人教版高中数学必修5第三章《基本不等式》教案

合集下载

新课标人教A版高中数学必修五第三章第四节《基本不等式》教学设计

新课标人教A版高中数学必修五第三章第四节《基本不等式》教学设计

基本不等式教学设计案例教材人教版《普通高中课程标准实验教科书·数学(A版)》必修5课题基本不等式授课类型新授课教学目标1、知识与技能了解基本不等式的推导过程,掌握基本不等式取等号的条件;能够初步运用基本不等式及其取等条件解决一些简单的函数的最值问题,并能解决一些实际问题。

2、过程与方法通过公式推导过程的教学,培养学生观察、猜想、归纳的思维能力,使学生体会数形结合的思想方法,并引导学生从不同角度解释基本不等式。

3、情感态度与价值观通过基本不等式的推导,培养学生严密的逻辑推理能力,通过运用基本不等式,使学生领略数学的应用价值,激发学生的学习兴趣。

教学重、难点重点:基本不等式的推导以及其取等的条件,运用基本不不等式解决一些简单的函数的最值问题,并能解决一些实际问题。

难点:用数形结合思想理解不等式,并从不同角度解释基本不等式。

课前准备多媒体课件的制作教学过程设计一、课题导入观察图片,找关系师:同学们,现在开始上课,首先我想请大家欣赏一张图片。

(稍有停顿)请问有谁见过这张图片吗?生:……师:图1是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色明暗使它看起来像一个风车,代表中国人民热情好客。

(稍作停顿)观察图片,能从中找出一些相等或者不相等的关系吗?生:图片中四个直角三角形的面积之和小于大正方形的面积。

师:非常好,那么是否存在其他的情况,比如说等于呢?生:……师:让我们带着问题一起进入今天的新课学习—基本不等式(设计意图:让学生观察图形,从图形中抽象出不等关系,并提出问题,激发学生的习兴趣,引入学习课题。

