丝杠设计说明书

合集下载

滚珠丝杠设计说明说

滚珠丝杠设计说明说

滚珠丝杠设计说明说滚珠丝杠是一种常用于传递旋转运动和直线运动的机械元件,它通常由螺母、螺杆和滚珠组成。

滚珠丝杠具有高效率、高刚度、高精度、长寿命等优点,广泛应用于工程机械、航空航天、机床等领域。

1.长度选择:滚珠丝杠的长度应根据具体应用场景来确定。

较长的丝杠可以提供较大的行程,但也会增加自振频率和扭转刚度,影响系统的稳定性。

因此,在设计过程中需要综合考虑行程需求和系统稳定性。

2.直径选择:滚珠丝杠的直径决定了其负载能力,直径越大,负载能力越高。

选择直径时需要考虑负载情况和运动速度。

通常,通过计算负载系数和速度系数,可以确定滚珠丝杠的合适直径。

3.螺距选择:螺距是滚珠丝杠的重要参数,它决定了滚珠在一个螺旋周期内所传递的行程。

螺距越大,速度越快,但力矩也会增加。

在选择螺距时,需要综合考虑负载和速度要求。

4.滚珠选择:滚珠的选择直接影响滚珠丝杠的负载能力和精度。

一般来说,滚珠越大,负载能力越高,但精度可能降低;滚珠越小,精度越高,但负载能力降低。

根据具体应用要求,选择适当大小的滚珠。

5.轴承支撑方式:滚珠丝杠需要在两端通过轴承来支撑。

轴承的选择要考虑运动速度、负载和刚度等要求。

一般情况下,可以采用角接触球轴承或推力球轴承来支撑。

6.润滑方式:滚珠丝杠在工作时需要进行润滑以减小摩擦和磨损。

常见的润滑方式有油脂润滑和油润滑。

油脂润滑可以提供良好的密封性和冷却效果,适用于低速轴承;而油润滑适用于高速操作,可以提供更好的冷却和泄漏控制。

7.驱动方式:滚珠丝杠的驱动方式可以采用电动、液压或气动。

电动驱动是最常见和广泛应用的方式,它能够提供精确控制和较高的驱动效率。

液压和气动驱动方式适用于承载大负载和长行程的应用。

滚珠丝杠的设计需要根据具体应用需求来选择合适的参数和材料。

设计人员需要结合机械原理、材料力学、热力学等知识,进行系统分析和计算,确保滚珠丝杠能够满足设计要求,提供可靠的运动传递和精确的位置控制。

此外,在设计过程中还需要考虑制造成本、安装要求和维护方便等因素,并与其他机械元件进行协调和配合,以实现整体设计的一致性和优化。

滚珠丝杠设计说明书

滚珠丝杠设计说明书

广西科技大学机制工艺课程设计(滚珠丝杠)设计说明书学生姓名:刘淮学生学号:20150140702指导教师:唐满专业班级:机械Z135班专业方向:广西科技大学职业技术教育学院二零一六年六月机械制造工艺学课程设计任务书一、设计题目滚珠丝杠的预拉伸结构二、原始资料(1) 滚珠丝杠外径40mm,导程10(2) 双螺母预紧三、上交材料1.CAD制零件图 3张2、设计说明书一份 1套滚珠丝杠预拉伸结构说明书一、用途:该滚珠丝杠可用于车床、铣床等数控铣床使用,定位精度高,制造等级高。

