中的重要内容,包括正弦函数、余弦函数、正切函数等。
[实用参考]高中数学必修四导学案.doc
![[实用参考]高中数学必修四导学案.doc](https://img.taocdn.com/s3/m/0e4c3058a300a6c30c229f6d.png)
高中数学《必修四》导学案班级________姓名___________第一章三角函数 1.1.1任意角【学习目标】1、 了解任意角的概念;正确理解正角、零角、负角的概念2、 正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示【学习重点、难点】用集合与符号语言正确表示终边相同的角 【自主学习】 一、复习引入问题1:回忆初中我们是如何定义一个角的?______________________________________________________ 所学的角的范围是什么?______________________________________________________问题2:在体操、跳水中,有“转体0720”这样的动作名词,这里的“0720”,怎么刻画?______________________________________________________二、建构数学 1.角的概念角可以看成平面内一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。
射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。
2.角的分类按__________方向旋转形成的角叫做正角, 按顺时针方向旋转形成的角叫做_________。
如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_______重合。
这样,我们就把角的概念推广到了_______,包括_______、________和________。
3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合_________ , 即任一与角α终边相同的角,都可以表示成 。
4.象限角、轴线角的概念我们常在 直角坐标系 内讨论角。
为了讨论问题的方便,使角的________与__________重合,角的___________与_______________________重合。
高中必修4导学案数学

高中必修4导学案数学一、函数1.1 函数的概念在数学中,函数是一种特殊的关系,它将一个或多个自变量映射到唯一的因变量上。
函数通常用f(x)或者y来表示,其中x为自变量,y 为因变量。
1.2 函数的图象函数的图象是自变量与因变量之间的对应关系,在直角坐标系中通常用曲线或折线表示。
通过函数的图象可以直观地了解函数的性质和规律。
1.3 函数的性质函数的性质包括定义域、值域、奇偶性、周期性等,这些性质对于研究函数的特点和行为至关重要。
二、指数与对数2.1 指数函数指数函数是一种以自然常数e为底的函数,其特点是随着自变量的增大,函数值呈指数增长或指数衰减的规律。
2.2 对数函数对数函数是指数函数的逆运算,以对数底为底的函数。
对数函数可以帮助我们解决指数方程和指数不等式等问题。
2.3 指数对数的性质指数对数具有一系列重要的性质,如对数的底可以是任意正数,指数对数的运算法则等,这些性质对于深入理解指数对数函数至关重要。
三、三角函数3.1 基本概念三角函数包括正弦函数、余弦函数、正切函数等,它们是角度的三角函数关系,描述了直角三角形中角度和边长之间的关系。
3.2 三角函数的性质三角函数具有周期性、奇偶性等性质,这些性质在解三角方程、三角不等式等问题时起到重要作用。
3.3 三角函数的应用三角函数在物理、工程、地理等领域有着广泛的应用,如波动方程、电路分析、地理测量等,它们帮助我们更好地理解和解决实际问题。
四、数列与数学归纳法4.1 数列的概念数列是按照一定规律排列的一组数,其中每一个数称为数列的项,数列是研究数学规律和数学性质的重要工具。
4.2 数列的性质数列有等差数列、等比数列等不同类型,每种数列都有其特定的性质和规律,通过对数列的性质研究可以更深入地理解数学知识。
4.3 数学归纳法数学归纳法是一种证明数学命题成立的方法,通过证明第一个命题为真,然后利用归纳假设证明下一个命题也为真,从而证明所有命题成立。
综上所述,高中必修4导学案数学涵盖了函数、指数对数、三角函数、数列和数学归纳法等内容,这些知识对于学生打下数学基础,培养逻辑思维和数学推理能力具有重要意义。
高中数学必修四导学案
高中数学《必修四》导学案班级________ 姓名___________第一章 三角函数 1.1.1 任意角【学习目标】1、 了解任意角的概念;正确理解正角、零角、负角的概念2、 正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示【学习重点、难点】 用集合与符号语言正确表示终边相同的角 【自主学习】 一、复习引入问题1:回忆初中我们是如何定义一个角的?______________________________________________________ 所学的角的范围是什么?______________________________________________________问题2:在体操、跳水中,有“转体0720”这样的动作名词,这里的“0720”,怎么刻画?______________________________________________________二、建构数学 1.角的概念角可以看成平面内一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。
射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。
2.角的分类按__________方向旋转形成的角叫做正角, 按顺时针方向旋转形成的角叫做_________。
如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_______重合。
这样,我们就把角的概念推广到了_______,包括_______、________和________。
3. 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合_________ , 即任一与角α终边相同的角,都可以表示成 。
4.象限角、轴线角的概念我们常在直角坐标系内讨论角。
为了讨论问题的方便,使角的________与__________重合,角的___________与_______________________重合。
高一数学必修4第一章第一节导学案
高一数学必修4第一章第一节导学案课题:1.1.1任意角一、学习目标(1)推广角的概念,理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念;(3)掌握所有与角a 终边相同的角(包括角a )的表示方法;教学重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示方法及判断。
教学难点: 把终边相同的角用集合和数学符号语言表示出来。
二、问题导学1、角的定义:___________________________;2、角的概念的推广:___________________________;3、正角___________________________; 负角 ___________________________; 零角概念___________________________.4、象限角___________________________。
5.终边相同的角的表示___________________________ 。
三、问题探究例1. 例1在0360︒︒~范围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒≤<)例2.写出终边在y 轴上的角的集合.例3.写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒-≤720︒<的元素β写出来.四、课堂练习(1)教材6P 第3、4、5题.(2)补充:时针经过3小时20分,则时针转过的角度为 ,分针转过的角度为 。
