平面向量与三角函数
平面向量的数量积和三角函数

平面向量的数量积和三角函数平面向量是代表平面上的有方向的量,数量积是计算两个向量之间的数值关系的运算。
而三角函数是用于描述角度的函数,可以与平面向量的数量积相结合,提供更多的几何和数学应用。
本文将详细讨论平面向量的数量积和与三角函数的关系。
一、平面向量的数量积平面向量的数量积又称为点积或内积,其定义为两个向量的模的乘积与它们夹角的余弦值之积。
假设有两个平面向量A and A,其数量积表示为A·A。
计算公式如下:A·A = |A||A|cos A其中,|A|和|A|分别表示向量A和A的模,A表示两个向量的夹角。
数量积的计算结果是一个实数,而不是向量。
它描述了两个向量之间的数量关系,包括它们的方向是否一致或相反,以及大小上的关系。
数量积还可以用于计算向量的夹角、判断两个向量是否垂直等。
二、平面向量的数量积与三角函数的关系平面向量的数量积与三角函数之间存在密切的关系。
通过数量积的计算结果,可以得到有关角度的信息,而这些角度可以用三角函数来表示。
1. 夹角的余弦值数量积的公式中涉及到的cos A可以通过三角函数来表示。
在直角三角形中,夹角的余弦值定义为对边与斜边之比。
若两个向量的数量积为A·A = |A||A|cos A,可以推导出:cos A = A·A / (|A||A|)这就是夹角余弦的定义式。
通过计算数量积的值,我们可以得到夹角的余弦值,并利用三角函数的反函数来计算角度的具体数值。
2. 利用数量积计算角度利用数量积的定义式A·A = |A||A|cos A,我们可以将其改写为:cos A = (A·A) / (|A||A|)通过计算数量积和模的数值,再利用反余弦函数(arccos)即可计算出角度A的具体数值。
3. 应用示例假设有两个向量A = (3, 4) and A = (5, 2),我们可以计算它们的数量积为:A·A = (3)(5) + (4)(2) = 15 + 8 = 23接下来,我们可以通过数量积的定义计算它们夹角的余弦值:cos A = (23) / (|A||A|)|A| = √(3^2 + 4^2) = √(9 + 16) = √25 = 5|A| = √(5^2 + 2^2) = √(25 + 4) = √29将数值代入公式中,可以得到:cos A = (23) / (5)(√29) ≈ 0.995最后,计算角度A的具体数值:A = arccos(0.995) ≈ 5.74°通过平面向量的数量积以及夹角的计算,我们可以得到两个向量之间的夹角,并利用三角函数的相关知识进行角度的计算。
高考数学备考攻略平面向量与三角函数的综合应用

高考数学备考攻略平面向量与三角函数的综合应用高考数学备考攻略:平面向量与三角函数的综合应用在高考数学中,平面向量与三角函数是两个重要的概念和工具。
它们在各种数学问题中都有广泛的应用,特别是在几何和三角函数的综合题目中。
本文将介绍一些关于平面向量与三角函数的综合应用。
希望通过这些攻略,能够帮助大家在高考中更好地理解和应用这些知识点。
一、平面向量的几何应用平面向量的几何应用主要体现在它们的加法、减法、数量积、向量积等运算上。
下面将介绍其中的一些典型应用。
1. 平面向量的加法平面向量的加法可以用来解决平面上的位移问题。
例如,在平面直角坐标系中,有一个点A(2,3),以向量a(1,2)为位移,求终点B的坐标。
我们可以通过向量加法得到:B = A + a = (2,3) + (1,2) = (3,5)通过这个简单的例子,我们可以看到,平面向量的加法可以用来求解平面上的位移问题,这在几何中有着重要的应用。
2. 平面向量的数量积平面向量的数量积可以用来解决两个向量之间的夹角问题。
例如,已知两个向量a(3,4)和b(5,12),求它们的夹角θ。
我们可以通过向量的数量积求解:a·b = |a||b|cosθ其中,“·”表示向量的数量积,|a|和|b|分别表示向量的模,θ表示夹角。
根据给定的向量值代入公式计算,可以得到θ≈0.68弧度。
3. 平面向量的向量积平面向量的向量积可以用来解决平行四边形的面积、三角形的有向面积问题。
例如,在平面直角坐标系中,已知两个向量a(2,3)和b(4,1),求平行四边形的面积。
我们可以通过向量的向量积求解:S = |a×b|其中,“×”表示向量的向量积,|a×b|为向量的模。
根据给定的向量值代入公式计算,可以得到平行四边形的面积为2。
二、三角函数的综合应用三角函数是数学中的一个重要分支,在高考数学中占有很大的比重。
下面将介绍一些关于三角函数综合应用的例子。
三角函数与平面向量的关系