二、重要数据1、规格:滚珠丝杠外径为40mm,导程为10,总长为1407,有效行程为1100mm。

制造材料为45钢,制造等级为研磨级,有较高的接触精度。

2、循环方式:采用弯管是外循环,采用3.5圈X1有效循环圈数,该方式装配简单,使用面广。

3、螺母选用:采用双螺母,法兰盘式连接,方便预紧,预紧方式采用垫片式可调预紧。

螺母内径为65mm,内径为40mm,螺母及法兰盘总长152mm。

4、支撑方式:电机端固定和另一端铰支撑,采用铰接触轴承支撑,轴承型号为7206C,接触为60度,有较好的稳定性,能做到有效支撑。

5、电机连接方式:采用联轴器电机直连方式。

这种连接方式不但方片轻巧,不但能提高传动效率,而且能减少磨损,减少装配所需空间。

6、联轴器的选用:采用最先进的弹性膜片联轴器,冲击载荷小,是现在普遍再用电机直连的一种方式。

7、轴端螺母的选用:采用M30 B级螺母,制造材料为45钢。

三、转配的选用:根据丝杠的材料和外径,导程,选用合理的丝杠形成,达到最佳的配合。

丝杠机械加工工艺设计说明书

丝杠机械加工工艺设计说明书
2
第 1 章 零件的分析
1. 1.1 零件的作用
丝杠是一种精度很高的零件,它能精确地确定工作台坐标位置,将旋转运动 转换成直线运动,面且还要传递一定的动力,所以在精度、强度及耐磨性等方面 都有很高的要求。所以,丝杠的加工从毛坯到成品的每道工序都要周密考虑,以 提高其加工精度。
1.2 零件的结构简介 1.2.1 丝杠的分类
2.3 制订工艺路线
材料 精度等级 工艺过程 9Mn2V 6级 工序内容 1.锻造 2.球化退火 3.车端面打中心孔 4.粗车外圆 5.高温时效 5.牢外圆打中心孔 7.半精车外圆 8.粗磨外圆 9.淬火(t=800℃),中温回 火(t=260℃) 14.研磨两顶尖孔 11.粗磨外圆 12.粗磨出螺纹槽 13.人工时效(t=260℃) 双顶尖孔 双顶尖孔 外圆表面 双顶尖孔 双顶尖孔 外圆表面 双顶尖孔 定位基准
2.1 确定毛坯材料
丝杠材料的选择是保证丝杠质量的关键,一般要求是: (1) 具有优良的加工性能,磨削时不易产生裂纹,能得到良好的表面光洁
度和较小的残余内应力,对刀具磨损作用较小。 (2) 抗拉极限强度一般不低于 588MPa。 (3) 有良好的热处理工艺性,淬透性好,不易淬裂,组织均匀,热处理变形 小,能获得较高的硬度,从而保证丝杠的耐磨性和尺寸的稳定性。 (4) 材料硬度均匀,金相组织符合标准。常用的材料有:不淬硬丝杠常用 T10A, T12A 及 45 等;淬硬丝杠常选用 9Mn2V,CrWMn 等。其中 9Mn2V 有较 好的工艺性和稳定性,但淬透性差,常用于直径≤50mm 的精密丝杠;CrWMn 钢 的优点是热处理后变形小,适用于制作高精度零件,但其容易开裂,磨削工艺性 差。 丝杠的硬度越高越耐磨,但制造时不易磨削。 丝杠材料要有足够的强度, 以保证传递一定的动力;应具有良好的热处理工 艺性(淬透性好、热处理变形小、不易产生裂纹),并能获得较高的硬度、良好的 耐磨性。丝杠螺母材料一般采用 GCrl5、CrWMn、9CrSi、9Mn2V,热处理硬度 为 60~62HRC。整体淬火在热处理和磨削过程中变形较大,工艺性差,应尽可能

调度绞车丝杠排绳毕业设计说明书

调度绞车丝杠排绳毕业设计说明书

自动排绳调度绞车设计摘要调度绞车是矿山生产系统中最常用的机电设备.除主要用于矿井井下及地面装载调度编组矿车、中间巷道中拖运矿车及其它助搬运工作外,在斜巷提升、井口装罐及作翻机动力等方面也得到了广泛的应用。

然而绞车在工作过程中普遍存在的一个问题是钢丝绳在绞车滚筒上缠绕不均,出现咬绳、压绳等现象。

本次所设计的绞车排绳装置结构紧凑,外形尺寸小,能够整机下井;结构为近似对称布置,外形美观;绞车重心低,底座刚性好,运转平稳。

排绳装置的设计原理是导向架沿滚筒轴向往复运动,通常是靠螺杆传动,但在一个行程终了时,螺杆必须反转,要通过极限开关改变螺杆传动轮系结构实现正反转的换向。

但这种机构复杂、可靠性差。

也可设想用两根正反扣螺杆,同向旋转,用分合螺母交替分合,来实现匀速往复运动。

根据这一设想,用一根螺杆同时车出正反扣两道螺纹(为了不乱扣,可以用大螺距螺纹),一个行程终了,螺母自行进入另一道反向螺纹,所以这螺母已不是环形而是叉形,螺杆也可以说是一种多圈数的端面凸轮,即双向丝杠。