)二、基本不等式推导过程及其理解1、公式推导师:将图1的“风车”抽象成如图2的正方形中有四个全等的直角三角形。

师:如果我们设直角三角形的边长分别为a,b,那么正方形的边长22+,四个直角三角形的面积之a b和为22a b+>22+。

那么这个关系是+根据前面的讨论,我们有22a ba b否恒成立的呢?生:还可以取等。

人教版高中数学必修5-3.4《基本不等式(第2课时)》教学设计

人教版高中数学必修5-3.4《基本不等式(第2课时)》教学设计

第三章 不等式3.4.2 基本不等式第二课时(王乙橙)一、教学目标1.核心素养: 通过学习基本不等式,提升学生的直观想象、数学运算与逻辑推理的能力.发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.2.学习目标(12a b+≤(2)熟练应用基本不等式求最值;(3)能够应用基本不等式解决一些简单的实际问题. 3.学习重点通过师生共同研究,进一步掌握基本不等式2a b+≤,并会用此不等式求最大、最小值. 4.学习难点基本不等式求最值中取等的条件;“一正二定三相等”中定值的运用.二、教学设计 (一)课前设计 1.预习任务任务1.基本不等式ab ≤a+b2及其应用,注意常用的一些结论:(1)a 2+1 2a (2)a +1a 2(a >0) (3)b a +a b 2(a,b 同号) (4)2___()2a b ab +2.预习自测1、已知x 、y 都是正数,xy =15,则x +y 的最小值为答案:2、已知x 、y 都是正数,x +y =15,则xy 的最大值为 答案:22543、已知x 、y >0,且x +y =1,则P =x +1x +y +1y 的最小值为 .答案:5 二、解答题3、设x 、y 满足x +4y =40,且x,y ∈R +,求lg x +lg y 的最大值. 解析:2,,4404040,10.lg lg lg(404)lg lg(404)lg 4(10)0,10.100(10)lg 4(10)lg 4lg1002210,5,20lg lg 2.x y R x y x y y x y y y y y y y y y y y y y y y y y x x y +∈+=∴=-><∴+=-+=-⋅=-><∴->-+⎡⎤∴-≤⨯==⎢⎥⎣⎦-===∴+即又等号成立时的最大值为 (二)课堂设计 1.知识回顾比较两个不等式222a b ab +≥2a b+≤的异同点 2.问题探究问题探究一 如何利用函数单调性求最值●活动一 例1 已知函数f (x )=x +ax (a >0).(1)证明:f (x )在区间(0,a ]上为减函数,在[a ,+∞)上为增函数; (2)求f (x )在区间(0,+∞)上的最小值. 【解析】 (1)设x 2>x 1>0,则f (x 2)-f (x 1)=(x 2-x 1)+(a x 2-ax 1)=(x 2-x 1)+a (x 1-x 2)x 1x 2=(x 2-x 1)(1-ax 1x 2)=(x 2-x 1)x 1x 2(x 1x 2-a ),当0<x 1<x 2≤a 时,x 1x 2<a . ∴f (x 2)-f (x 1)<0,∴f (x 2)<f (x 1). 当x 2>x 1≥a 时,x 1x 2>a .∴f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1).故f (x )=x +ax (a >0)在(0,a ]上为减函数,在[a ,+∞)上为增函数. ∴函数f (x )=x +ax (a >0)的图像如图所示.(2)由(1)可知f (x )在(0,+∞)上的最小值f (x )min =f (a )=2a .【点拨】基本不等式a +b2≥ab (a ,b 均大于0)求最值(值域)时,必须具备“一正、二定、三相等”的条件.如果“相等”条件不具备就可能造成错解.为了解决这个问题,我们引进一个函数f (x )=x +ax (a >0),利用它的单调性来完善上述解法的不足,作为使基本不等式“完美”的补充. ●活动二 思考:函数y =x 2+2+1x 2+2的最小值是不是2?如不是,应为多少? 【解析】 不是,若用基本不等式求最小值,则需要条件:x 2+2=1x 2+2,即x 2=-1,但此式不成立.应用单调性求解:设t =x 2+2(t ≥2),则y =t +1t 在[2,+∞)上单调递增,∴最小值为2+12=322. ●活动三 思考:求函数y =sin x +4sin x ,x ∈(0,π)的最小值. 【解析】 令t =sin x ,∵x ∈(0,π),∴t ∈(0,1].由例1(1)知函数f (t )=t +4t 在t ∈(0,2]上是单调减函数,∴f (t )=t +4t 在t ∈(0,1]上也单调递减.∴f (t )≥f (1)=5,故y min =5.问题探究二 如何利用基本不等式求代数式的最值●活动一 思考:x >0,y >0,且x +2y =1,求1x +1y 的最小值. 【解析】 ∵x +2y =1,∴1x +1y =(1x +1y )·(x +2y )=3+x y +2y x ≥3+2x y ·2yx =3+2 2.当且仅当⎩⎪⎨⎪⎧x y =2y xx +2y =1,即⎩⎨⎧x =2-1y =1-22时取等号.故1x +1y 的最小值为3+2 2.●活动二 思考:x >0,y >0,且1x +9y =1,求x +y 的最小值.方法一 【思路分析】 减少元素个数.根据条件1x +9y =1解出y ,用只含x 的代数式表示y ,代数式x +y 转化为只含x 的函数,再考虑利用基本不等式求出最值. 【解析】 由 1x +9y =1,得x =yy -9.