三角函数与平面向量的关系在数学中,三角函数和平面向量是两个重要的概念和工具。
三角函数是研究角度和边长之间的关系的函数,而平面向量则是研究平面上各种物理量的大小和方向的工具。
本文将探讨三角函数与平面向量之间的联系和应用。
一、向量的定义和表示在平面几何中,向量是一个既有大小又有方向的量。
其表示可以使用箭头或者字母加上帽子来表示,例如向量AB可以表示为→AB或者ẑ。
向量的大小又称为向量的模,表示为|→AB|或者|ẑ|,可以通过勾股定理计算得到。
向量的方向可以使用角度来描述,例如与x轴的夹角θ。
二、平面向量的加法和减法平面向量的加法可以理解为几何上的向量相加。
假设有向量→AB和→AC,可以通过将它们放置在同一个起点,然后连接起来得到一个新的向量→AD,即向量→AD是→AB与→AC相加的结果。
平面向量的减法则是利用减法公式进行计算。
三、向量的数量积和点积平面向量的数量积(或点积)是两个向量的乘积,其结果是一个标量。
向量的数量积可以用下式计算:→AB⋅→AC=|→AB||→AC|cosθ,其中θ为向量→AB与→AC之间的夹角。
向量的数量积具有交换律和分配律等性质,可以用于计算两个向量的夹角、判断两个向量是否垂直、以及求解平面上的投影等问题。
四、三角函数的定义和性质三角函数是描述角度和边长之间关系的函数。
在直角三角形中,正弦函数定义为对边与斜边的比值,余弦函数定义为邻边与斜边的比值,正切函数定义为对边与邻边的比值。
它们可以用著名的SOH-CAH-TOA记忆法来帮助理解和应用。
此外,割函数、余割函数和正割函数等也是常见的三角函数。
五、三角函数与平面向量的关系三角函数与平面向量有着密切的关系,可以通过向量的数量积来推导和解释三角函数的性质。
例如,在直角三角形中,可以利用对边与斜边的比值得到正弦函数的定义,并通过向量→AB⋅→AC=|→AB||→AC|cosθ来得到正弦函数与向量的关系。
类似地,可以利用邻边与斜边的比值和向量的点积来推导余弦函数的定义,并得到余弦函数与向量的关系。
平面向量与三角函数的关系

平面向量与三角函数的关系在数学中,平面向量和三角函数是两个重要的概念,它们之间存在着紧密的关联。
平面向量主要用来表示空间中的方向和大小,而三角函数则描述了角度和长度之间的关系。
本文将探讨平面向量与三角函数之间的关系,并介绍其在数学和物理中的应用。
一、平面向量的表示与性质平面向量可以用有序的数对表示,其中第一个数表示向量在x轴上的分量,第二个数表示向量在y轴上的分量。
例如,向量a可以表示为(a1, a2),其中a1为x轴分量,a2为y轴分量。
平面向量有以下性质:1. 向量的模:向量的模表示向量的大小,可以通过勾股定理计算得到。
对于向量a(a1, a2),它的模可以表示为|a| = √(a1² + a2²)。
2. 向量的方向角:向量的方向角表示向量与x轴正方向的夹角。
根据三角函数的定义,可以得到向量的方向角θ = arctan(a2 / a1)。
3. 向量的单位向量:单位向量是模为1的向量,可以表示为a/|a|。
单位向量的方向与原向量相同,但大小为1。
二、三角函数的定义与性质三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)等。
它们的定义如下:1. 正弦函数:在直角三角形中,正弦函数表示对边与斜边的比值。
正弦函数的定义域为实数集,值域在[-1, 1]之间。
2. 余弦函数:在直角三角形中,余弦函数表示邻边与斜边的比值。
余弦函数的定义域为实数集,值域在[-1, 1]之间。
3. 正切函数:在直角三角形中,正切函数表示对边与邻边的比值。
正切函数的定义域为实数集,值域为全体实数。
三、平面向量与三角函数之间存在着一种重要的关系,即向量的模可以与其方向角的三角函数相关联。
具体而言,对于向量a(a1, a2),有以下关系:1. a的模与sinθ的关系:|a| = √(a1² + a2²) = √[(|a1|^2 + |a2|^2) * (sin²θ + cos²θ)] = √(sin²θ + cos²θ) * √(|a1|^2 + |a2|^2) = √(|a1|^2 + |a2|^2)2. a的模与cosθ的关系:|a| = √(a1² + a2²) = √[(|a1|^2 + |a2|^2) * (sin²θ + cos²θ)] = √(sin²θ + cos²θ) * √(|a1|^2 + |a2|^2) = √(|a1|^2 + |a2|^2)3. a的模与tanθ的关系:|a| = √(a1² + a2²) = √[(|a1|^2 + |a2|^2) * (sin²θ + cos²θ)] = √(sin²θ + cos²θ) * √(|a1|^2 + |a2|^2) = √(|a1|^2 + |a2|^2)由上述关系可知,向量的模与其方向角的三角函数之间存在着简洁的关系,通过利用这些关系,我们可以在计算中更加方便地处理向量的模和角度。
平面向量与三角函数的综合计算与应用解析与归纳