本设计中采用了双向丝杠,使排绳装置能够借助自身的动力来实现往复的运动。

关键词:调度绞车;行星减速器;丝杠排绳机构ABSTRCTMine production scheduling winch system is the most commonly used mechanical and electrical equipment . Except mainly for the underground mine and surface mount marshalling carts , hauling carts in the middle of the roadway and other transportation aid work, in Inclined upgrade , canning and wellhead .The design principle is to guide rope means to achieve reversible frame for reciprocating movement along the axial direction of the drum , typically by a screw drive, but in a stroke end , the screw must be reversed to change the structure of the screw through the gear train limit switch .This design uses a dual screw that rope device can be realized by means of its own power reciprocating movement.Keywords : scheduling winch ; planetary reducer ; screw rope agencies目录摘要 (I)ABSTRCT .......................................................................................... I I 1.绪论 (1)1.1 双滚筒绞车运输存在的问题 (1)1.2 设计原则、关键技术及创新点 (2)1.3 国内外排绳机构的研究现状概述 (2)1.4 本课题研究的目的及意义 (4)2. 排绳装置的设计原理及使用绞车概况 (5)2.1 调度绞车的概况 (5)2.1.1 概述 (5)2.1.2 工作原理 (5)2.1.3 经济效益 (6)2.1.4 技术规格 (6)2.2 排绳装置设计原理 (7)3.排绳装置的总体结构设计 (8)3.1 丝杠的设计 (8)3.1.1 螺纹牙形的选择 (9)3.1.2 材料的选用原则 (9)3.1.3 丝杠耐磨性计算 (9)3.1.4 强度验算 (11)3.1.5 丝杠的结构设计 (14)3.2 链传动的设计 (14)3.2.1. 链传动的特点 (14)3.2.2 链传动的类型 (15)3.2.3 链传动的受力分析 (16)3.2.4 滚子链的主要失效形式 (18)3.2.5 链传动的设计计算 (19)3.2.6 滚子链链轮的结构设计 (22)3.3 减速器齿轮的设计 (24)3.3.1 概述 (24)3.3.2 齿轮传动的失效形式 (24)3.3.3 直齿圆柱齿轮的受力分析 (25)3.3.4 齿轮的设计计算 (27)3.4 轴的设计 (33)3.4.1 概述 (33)3.4.2 作用在齿轮上的力 (34)3.4.3 初步确定轴的最小直径 (34)3.4.4 轴的结构设计 (35)3.4.5 求轴上载荷 (37)3.4.6 按弯扭合成应力校核轴的强度 (40)3.5 导轨的设计 (40)3.5.1 概述 (40)3.5.2 滑动导轨的截面形状 (40)3.5.3 导轨的设计计算 (41)3.6 滚动轴承 (43)3.6.1 概述 (43)3.6.2 滚动轴承的类型及其代号 (44)3.6.3 滚动轴承的材质 (45)3.6.4 滚动轴承的失效形式 (46)3.6.5 滚动轴承的选择 (46)3.6.6 滚动轴承的校核计算 (48)3.7 螺纹连接 (49)3.7.1 螺纹连接的特点 (49)3.7.2 螺纹连接的类型 (49)3.8 键连接 (51)3.8.1 键连接的种类及工作原理 (51)3.8.2 键的选择 (52)3.9 轴承端盖 (53)3.10 箱体 (54)3.10.1 概述 (54)3.10.2 箱体壁厚的选择 (55)3.10.3 加强肋选择 (55)3.10.4 孔和凸台的设计 (56)3.10.5 箱体的热处理 (56)4 总结 (57)5 参考文献 (58)6 致谢 (60)7 附录 (61)1.绪论绞车排绳装置是一种利用机构学设计出的纯机械产物,它是一种低速运行、重复操作和自动化较高的设备。

丝杆传动精密机械课程设计说明书新

丝杆传动精密机械课程设计说明书新

精密机械课程设计说明书设计题目丝杆传动学校武汉大学专业测控技术与仪器完成日期2014年9月28日目录第一章概述 (2)1.1课程设计的目的 (2)1.2 设计要求 (3)1.3 注意事项 (4)第二章总体方案设计 (4)2.1工作台的尺寸设计 (5)2.2导轨类型设计 (5)2.3丝杠的选型和校核计算 (5)2.4电机的选择 (5)2.5联轴器和轴承的选择 (5)第三章机械零部件设计 (5)3.1工作台的设计 (5)3.1.1工作台外形尺寸及重量初步估计 (5)3.1.2工作台工作时的运动情况估计............................................. 错误!未定义书签。