∵x >0,y >0,∴y >9. x +y =yy -9+y =y +y -9+9y -9=y +9y -9+1=(y -9)+9y -9+10. ∵y >9,∴y -9>0, ∴y -9+9y -9+10≥2(y -9)·9y -9+10=16,当且仅当y -9=9y -9,即y =12时取等号. 又1x +9y =1,则x =4.∴当x =4,y =12时,x +y 取最小值16.方法二 【思路分析】 在利用基本不等式求最值时,巧妙运用“1”的代换,也会给解决问题提供简捷的解法.【解析】∵1x+9y=1,∴x+y=(x+y)·(1x+9y)=10+yx+9xy.∵x>0,y>0,∴yx+9xy≥2yx·9xy=6.当且仅当yx=9xy,即y=3x时,取等号.又1x+9y=1,∴x=4,y=12.∴当x=4,y=12时,x+y取最小值16.【点拨】(1)要创造条件应用均值定理,和定积最大,积定和最小.多次应用时,必须保证每次取等号的条件相同,等号才可以传递到最后的最大(小)值.(2)注意“1”的代换技巧.(3)本题(1)易错解为:1=x+2y≥22xy,∴xy≤2 4.∴1x+1y≥2xy≥82=4 2.其错因是两次用基本不等式时等号不能同时成立.●活动三及时回馈:(1)已知1x+2y=1(x>0,y>0),求x+y的最小值.(2)已知正数x,y满足x+y=4,求1x+2y的最小值.【解析】(1)x+y=(x+y)·(1x+2y)=3+yx+2xy≥3+2 2.(2)1x+2y=(1x+2y)·x+y4=14(3+yx+2xy)≥3+224.问题探究三●活动一思考:若正数a、b满足ab=a+b+3,求:(1)ab的范围;(2)a+b的范围.【解析】(1)∵ab=a+b+3≥2ab+3,令t=ab>0,∴t2-2t-3≥0,∴(t-3)(t+1)≥0.∴t≥3,即ab≥3,∴ab≥9,当且仅当a=b=3时取等号.(2)∵ab =a +b +3,∴a +b +3≤(a +b2)2.令t =a +b >0,∴t 2-4t -12≥0,∴(t -6)(t +2)≥0. ∴t ≥6即a +b ≥6,当且仅当a =b =3时取等号. 【点拨】利用方程的思想是解决此类问题的常规解法. 第②问也可用如下方法解之:由已知b =a +3a -1>0, ∴a -1>0,∴a +b =a +a +3a -1=a +a -1+4a -1=a +1+4a -1=(a -1)+4a -1+2≥6. ●活动二 思考:正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________.【解析】 由基本不等式得xy ≥22xy +6,令xy =t 得不等式t 2-22t -6≥0,解得t ≤-2(舍去)或者t ≥32,故xy 的最小值为18. 问题探究四 利用基本不等式证明不等式●活动一 思考:已知a,b,c,d 都是实数,且+=1,+=1,求证:≤1.【证明】 ∵a,b ,c ,d 都是实数,所以22222222222a cb d ac bd ac bd ac bd ++++++≤+≤+=又∵+=1,+=1,∴≤1.●活动二 思考:a ,b ,c 都是正数,求证:b +c a +c +a b +a +bc ≥6.【解析】 b +c a +c +a b +a +bc =b a +c a +c b +a b +a c +b c =(b a +a b )+(c a +a c )+(c b +b c ). ∵a >0,b >0,c >0,∴b a +a b ≥2b a ·a b =2.同理,c a +a c ≥2,c b +bc ≥2. ∴b +c a +c +a b +a +b c ≥6.【点拨】解题过程中,把数、式合理地分拆,或者恒等地配凑适当的数或式,这是代数变形常用的方法,也是一种解题的技巧.在本节中应用较多,请同学们仔细体会,总结并掌握规律.●活动三 思考:(1)已知a 、b 、c 都是正数,求证:ab (a +b )+bc (b +c )+ca (c +a )≥6abc . (2)已知a ,b ,c ∈R +,且a +b +c =1,求证:1a +1b +1c ≥9.【证明】(1) 左边=a (b 2+c 2)+b (c 2+a 2)+c (a 2+b 2)≥a ·2bc +b ·2ca +c ·2ab =6abc =右边,∴不等式成立. (2)∵a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c =3+(b a +a b )+(c a +a c )+(c b +b c ) ≥3+2+2+2=9. 3.课堂总结 【思维导图】【重难点突破】利用均值不等式求最值时,应注意的问题(1)各项均为正数,特别是出现对数式、三角数式等形式时,要认真考虑. (2)求和的最小值需积为定值,求积的最大值需和为定值. (3)确保等号成立.以上三个条件缺一不可,可概括“一正、二定、三相等”. 4.随堂检测1.下列函数中,最小值为4的函数是( )A.y =x +4xB.y =sin x +4sin x C.y =e x +4e -x D.y =log 3x +log x 81 【知识点:基本不等式,取等条件】 解:C2.已知x >0,y >0,lg2x +lg8y =lg2则1x +13y 的最小值为( ) A.2 B.2 2 C.4 D.2 3【知识点:基本不等式,对数运算性质】 解:C3. (2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285C.5D.6 【知识点:基本不等式】解:C ∵x +3y =5xy ,∴15y +35x =1.