注意: (1)k Z ∈;(2)α是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360︒的整数倍. 五、自主小结 六、当堂检测1.设第一象限的角}=锐角},的角} 小于{G {F 90{o==E ,,那么有().A .B .C .() D .2.用集合表示:(1)各象限的角组成的集合. (2)终边落在轴右侧的角的集合.3.在~间,找出与下列各角终边相同的角,并判定它们是第几象限角(1) ;(2);(3).3.解:(1)∵∴与 角终边相同的角是角,它是第三象限的角;(2)∵∴与 终边相同的角是,它是第四象限的角;(3)所以与 角终边相同的角是 ,它是第二象限角.课后练习与提高1. 若时针走过2小时40分,则分针走过的角是多少?2. 下列命题正确的是: ( )(A )终边相同的角一定相等。
高中数学必修四导学案
高中数学《必修四》导学案班级________ 姓名___________第一章 三角函数 1.1.1 任意角【学习目标】1、 了解任意角的概念;正确理解正角、零角、负角的概念2、 正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示【学习重点、难点】 用集合与符号语言正确表示终边相同的角 【自主学习】 一、复习引入问题1:回忆初中我们是如何定义一个角的?______________________________________________________ 所学的角的范围是什么?______________________________________________________问题2:在体操、跳水中,有“转体0720”这样的动作名词,这里的“0720”,怎么刻画?______________________________________________________二、建构数学 1.角的概念角可以看成平面内一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。
射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。
2.角的分类按__________方向旋转形成的角叫做正角, 按顺时针方向旋转形成的角叫做_________。
如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_______重合。
这样,我们就把角的概念推广到了_______,包括_______、________和________。
3. 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合_________ , 即任一与角α终边相同的角,都可以表示成 。
4.象限角、轴线角的概念我们常在直角坐标系内讨论角。
为了讨论问题的方便,使角的________与__________重合,角的___________与_______________________重合。
人教版高一数学必修4第一章导学案
人教版高一数学必修4第一章导学案课题:1.1.1任意角一、学习目标(1)推广角的概念,理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念;(3)掌握所有与角a 终边相同的角(包括角a )的表示方法;教学重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示方法及判断。
教学难点: 把终边相同的角用集合和数学符号语言表示出来。
二、问题导学1、角的定义:___________________________;2、角的概念的推广:___________________________;3、正角___________________________; 负角 ___________________________; 零角概念___________________________.4、象限角___________________________。
5.终边相同的角的表示___________________________ 。
三、问题探究例1. 例1在0360︒︒~范围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒≤<)例2.写出终边在y 轴上的角的集合.例3.写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒-≤720︒<的元素β写出来.四、课堂练习(1)教材6P 第3、4、5题.(2)补充:时针经过3小时20分,则时针转过的角度为 ,分针转过的角度为 。
注意: (1)k Z ∈;(2)α是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360︒的整数倍. 五、自主小结 六、当堂检测1.设第一象限的角}=锐角},的角} 小于{G {F 90{o==E ,,那么有().A .B .C .() D .2.用集合表示:(1)各象限的角组成的集合. (2)终边落在轴右侧的角的集合.3.在~间,找出与下列各角终边相同的角,并判定它们是第几象限角(1) ;(2);(3).3.解:(1)∵∴与 角终边相同的角是角,它是第三象限的角;(2)∵∴与 终边相同的角是,它是第四象限的角;(3)所以与 角终边相同的角是 ,它是第二象限角.课后练习与提高1. 若时针走过2小时40分,则分针走过的角是多少?2. 下列命题正确的是: ( )(A )终边相同的角一定相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修四导学案目录第一章 三角函数1.1.1 任意角 ..........................................................................................1 1.1.2 弧度角 ..........................................................................................5 1.2.1 任意角的三角函数(1) ........................................................................8 1.2.1 任意角的三角函数(2) ........................................................................12 1.2.2 同角三角函数的关系(1) .....................................................................15 1.2.2 同角三角函数的关系(2) .....................................................................17 1.2.3 三角函数的诱导公式(1) .....................................................................19 1.2.3 三角函数的诱导公式(2) .....................................................................22 1.2.3 三角函数的诱导公式(3) .....................................................................25 1.3.1 三角函数的周期性 ...........................................................................27 1.3.2 三角函数的图象和性质(1) ..................................................................30 