3.1.3工作台简图 (5)3.2导轨的设计 (6)3.2.1导轨材料和类型选择 (6)3.2.2导轨额定载荷的预算 (7)3.2.3导轨参数选择 (7)3.2.4滑动导轨的计算 (8)3.3丝杠的的选型和计算 (9)3.3.1 滚珠丝杠使用条件 (9)3.3.2 确定滚珠丝杠副导程 (9)3.3.3 滚珠丝杠轴向负荷计算 (9)3.3.4 滚珠丝杠选型 (10)3.3.5 静安全系数 (11)3.3.6 丝杠轴安装方式和挫曲载荷 (11)3.3.7 丝杠容许转速 (13)3.3.8 校核工作寿命 (14)3.3.9 定位精度计算 (15)3.4 电机选型 (15)3.5 轴承的选择 (16)3.6 联轴器选型 (18)第四章机构润滑 (19)4.1 导轨润滑 (19)4.2 滚动轴承的润滑 (20)4.3 滚珠丝杠润滑 (21)课程设计总结 (22)第一章概述1.1课程设计的目的“精密机械设计基础”课程设计作为实践环节对于整个课程具有非常重要的意义。

学生在这个环节中不仅是完成一项指定任务,更重要的是实际走过一个完整的设计过程。

学生在课程设计中应该定位为设计者。

设计者要进行方案筛选论证,要考虑装配关系,考虑结构工艺性,考虑选材。

滚珠丝杠设计说明书

滚珠丝杠设计说明书

滚珠丝杠设计1、打开程序双击Solidworks2012图标,打开solidworks2012程序。

2、新建文档单击“文件”按钮,选择“新建”。

在出现的对话框中双击选择“单一设计零部件的3D展现”。

3、绘制滚珠丝杠主体柱形1)绘制草图①单击设计树中的“前视基准面”,单击“草图绘制”按钮。

②单击草图绘制工具栏中“圆”,选择“圆心-半径”,在绘图区以给定坐标原点为圆心,任意长度为半径画圆。

③单击草图绘制工具栏中的“智能尺寸”按钮,为所绘制的圆设定直径为48,此时所绘制的圆呈黑色,已经被完全定义。

④单击草图绘制工具栏中的“退出草图”按钮,退出草图。

2)拉伸特征①在设计树中,选中上一步中绘制的“草图1”。

②单击特征工具栏中的“拉伸凸台/基体”按钮,在左侧出现的参数栏中设定D1为80。

单击确定,退出拉伸特征。

4、绘制滚珠丝杠螺纹1)绘制螺旋线①右击上一步中绘制的圆柱体的端面,选择“草图绘制”按钮。

②单击草图绘制工具栏中“转换实体引用”按钮,则端面圆周自动转换成为草图中的实体。

③单击“退出草图”按钮,退出草图。

④单击设计树中刚刚完成的“草图2”,单击“插入”→“曲线”→“螺旋线/涡状线”。

⑤在右侧出现的参数栏中,选择“反向”,设定螺距为10,圈数为5,起始角度0。

⑥单击“确认”按钮,退出螺旋线绘制。

2)绘制切除区端面①单击设计树中的“上视基准面”,单击草图绘制按钮。

按,使正视于草图平面。

②单击草图绘制工具栏中“圆”选择“圆心-半径”,在绘图区以任意点为圆心,任意长为半径,画圆。

③单击草图绘制工具栏中“智能尺寸”按钮,为所绘制的圆添加尺寸,直径为12。