∴3x +4y =(3x +4y )×1=(3x +4y )(15y +35x )=3x 5y +95+45+12y 5x ≥135+23x 5y ·12y5x =5,当且仅当3x 5y =12y 5x ,即x =1,y =12时等号成立.4.已知两个正变量x ,y ,满足x +y =4,则使不等式1x +4y ≥m 恒成立的实数m 的取值范围是________.【知识点:基本不等式,恒成立】解:(-∞,94]5.设正数x ,y 满足log 2(x +y +3)=log 2x +log 2y ,则x +y 的取值范围是________.【知识点:基本不等式,对数运算性质】解:[6,+∞)(三)课后作业基础型自主突破1.若x,y∈R,且x+2y=5,则3x+9y的最小值()A.10B.6 3C.4 6D.18 3 【知识点:基本不等式,指数式】解:D2.已知函数y=x-4+9x+1(x>-1),当x=a时,y取得最小值b,则a+b=().A.-3B.2C.3D.8 【知识点:基本不等式,取等条件】解:y=x-4+9x+1=x+1+9x+1-5,由x>-1,得x+1>0,9x+1>0,所以由基本不等式得y=x+1+9x+1-5≥2x+1×9x+1-5=1,当且仅当x+1=9x+1,即(x+1)2=9,所以x+1=3,即x=2时取等号,所以a=2,b=1,a+b=3.答案 C3.若正实数a,b满足ab=2,则(1+2a)·(1+b)的最小值为_____.【知识点:基本不等式】解析(1+2a)(1+b)=5+2a+b≥5+22ab=9.当且仅当2a=b,即a=1,b=2时取等号.答案94.已知a>3,求a+4a-3的最小值为.【知识点:基本不等式,配凑】解:75.已知x>0,y>0,且2x+5y=20.(1)求u=lg x+lg y的最大值;(2)求1x+1y的最小值.【知识点:基本不等式】 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立. 因此有⎩⎨⎧ 2x +5y =20,2x =5y ,解得⎩⎨⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1. (2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x ·2x y =7+21020, 当且仅当5y x =2xy 时,等号成立. 由⎩⎪⎨⎪⎧2x +5y =20,5y x =2xy,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. 能力型 师生共研1. (2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C.5 D.6 【知识点:基本不等式】解:C ∵x +3y =5xy ,∴15y +35x =1.∴3x +4y =(3x +4y )×1=(3x +4y )(15y +35x )=3x 5y +95+45+12y 5x ≥135+23x 5y ·12y5x =5,当且仅当3x 5y =12y 5x ,即x =1,y =12时等号成立.2.已知正实数a ,b 满足a +2b =1,则a 2+4b 2+1ab 的最小值为( )A.72B.4C.16136D.172【知识点:基本不等式】解:因为1=a +2b ≥22ab ,所以ab ≤18,当且仅当a =2b =12时取等号.又因为a 2+4b 2+1ab ≥2a 2·4b 2+1ab =4ab +1ab .令t =ab ,所以f (t )=4t +1t 在⎝ ⎛⎦⎥⎤0,18单调递减,所以f (t )min =f ⎝ ⎛⎭⎪⎫18=172.此时a =2b =12.答案 D3.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【知识点:基本不等式】解 由已知,得xy =9-(x +3y ),即3xy =27-3(x +3y )≤⎝⎛⎭⎪⎫x +3y 22,令x +3y =t ,则t 2+12t -108≥0,解得t ≥6,即x +3y ≥6. 答案:64.设x ≥0,y ≥0,x 2+y 22=1,则x 1+y 2的最大值为________.【知识点:基本不等式】 解:∵x ≥0,y ≥0,x 2+y 22=1,∴x 1+y 2=x 2(1+y 2)=2x 2·1+y 22≤2×x 2+1+y 222=2×x 2+y 22+122=324,当且仅当x =32,y =22⎝ ⎛⎭⎪⎫即x 2=1+y 22时,x 1+y 2取得最大值324.探究型 多维突破1.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为( )A.0B.98C.2D.94 【知识点:基本不等式综合应用】解:含三个参数x ,y ,z ,消元,利用基本不等式及配方法求最值. z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4y x -3≥2x y ·4y x -3=1. 当且仅当x y =4yx ,即x =2y 时“=”成立,此时z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2 (y -1)2+2. ∴当y =1时,x +2y -z 取最大值2. 【答案】C2.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值为( )A.1B.6C.9D.16【知识点:基本不等式综合应用】解:方法一:因为1a +1b =1,所以a +b =ab ⇒(a -1)(b -1)=1, 所以1a -1+9b -1≥21a -1×9b -1=2×3=6. 