1.3.2 三角函数的图象和性质(2) ..................................................................33 1.3.2 三角函数的图象和性质(3) ..................................................................36 1.3.3 函数)sin(ϕω+=x A y 的图象(1) ......................................................38 1.3.3 函数)sin(ϕω+=x A y 的图象(2) ......................................................41 1.3.4 三角函数的应用.................................................................................44 三角函数复习与小结 (46)第二章 平面的向量2.1 向量的概念及表示..............................................................................49 2.2.1 向量的加法.......................................................................................52 2.2.2 向量的减法.......................................................................................55 2.2.3 向量的数乘(1) .................................................................................58 2.2.3 向量的数乘(2) .................................................................................62 2.3.1 平面向量的基本定理 ........................................................................65 2.3.2 向量的坐标表示(1) ........................................................................68 2.3.2 向量的坐标表示(2) ........................................................................70 2.4.1 向量的数量积(1) ...........................................................................72 2.4.1 向量的数量积(2) (75)第三章 三角恒等变换3.1.1 两角和与差的余弦公式 .....................................................................77 3.1.2 两角和与差的正弦公式 .....................................................................81 3.1.3 两角和与差的正切公式 .....................................................................85 3.2.1 二倍角的三角函数(1) .....................................................................88 3.2.1 二倍角的三角函数(2) (92)第一章 三角函数 1.1.1 任意角【学习目标】1. 了解任意角的概念;正确理解正角、零角、负角的概念2. 正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示【学习重点、难点】用集合与符号语言正确表示终边相同的角 【自主学习】 一、复习引入问题1:回忆初中我们是如何定义一个角的?______________________________________________________ 所学的角的范围是什么?______________________________________________________ 问题2:在体操、跳水中,有“转体0720”这样的动作名词,这里的“0720”,怎么刻画?______________________________________________________二、建构数学 1.角的概念角可以看成平面内一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。
射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。
2.角的分类按__________方向旋转形成的角叫做正角, 按顺时针方向旋转形成的角叫做_________。
如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_______重合。
这样,我们就把角的概念推广到了_______,包括_______、________和________。
3. 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个_________,即任一与角α终边相同的角,都可以表示成 。
4.象限角、轴线角的概念我们常在 直角坐标系 内讨论角。
为了讨论问题的方便,使角的________与__________重合,角的___________与_______________________重合。
那么,角的_________(除端点外)落在第几象限,我们就说这个角是__________________。
如果角的终边落在坐标轴上,则称这个角为____________________。
象限角的集合(1)第一象限角的集合:_______________________________________ (2)第二象限角的集合:_______________________________________ (3)第三象限角的集合:_______________________________________ (4)第四象限角的集合:_______________________________________ 轴线角的集合(1)终边在x 轴正半轴的角的集合:_______________________________________ (2)终边在x 轴负半轴的角的集合:_______________________________________ (3)终边在y 轴正半轴的角的集合:_______________________________________ (4)终边在y 轴负半轴的角的集合:_______________________________________ (5)终边在x 轴上的角的集合:_______________________________________ (6)终边在y 轴上的角的集合:_______________________________________ (7)终边在坐标轴上的角的集合:_______________________________________三、课前练习在直角坐标系中画出下列各角,并说出这个角是第几象限角。
00000030,150,60,390,390,120---【典型例题】例1 (1)钟表经过10分钟,时针和分针分别转了多少度?(2)若将钟表拨慢了10分钟,则时针和分针分别转了多少度?例2 在03600到的范围内,找出与下列各角终边相同的角,并分别判断它们是第几象限角。