单击“确认”按钮,退出智能尺寸。

④按住Ctrl键,选择上一步所绘制的圆的圆心和螺旋线,在右侧出现的“添加几何关系”中,选择“穿透”,单击“确定”按钮,退出添加几何关系。

⑤单击“退出草图”按钮,退出草图编辑。

3)扫描切除单击特征工具栏中的“扫描切除”按钮,选择“草图4(即在上一步中所绘制的d=12的圆)”为轮廓,选择“螺旋线/涡状线1”为路径。

螺母丝杠电动滑台设计说明书

螺母丝杠电动滑台设计说明书

图一步进电机其具体参数为表一表二2.3螺母丝杠的选择丝杠螺母机构又称螺旋传动机构,它主要用来将旋转运动变换为直线运动或将直线运动变换为旋转运动。

按照摩擦性质还有滑动(摩擦)丝杠螺母机构和滚动(摩擦)丝杠螺母机构之分。

滑动丝杠螺母机构:构造简单、加工方便、制造本钱低、具有自锁功能,但其摩擦阻力矩大、传动效率低(30%-40%)。

滚珠丝杠螺母机构:构造复杂、制造本钱高,无自锁功能,但其最大优点是摩擦阻力矩小、传动效率高(92%-98%)。

因此在本次设计中使用滚珠丝杠螺母。

丝杠螺母机构的传动形式有:〔1〕螺母固定、丝杠转动并移动。

因螺母本身起着支承作用,定,可取轴承之间的距离为400mm.加上轴承安装长度和与联轴器的连接长度,取丝杠的长度为450mm。

2.4联轴器的选择滚珠丝杠与电机连接时中间必须加装联轴器以到达柔性连接。

联轴器是用来联接不同机构中的两根轴(主动轴和从动轴)使之共同旋转以传递扭矩的机械零件。

联轴器由两半局部组成,分别与主动轴和从动轴联接。

联轴器种类繁多,按照被连接两轴的相对位置和位置的变动情况,可以分为:①固定式联轴器;②可移式联轴器。

联轴器有些已经标准化。

选择时先应根据工作要求选定适宜的类型,然后按照轴的直径计算扭矩和转速,再从有关手册中查出适用的型号,最后对某些关键零件作必要的验算。

在本次设计中要使用步进电机作为驱动装置,而步进马达能在低速区域时传达高扭矩,适用于高精度的定位。

为了方便起见本次设计中选用一款挠性联轴器如以下图所示图二联轴器三.机械局部设计机械构造大体为电动机、联轴器、滚珠丝杠副、光杆、滑台等组成。

电动滑台的所有机构需要在一个底座上进展安装。

○1电动机需安装在一电机支撑上,使电动机固定;○2电机支撑需要用内六角圆柱螺钉与底座连接;○3电动机的轴与联轴器的左端连接,联轴器的右端直接与丝杠连接;○4因为联轴器与螺母丝杠副悬空需用一垫块来固定,垫块与底座要用一内六角圆柱螺钉来固定;○5螺母丝杠上有一螺母,螺母稍小需套上一个螺母座,螺母座上装滑台,同时滑台的长度也需要能够覆盖在光杆上,与光杆上的螺母进展连接,方便导向,螺母座与滑台的连接固定也需内六角圆柱螺钉;○6同理在螺母丝杠副的右端也需要一固定端垫块来使其悬空,其与垫块的连接要用内六角圆柱螺钉来连接;○7光杆的安装需与螺母丝杠副的丝杠平行,用支撑单元安装在固定端垫块上来使其与丝杠在同一水平面上。