方法二:因为1a +1b =1,所以a +b =ab , 所以1a -1+9b -1=b -1+9a -9ab -a -b +1=b +9a -10=(b +9a )⎝ ⎛⎭⎪⎫1a +1b -10≥16-10=6.方法三:因为1a +1b =1,所以a -1=1b -1,所以1a -1+9b -1=(b -1)+9b -1≥29=2×3=6. 答案:B自助餐1.设0,0a b >>,若2是22a b 与的等比中项,则11a b+的最小值为( ) A.8B.4C.2D.1【知识点:基本不等式,等比数列】解:D2.(2013·重庆卷)(3-a)(a+6)(-6≤a≤3)的最大值为()A.9B.92 C.3 D.3 22【知识点:基本不等式】解:B因为-6≤a≤3,所以(3-a)(a+6)≤(3-a)+(a+6)2=92,当且仅当3-a=a+6,即a=-32时等号成立,故选B.3.设a>1,b>0,若a+b=2,则1a-1+2b的最小值为()A.3+2 2B.6C.4 2D.2 2【知识点:基本不等式】解:A4.已知各项均为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m,a n使得a m a n=4a1,则1m+4n的最小值为()A.32 B.53 C.94 D.256【知识点:基本不等式,等比数列】解:由各项均为正数的等比数列{a n}满足a7=a6+2a5,可得a1q6=a1q5+2a1q4,所以q2-q-2=0,解得q=2或q=-1(舍去). 因为a m a n=4a1,所以q m+n-2=16,所以2m+n-2=24,所以m+n=6,所以1m+4n=16(m+n)⎝⎛⎭⎪⎫1m+4n=16⎝⎛⎭⎪⎫5+nm+4mn≥16(5+4)=32.当且仅当nm=4mn时,等号成立,故1m+4n的最小值等于32.答案:A6.正数a,b满足1a+9b=1,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则实数m的取值范围是()A.3,+∞)B.(-∞,3]C.(-∞,6]D.6,+∞)【知识点:基本不等式,恒成立】解:D7.已知x ,y 为正实数,3x +2y =10,3x +2y 的最大值为________.【知识点:基本不等式】 解:由a +b 2≤a 2+b 22,得3x +2y ≤ 2×(3x )2+(2y )2=2×3x +2y =25,当且仅当x =53,y =52时取等号. 答案:2 58.若不等式(x +y )⎝ ⎛⎭⎪⎫a x +4y ≥16对任意正实数x ,y 恒成立,则正实数a 的最小值为________.【知识点:基本不等式,恒成立】解:因为不等式(x +y )⎝ ⎛⎭⎪⎫a x +4y ≥16对任意正实数x ,y 恒成立,所以16≤⎣⎢⎡⎦⎥⎤(x +y )⎝ ⎛⎭⎪⎫a x +4y min .令f (x )=(x +y )⎝ ⎛⎭⎪⎫a x +4y (a >0),则f (x )=a +4+ay x +4xy ≥a +4+2ay x ·4xy =a +4+4a ,当且仅当x y =a2时取等号,所以a +4a +4≥16,解得a ≥4, 因此正实数a 的最小值为4. 答案:49.下列命题中正确的是________(填序号). ①y =2-3x -4x (x >0)的最大值是2-43; ②y =sin 2x +4sin 2x 的最小值是4; ③y =2-3x -4x (x <0)的最小值是2-4 3. 【知识点:基本不等式综合应用】解:①正确,因为y =2-3x -4x =2-⎝ ⎛⎭⎪⎫3x +4x ≤2-23x ·4x =2-4 3.当且仅当3x =4x ,即x =233时等号成立.②不正确,令sin 2x =t ,则0<t ≤1,所以g (t )=t +4t ,显然g (t )在(0,1]上单调递减,故g (t )min =g (1)=1+4=5.③不正确,因为x <0,所以-x >0,最小值为2+43,而不是2-4 3. 答案:① 10.已知a >b >c ,若1a -b +1b -c ≥n a -c,求n 的最大值. 【知识点:基本不等式】 解:方法一 ∵1a -b +1b -c ≥n a -c,且a >b >c , ∴n ≤a -c a -b +a -c b -c =(a -c )2(a -b )(b -c ).∵对a 、b 、c 上式都成立, ∴n ≤[(a -c )2(a -b )(b -c )]min.又∵(a -c )2(a -b )(b -c )≥(a -c )2[(a -b )+(b -c )2]2=4.∴n ≤4,∴n 的最大值为4. 方法二 ∵a >b >c ,∴a -c a -b +a -cb -c=(a -b )+(b -c )a -b +(a -b )+(b -c )b -c=2+b -c a -b +a -b b -c≥2+2=4. ∴n ≤4,∴n 的最大值为4.11.(2015高考重庆)设,0,5a b a b >+=,. 【知识点:基本不等式】 解:23由222ab a b ≤+两边同时加上22a b +得222()2()a b a b +≤+两边同时开方即得: a b +0,0a b >>且当且仅当a b =时取“=”),≤==13a b +=+,即73,22a b ==时,“=”成立).12.为了净化空气,某科研小组根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为y =⎩⎪⎨⎪⎧168-x -1,0≤x ≤4,5-12x ,4<x ≤10。