汤姆森直线产品球丝杆、滚珠丝杆和滚珠丝杠说明书

汤姆森直线产品球丝杆、滚珠丝杆和滚珠丝杠说明书

If proper attention is paid to ball bearing screw selection and installation, virtually no maintenance will be required except for routine lubrication.All Thomson ball screw assemblies are designed for maximum life and trouble-free operation when adequately serviced and maintained. Ball screw disassembly should be attempted only after complying with the general inspection and maintenance instructions outlined in this section. Be positive that the ball screw is at fault. Disassembly should be done only by persons familiar with ball screw assembly principles. In any unusual circumstances, contact Thomson.TroubleshootingMisalignment is one of the most common problems. Evidence of misalignment can generally be detected by one of the following situations:•Squealing noise caused by the balls sliding in one or more of the circuits.•Roughness in the form of vibrations or slightly erratic operation. This can normally be detected by “feel” when placing your hand on the return circuits.•Excessive heat at the ball nut. Any appreciable temperature above the ambient of adjacent components should be considered excessive.Gouging or scoring marks on the ball contact area of the screw may be caused by trapped balls between the circuits, broken balls, broken pick-up fingers or deflectors, or foreign objects which may have been digested by the ball nut.When any of these conditions are encountered, examine the installation and, if necessary, immediately take corrective action to eliminate the cause and prevent further damage.General Inspection of the Screw ShaftInspect the shaft ball grooves for signs of excessive wear, pitting, gouges, corrosion, or brinelling. Normally, where any of these conditions exist on most Thomson Precision units, it may be more economical and advisable to replace the screw shaft. Consult Thomson for evaluation and possible repair of Precision Plus units.BacklashSecure the screw shaft rigidly in a table clamp or similar device. Make sure it cannot rotate. Push firmly on the ball nut, first in one direction, then in the opposite direction. The axial movement of the ball nut is the backlash. This measurement can be taken with a dial indicator. Make sure that neither member rotates while the readings are taken.Backlash with the following limits is considered acceptable:† Values based on wear resulting from foreign material contamination and/or lack of lubrication.If, after inspection, the screw shaft appears to be usable but has excessive backlash, proceed with further disassembly and component inspection.DisassemblyGeneral Instructions: Have a clean container, such as a tote tray or cardboard box, handy for each ball return circuit of the ball nut assembly. A piece of clean cloth should be placed on the work table and gathered around the edge to form a pocket to retain the balls. Place the ball nut assembly over the cloth and remove the clamp. Where more than one guide is held in place by a single clamp, secure each remaining guide with a strip of tape around the diameter of the ball nut to prevent accidental guide removal before you are ready for that circuit.Remove both halves of the guide simultaneously to prevent distortion to either half. Catch all the balls from this circuit on the cloth by rotating the screw or ball nut slowly. Place the removed components into a container. Identify the container, the guide, and the circuit of the ball nut so the components can be reassembled in the same circuit from which they were removed. Repeat for each circuit.General Description Array A Thomson ball screw is a force and motion transfer device belonging to the family of power transmission screws. It replaces sliding friction of the conventional power screw with the rolling friction of bearing balls. The balls circulate in hardened steel races formed by concave helical grooves in the screw and nut. All reactive loads between the screw and nut are carried by the balls which provide the only physical contact between these members.As the screw and the nut rotate relative to each other, the balls are diverted from one end and carried by ball guides to the opposite end of the nut. This recirculation permits unrestricted travel of the nut in relation to the screw.Method I:Ball nuts using a deflector return system are identified by threaded deflector studs extending through holes in the nut and the guide clamp. Lock nuts on the deflector studs are used to secure the clamps that hold the guides in place.Method II:Ball nuts with pick-up fingers are identified by the finger projections integral with the guide. In this method, capscrew fasteners are used to fasten the clamp that holds the guide in place. Pick-up Finger Method:Refer to the Component Inspection section. Deflector Method:To remove the deflectors from the ball nut assembly, remove the ball nut from the screw shaft. The ball nut must be rotated since the deflectors engage loosely in the screw ball grooves and act as a thread. The deflectors now can be removed from the opposite ends of the ball nut so that you can use them forreference during component inspection.Component Inspection and ReplacementBalls: If there is more than one circuit in the ball nut, count the balls in each of the separate containers to be sure each has the same number (within a variation of three balls). Check random samples (about 1/4 of the balls for a circuit) for the following:•True roundness, with a .0001 in. maximum variation.•Signs of scuffing or fish scaling.•More than .0001 in. diameter variation between balls of the same circuit.Where the random sampling shows balls out of round, signs of scuffing or variation of diameter in excess of .0001 in., or short count in any circuit, all balls in the unit must be replaced with a complete set of new balls. Ball kits are available from Thomson.To ensure proper operation and long life of the serviced assembly, it is imperative that the diameters of all the replacement balls do not vary in excess of .00005 in. If Thomson kits are not used for service, make sure the balls meet the above specification. (Note: Use only chrome alloy steel balls, Grade 25 or better. Carburized balls or carbon steel balls will not provide adequate life.) See Ball Chart table.Deflectors:Examine the ends of the deflectors for wear or brinelling. Wear can be determined by comparison with the unused ends of the two outside deflectors. Since these ends have not been subjected to wear from balls, they are in a like-new condition. Where wear or brinelling is evident, it is best to replace the deflectors with new ones. Pick-up Fingers: Inspect the pick-up fingers, which consist of short extensions at the end of the guides. Replace with new guides if a ball brinell impression appears on the tip. Remove any burrs on the fingers. If the guides were distorted during removal, replace with new guides. Ball Nut:Inspect the internal threads of the ball nut for signs of excessive wear, pitting, gouges, corrosion, spalling, or brinelling in the ball groove area. On large ball nuts, running the tip of your finger along the groove which is accessible will enable you to detect a secondary ridge in the ball groove area when wear is excessive or brinelling has occurred. (The extended lead of a mechanical pencil can also be used as a groove probe.) If inspection indicates any of these flaws, the ball nut assembly should be replaced.Wipers:Prolonged use and environmental conditions will generally determine the condition of wipers. After cleaning wipers, reassemble over the screw shaft to determine whether a snug fit is maintained over the complete contour of the screw shaft. Any loose fitting or worn wipers should be replaced. Wiper kits are available for Thomson ball screws.Note: If the assemblies have had extended use, it is recommended that all low cost items be replaced with new parts (i.e., balls, guides, deflectors, clamps). These can be ordered by simply referring to the assembly part number purchased.ReassemblyCleaning: Clean all components with a commercial solvent and dry thoroughly before reassembly.Deflector Method: Where the ball nut is equipped with deflectors, install these and secure temporarily by running the lock nuts down the studs and tightening.General Instructions: Position the ball nut on the screw shaft. Ball nuts with deflectors have to be screwed on. Other ball nuts will slide on. Using dowels with an O.D. approximately equal to the diameter of the balls, center the ball nut grooves with the shaft grooves by inserting dowels into each of the ball nut return circuit holes.Remove the second dowel from one end. With the ball return holes up, fill the circuit with balls from the container corresponding to that circuit. Turning the screw in the ball nut will help to feed the balls into the groove. When the circuit is full, the balls will begin to lift the end dowel from its position. To be sure there are no voids, lightly tap the top bearing ball and see if the end dowel moves.The remaining ball in the container should fit into one of the halves of the return guide with space for about three to six left.Note: There must be some free space in the ball circuit so the balls will roll and not skid. Do not try to add extra balls into the circuit. Place a dab of bearing grease at each end of the half return guide to hold the balls in place. Now, take the other half of the return guide and place it over the half guide you have filled with balls and insert two ends of the ball guide into the respective hole in the ball nut. Seat by tapping gently with a rawhide or plastic mallet.Note: Where more than one ball circuit must be filled in the ball nut, tape the ball return circuit to the ball nut to prevent accidental removal. Repeat the filling procedure for the remaining circuits. With all ball circuits filled and all return guides in place, secure the return guides with the retaining clamp.CAUTION: Care should be taken to ensure that balls are not accidentally trapped between circuits in units having pick-up fingers. In deflector units, the deflectors will fill this space.Inspection: Wrap tape around the ball grooves at the ends of the screw