高中数学基本不等式优秀教案

高中数学基本不等式优秀教案

《不等式的性质》教学设计一. 教学内容解析;本节课是《普通高中课程标准实验教科书·数学必修5〕》〔人教A 版〕第三章第一节的第二课《不等式的性质》。

这节的主要内容是不等式的概念、不等式与实数运算的关系和不等式的性质.这局部内容是不等式变形、化简、证明的理论依据及根底.教材通过具体实例,让学生感受现实生活中存在大量的不等关系.在不等式与实数运算的关系根底上,系统归纳和论证了不等式的一系列性质.教学重点是比拟两个实数大小的方法和不等式的性质。

二.教学目标设置;1.通过具体情境,让学生感受现实世界和日常生活中存在着大量的不等关系,理解不等关系与不等式的联系,会用不等式表示不等关系.2.理解并掌握比拟两个实数大小的方法.3.引导学生归纳和总结不等式的性质,并利用比拟实数大小的方法论证这些性质,培养学生的合情推理和逻辑论证能力.三.学生学情分析;在的学习中,学生已将掌握了不等式关于加减和乘除的性质,本节课所需要解决的问题是〔1〕利用公理化的体系构建学生对于所学不等式性质的认识,让学生更好的从本质上体会不等式的性质,〔2〕学习关于不等式原来不完善的地方,比方对称性和传递性,还要学习两个不等式间的加减乘除次方开方运算。

教学难点是让学生体会公理化体系下不等式性质的证明及其应用.四.教学策略分析;这节内容从实际问题引入不等关系,进而用不等式来表示不等关系,自然引出不等式的根本性质.通过求解方程和求解不等式相对照,梳理已学习的等式性质、不等式性质,探索等式、不等式的共性,归纳出等式性质、不等式性质的研究思路和思想方法,猜测不等式的根本性质,并给出证明。

让学生体会“运算〞在研究不等式性质中的关键作用。

为了研究不等式的性质,首先学习比拟两实数大小的方法,这是论证不等式性质的根本出发点,故必须让学生明确.在教师的引导下学生根本上可以归纳总结出不等式的一系列性质,但对于这些性质的证明有些学生认为没有必要或对论证过程感到困惑,为此,必须明确论证性质的方法和要点,同时引导学生认识到数学中的定理、法则等,要通过公理化的论证才予以认可,培养学生的数学理性精神.五.教学过程设计;引入:1.古诗横看成岭侧成峰,远近上下各不同,引出不等关系。

高中数学必修5第三章《基本不等式》教案

高中数学必修5第三章《基本不等式》教案

《基本不等式》(第一课时)教材:高中数学必修5(人教版)第三章教学目标:★知识与技能:引导学生从问题中发现基本不等式,让学生理解、掌握基本不等式,并能运用它解决一些简单问题;培养他们的探究能力以及分析问题解决问题的能力。

★过程与方法:1.通过问题情境的设置,使学生认识到数学是从实际中来,培养学生观察、分析、猜想等能力;2.通过引导学生用多种方法证明推导基本不等式,培养学生的创新思维和探索精神;3.通过不等式的应用培养学生的应用意识。

引领学生主动探索基本不等式性质,体会学习数学规律的方法。

★情感、态度与价值观:在教学中发挥学生学习的主体作用,培养学生勇于探索的精神,激发他们学习数学的兴趣。

教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式2ba ab +≤的证明过程及应用。

教学难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、用基本不等式求最大值和最小值。

教学方法:采用启发式教学和探究式教学的方法让学生掌握本节课的内容,并通过讲练结合的方法让学生巩固课堂所学的内容。

教学手段:借助PowerPoint课件整合教材内容,利用几何画板作出动画营造轻松生动的课堂学习氛围。

教学过程:板书设计《基本不等式》教案说明教材:高中数学必修5(人教版)第三章一、教材分析本课内容为普通高中课程标准实验教科书(人教A 版)数学必修5第三章不等式中的3.4 基本不等式。

新课标对该内容的相关要求为:①探索并了解基本不等式的证明过程。

②会用基本不等式解决简单的最大(小)值问题。

基本不等式是不等式证明和应用的重要依据和工具,要进一步了解不等式的性质及运用,研究最值问题,基本不等式是必不可缺的。

本节内容预计为两课时,第一课时侧重于基本不等式的理解及证明;第二课时侧重于基本不等式的应用。

二、教学目的分析本节课是在学生已经系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的。

学生通过之前的学习已经掌握了证明不等式的基本方法,同时初步具备了从实际问题中抽象出不等式并运用数学方法解决实际问题的能力。

高中数学人教A版必修5第三章3.4基本不等式的应用教学设计

高中数学人教A版必修5第三章3.4基本不等式的应用教学设计

教学设计3.4基本不等式的应用(学案)学习目标:灵活掌握基本不等式以及变形,能通过构造和或积为定值求函数的最值一、知识回顾:1.重要不等式成立条件: 变形: 2.基本不等式 成立条件: 变形:二、课前小练:1.的最小值是,则满足若实数b a b a b a +=⋅>>20,02. 的最大值是,则满足若实数b a b a b a ⋅=+>>20,03.的最小值求函数)0(1)(2>+=x xx x f 三、合作探究1:(利用积为定值求最值)例1:最小值。

)求(已知)14(,0,0yx y x y x ++>>变式练习:最小值。

,求且若yx y x y x 110,0,14+>>=+收获:的值。

取得最小值时的最小值,并求出函数求函数、例x x x x x f )1(11)(.2>-+=变式练习:的值。

取得最小值时的最小值,并求出函数时,求函数当x x x x f x 128)(21-+=>收获:,这道题该如何解?改成思考:若将上题中的21合作探究2:(利用和为定值求最值)例3、最大值。

求函数已知)1()(,10x x x f x -=<<变式练习:最大值。

求函数已知)21()(,210x x x f x -=<<收获:课堂小结:课后作业:1、巩固基础:活页1.3.6.7.9.2、能力提高:最大值。

求函数)0(4)().1(2>+=x x xx f 的最小值。

求函数45)().2(22++=x x x f最小值。

,求且若yx y x y x 110,0,24).3(+>>=+那这道题该如何解?的条件改为思考:若将例,013≤≤-x。

高中数学基本不等式教案设计(优秀3篇)

高中数学基本不等式教案设计(优秀3篇)

高中数学基本不等式教案设计(优秀3篇)篇一:高中数学教学设计篇一教学目标1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。

教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。

这两个公式从不同的角度反映数列的特点,下面看一些例子。

(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。

具有这种特点的数列,我们把它叫做等差数。

一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。

若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。

人教A版高中数学必修五《基本不等式》精品教案

人教A版高中数学必修五《基本不等式》精品教案

《基本不等式:》教案《普通高中课程标准实验教科书·数学》必修5(人教A 版)第三章3.4节 一.教学目标①知识与技能目标:学会推导并掌握基本不等式,理解基本不等式的几何意义,并掌握式子中取等号的条件,会用基本不等式解决简单的数学问题。

②过程方法与能力目标:通过类比、直觉、发散等探索性思维的培养,激发学生学习数学的兴趣,进一步培养学生的解题能力,创新能力,勇于探索的精神。

③情感、态度与价值观目标:通过本节的学习,体会数学来源于生活并用于生活,增强学生应用数学的意识,激发学生学习数学的兴趣。

让学生享受学习数学带来的情感体验和成功喜悦。

二.教学重点、难点教学重点:创设代数与几何背景理解基本不等式,并从不同角度探索基本2a b+≤。

教学难点:理解“当且仅当a b =时取“=”号”的数学内涵,基本不等式的简单应用。

三、教学方法与手段本节课采用启发引导,讲练结合,自主探究的互动式教学方法。

以学生为主体,以基本不等式为主线,从实际问题出发,让学生探究思索。

以多媒体作为教学辅助手段,加深学生对基本不等式的理解。

四、教学过程设计设置情景,导入新课1.图中的面积有哪些相等和不等的关系?2.正方形ABCD的面积肯定大于4个直角三角形的面积和吗?有没有相等的情况呢?1.让学生观察常见的图形,目的是调动学生的学习兴趣,让学生感受到数学来源于生活,从而激发他们的学习动机。

2.借助《几何画板》动态演示和数据验算让学生更容易理解“当且仅当a b时取“=”号”的数学内涵,突破一个难点。

教师利用多媒体展示问题情景:1.(投影出)在北京召开的第24届国际数学家大会的会标——风车。

2.让学生直观观察(多媒体动画演示,“当正方形EFGH缩为一个点时,它们的面积相等”。

)自主探究,从而归纳出:“正方形ABCD的面积不小于4个直角三角形的面积和”。

五、板书设计板书设计方面主要板书两个不等式和应用不等式求最值的问题,例题及练习则利用多媒体课件展现,这样有利增加课堂容量,提高课堂效率。

人教版高中必修5(B版)第三章不等式教学设计

人教版高中必修5(B版)第三章不等式教学设计

人教版高中必修5(B版)第三章不等式教学设计一、教学目标本节课主要教授高中数学必修课5(B版)第三章——不等式。

通过本次课程的教学,学生应该能够:•理解不等式的基本概念,掌握不等式的基本性质和解不等式的方法;•能够运用已掌握的知识,解决简单的等式和不等式的应用问题;•能够培养学生的数学思维能力和解决问题的能力。