shaft to prevent the ball nut from rolling off. Now inspect the assembly for free movement of the ball nut along the entire stroke. There should be no binding, squeal, or roughness at any point. Reducing Backlash: Backlash can be reduced by replacing all the balls with a larger size. If the diameters of the bearing balls are increased by .001 in., backlash is decreased by .003 in. (Ball kits are available for these applications.)Ball Chart (Grade 25 or Better)240Inspection and Existing Preload Check: Whenever possible, the complete ball screw assembly should be removed from the machine prior to a thorough inspection. Preliminary screw inspection can be made while the unit is still in the machine. Preload can be determined by measuring movement of the nut in respect to the screw shaft. Clamp an indicator to the screw shaft with its probe resting on the face of the nut. Apply a load to the machine carriage in both directions. Be sure that the screw cannot rotate or move axially. Any measurable backlash between the ball nut and screw is an indication that preload does not exist. (See Figure 18.)If no backlash exists, proceed further as outlined to determine whether proper preload remains in the unit. Existing preload, Wp, can be determined by measuring torque, Tp, using the following formula: Wp =Tp.007where:Wp = Preload force, in lb.Tp = Torque, in lb-in. (due to preload only) Note: The above check is to determine preload only, and does not take into account torque due to seal drag or operating load.Torque can be measured by means of a spring scale mounted to any projection on the ball nut or by means of a lever or rod secured to the ball nut. In taking this measurement, be sure the exact lever arm distance is measured. (See Figure 18.) This measurement (inch) multiplied by the scale reading (lb.) equals Tp (torque lb-in.). Existing preload can now be determined using the above formula.Preload adjustment of a Precision ball screw (Figure 18) requires no disassembly. Possible removal of the ball nut from the machine housing may be necessary to expose the adjusting nut. Disassembly: If in doubt about disassembly of preloaded ball nuts, contact Thomson Application Engineering. If the unit is to be disassembled for general repair, follow the steps previously outlined in this section.If being disassembled for preload adjustment, follow the guidelines except remove only one-half of the ball nut assembly to an arbor. If a standard arbor is not available, one can be made from a piece of shafting or tubing with a diameter approximately .005 inch less than the root diameter of the ball grooves in the screw shaft. Both halves of the ball nut will come apart as soon as the last ball in the nut is free of the grooves in the screw shaft. It is not necessary to remove the other half from the screw.Preload Adjustment: The adjusting nut unit in Figure 18 can be adjusted to the desired preload with the use of additional shims. To make further adjustment, loosen the set screw lock located on the periphery of the lock nut. Use a spanner wrench to rotate the adjusting nut to the desired setting. Recheck the preload.For all other standard units in Figure 18, a shim increase of .001 inch will, as a general rule, increase preload by 500 to 1,000 lb. This varies depending upon screw size; therefore, some judgement and trial and error may be necessary before the desired preload is achieved. Preload force, Wp, can be determined by measuring torque, Tp, after the desired preload has been established using the following formula: Tp = .007 x Wpwhere:Tp = torque, lb-in. (due to preload only)Wp = preload force, lb.This section is intended to provide basic necessary information to properly service and maintain Thomson ball screws. Other forms of preloaded units may be encountered which have been designed for particular applications. Please contact Thomson Application Engineering for other specific information.Figure 18。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计计算说明书
1.设计题目
鞭炮插引机
2.动力参数计算由《鞭炮插引 Nhomakorabea运动和力参数》可知鞭炮插引机动力参数:
工作台移动阻力为30N,最大速度为80mm/s;
插引杆摆动阻力矩为60Nm,最大角速度为0.105rad/s;
夹引板滑动阻力为70N,最大速度为25mm/s;
切引刀工作阻力为120N,最大速度为62.5mm/s。
3.齿轮传动,带传送设计计算
齿轮轴直齿轮和槽轮轴齿轮,主动齿轮为齿轮轴直齿轮,从动齿轮为槽轮轴齿轮
中心距a=65,取模数m=2.5∴z1+z2=52
∵传动比=1:1 ∴z1=26,z2=26
取齿宽系数=0.5 ∴b=26
4.键的强度校核
假定载荷在键的工作面上均匀分布,普通平键连接的强度条件为
T= =
由此求出工作台功率为2.4W,插引杆功率为6.28W,夹引板功率为1.75W,切引刀功率为7.5W。
结合鞭炮插引机原理图,查表得出各传动机构效率,求得所需由电机提供的最小功率,如下图示。
查机械课程设计手册选用型号为YS5624的小型异步电动机,该型号电动机功率为90W,效率为58%,满足工作要求。该电机转速为1400r/min,而由《鞭炮插引机运动和力参数》可知插引机各主轴最大转速为30r/min,故需采用减速装置。由于带传动平稳,且有过载保护作用,故置于电动机输出端,取传动比为4。齿轮效率高,结构紧凑,工作可靠,寿命长,传动比稳定,故将其置于带传动之后,采用传动比为5和传动比为7/3的两级齿轮减速。装上此电机后,通过带及两级齿轮减速,将运动和力传至插引机齿轮轴,驱动机器运转。机器工作时,齿轮轴功率为44.27W,连杆轴功率为29.53W,凸轮轴功率为13.11W,槽轮轴功率为10.70W,丝杆功率为9.97W。
∵e=068,


对于球轴承,
查设计手册得,角接触球轴承7304AC的基本额定动载荷C=13.8KN
基本额定寿命

取可靠度为90%∴寿命修正系数
∴ =
6.轴的强度校核
∵同时收到了轴向力和径向力
∴应按弯扭合成强度条件计算
轴的受力图,弯矩图及扭矩图:
∴危险截面在丝杆的中点
经计算得,M=608.75N mm,T=9550N mm
符合强度条件
查表6-2得,45#钢的
(k=0.5h=2.5mm,l=L-b=11mm,d=12mm)
符合强度条件
5.轴承的寿命校核
经计算得, ,

∴ ,
如图所示,可得:

∵轴承为7304AC
∴Fd=0.68Fr

查鞭炮插引机力的参数得
Fae=30N
∴Fa1=Fae+Fd2=32.95N,Fa2=Fd2=2.95N
相关文档
最新文档