二、教学重点•不等式的基本概念和性质;•不等式解法;•一元一次不等式和二元一次不等式的解法。

三、教学难点•不等式解法的灵活运用;•二元一次不等式的解法。

四、教学过程4.1 导入1.通过白板或幻灯片展示一组简单的不等式,比如x+4<10,让学生回顾并思考之前学过的等式。

2.引导学生讲述等式和不等式的联系和区别,并引导学生从生活实际中思考不等式的应用。

4.2 讲授1.教师讲解不等式的基本概念和性质,以及不等式解法,引导学生深入理解学习内容。

2.引导学生先从一元一次不等式入手,讲解一元一次不等式的解法,并让学生进行多组练习。

3.引导学生学习二元一次不等式的解法,引导学生重点思考如何用图示法求解。

4.让学生通过练习,掌握不等式解法的具体技巧和应用方法。

4.3 拓展本节课结束后,学生可以自行探索如何用不等式来解决实际问题,例如分部门开支问题、生产效益提升问题等。

4.4 总结1.教师对本节课所学内容进行总结,并提醒学生留意其中易误解的点,引导学生归纳总结学习体会。

2.对于存在误解的同学,教师要及时纠正并逐一解决疑问。

五、课堂互动1.在讲解过程中穿插抛出简单问题,引导学生积极参与答题,加深对知识点的记忆和理解。

对于答对或答错的同学,教师进行不同程度的点评。

2.在教学中多与学生互动交流,让课堂变得更加生动有趣。

例如请学生发表自己的观点、听取学生分享自己的解题心得、讨论解题思路等。

六、板书设计1.不等式的基本概念和性质;2.不等式解法;3.一元一次不等式和二元一次不等式的解法。

七、教学评价本次课程的教学效果通过考试和家庭作业来进行评价,同时可以通过学生反馈、课堂测验和讨论等方式来了解教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《基本不等式》(第一课时)
教材:高中数学必修5(人教版)第三章
教学目标:
★知识与技能:引导学生从问题中发现基本不等式,让学生理解、掌握基本不等式,并能运用它解决一些简单问题;培养他们的探究能力以及分析问题解
决问题的能力。

★过程与方法:1.通过问题情境的设置,使学生认识到数学是从实际中来,培养学生观察、分析、猜想等能力;
2.通过引导学生用多种方法证明推导基本不等式,培养学生的创新思
维和探索精神;
3.通过不等式的应用培养学生的应用意识。

引领学生主动探索基本不
等式性质,体会学习数学规律的方法。

★情感、态度与价值观:在教学中发挥学生学习的主体作用,培养学生勇于探索的精
神,激发他们学习数学的兴趣。

教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式
2b
a a
b +

的证明过程及应用。

教学难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、用基本不等式求最大值和最小值。

教学方法:采用启发式教学和探究式教学的方法让学生掌握本节课的内容,并通过讲练结合的方法让学生巩固课堂所学的内容。

教学手段:借助PowerPoint课件整合教材内容,利用几何画板作出动画营造轻松生动的课堂学习氛围。

教学过程:
板书设计
《基本不等式》教案说明
教材:高中数学必修5(人教版)第三章
一、教材分析
本课内容为普通高中课程标准实验教科书(人教A 版)数学必修5第三章不等式中的3.4 基本不等式。

新课标对该内容的相关要求为:①探索并了解基本不等式的证明过程。

②会用基本不等式解决简单的最大(小)值问题。

基本不等式是不等式证明和应用的重要依据和工具,要进一步了解不等式的性质及运用,研究最值问题,基本不等式是必不可缺的。

本节内容预计为两课时,第一课时侧重于基本不等式的理解及证明;第二课时侧重于基本不等式的应用。

二、教学目的分析
本节课是在学生已经系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的。

学生通过之前的学习已经掌握了证明不等式的基本方法,同时初步具备了从实际问题中抽象出不等式并运用数学方法解决实际问题的能力。

通过设置问题情境,引导学生从问题中发现基本不等式,从而达到提高学生观察分析、抽象归纳等能力的目的。

在充分理解基本不等式及其几何意义后,能应用基本不等式求最值是本节课的教学重点,而基本不等式成立时的三个限制条件是本节课的教学难点。

三、教学过程分析
1、创设情境 引入新课
创设问题情境,让学生利用弦图中相关面积间存在的数量关系,抽象出不等式,激发学生的学习兴趣。

2、新课讲解 探索研究
教师引导学生用作差法证明不等式ab b a 22
2
≥+,让学生通过证明进一步理解不等式。

紧接着引出基本不等式2
b
a a
b +≤
,让学生由课本的提示寻求第二种证明不等式的方法。

用几何画板演示,赋予不等式2
b a ab +≤几何直观。

让学生通过分组讨论,探究基本不等式的几何意义,使学生进一步领悟不等式中等号成立的条件。

3、讲解例题 加深理解
用简单易懂、贴近生活的问题,帮助学生学会应用基本不等式,让学生体会基本不等式是解决最值问题的有力工具。

4、练习巩固
通过练习,帮助学生巩固新知识。

5、课堂小结和作业
通过小结巩固知识技能,提高认知水平。

四、教法分析
本节课采用启发式教学和探究式教学的方法,并通过讲练结合的方法让学生能及时巩固课堂所学的内容。

借助PowerPoint 课件整合教材内容,以及利用几何画板的动画能更好地营造轻松的课堂学习氛围,调动了学生的学习积极性和主动性。

五、评价分析
观察法评价反馈性评价相结合。

关注学生提出问题、参与解决问题的全过程,关注学生的创新精神和实践能力。

相关文档
最新文档