平面向量与三角函数的综合计算与应用解析与归纳引言:平面向量作为数学中的重要概念之一,与三角函数有着密切的联系。
通过对平面向量与三角函数的综合运用,我们可以解决各种实际问题,并深入理解它们在数学中的应用。
本文将通过计算、解析和归纳的方式,探讨平面向量与三角函数的综合应用。
一、平面向量与三角函数的基本关系在开始讨论平面向量与三角函数的综合计算与应用之前,我们先来回顾一下它们之间的基本关系。
1. 平面向量的表示平面向量可以用有序数对表示,一个二维向量A可以表示为A = (a, b),其中a为向量在x轴上的分量,b为向量在y轴上的分量。
同时,向量A也可以表示为矩阵形式:A = [a, b]2. 平面向量的运算平面向量可以进行加法和数量乘法运算。
加法运算即将两个向量的对应分量相加,例如A + B = (a1 + b1, a2 + b2),其中A = (a1, a2),B = (b1, b2)。
数量乘法即向量的每一个分量都乘以相同的数,例如kA = (ka1, ka2),其中k为任意实数。
3. 三角函数的定义三角函数是常用的数学函数,由直角三角形的边长比定义。
其中,正弦函数s inθ的定义为:sinθ = 长边/斜边,余弦函数cosθ的定义为:cosθ = 邻边/斜边,正切函数tanθ的定义为:tanθ = 长边/邻边。
二、平面向量与三角函数的综合计算与应用在了解了平面向量与三角函数的基本关系后,我们可以通过综合计算与应用来加深对它们的理解。
1. 平面向量与三角函数之间的关系根据平面向量的定义和三角函数的定义,我们可以得出以下结论:对于任意角θ,设与角θ 相对的边向量为A,斜边向量为B,则有:A = [sinθ, cosθ]B = [sinθ, cosθ]2. 平面向量的模与方向平面向量的模表示向量的长度,可以通过勾股定理来计算。
对于向量A = (a, b),其模记为|A|,计算公式为:|A| = √(a^2 + b^2)向量的方向可以用角度来表示,可以通过以下公式计算:θ = arctan(b/a)3. 平面向量的点积与叉积平面向量的点积和叉积是平面向量运算中的两个重要概念。
平面向量与三角函数的_碰撞_

( A ) 等边三角形 ( sinx - cosx, ( B) 直角三角形 ( C) 等腰非等边三角形 ( D ) 三边均不相等的三角形 解: 由 ( → → → AC AB + ) BC = 0可知 , 由 → → | AB | | AC |
→ → 与 AB, A C 同向的单位向量 , 构成的平行四边形 的对角线与 BC 垂直, 则可推出 → AB 三角形 . 由 → | AB | 60 , 所以 ABC 为等腰 BAC = → AC 1 = , 可知 → 2 | AC |
= 1 + 2sin ( 2x + 由 1 + 2sin ( 2x + 得 sin ( 2x + 因为 所以 所以 2x + 3 2 6 x 2x + =3 6
) = 1- 3 , 3 . 2
6
) =3 ,
图象如图 1 所示, 则平移 后的图象所对应函数的解析式是 ( ( A ) y = sin ( x + ( B ) y = sin (x ( C ) y = sin ( 2x + ( D ) y = sin ( 2x 6 6 ) ) ) )
7 3 ( + ) = , 所以 12 6 2 ( C ).
→ 评析: 将三角函数的图象按向量 a = ( , 0 ) 平移, 要注意平移的方向性 , 一般地 , 当 22 <
数理化学习 ( 高中版 ) → → → → ( b + c ), 其中向量 a = ( sinx, - cosx ), b → = ( sinx, - 3cosx ), c = ( - co sx, sinx ), x R . (Ⅰ ) 求函数 f ( x ) 的最大值和最小正周期 ; → ( Ⅱ ) 将函数 y = f ( x ) 的图象按向量 d 平移 , 使平移后 得到的图象关于坐标原点成中心对 → 称 , 求长度最小的 d . 解 : (Ⅰ ) 由题意得 → → → f( x ) = a ( b + c ) = ( sinx, - co sx ) sinx - 3co sx ) = sin x - 2sinx co sx + 3co s x = 2 + co s2x - sin2x 3 ). = 2 + 2sin ( 2x + 4 所以, f ( x ) 的最大值为 2 + 2 , 最小正周期 是 2 = 2 . 3 ) = 0得 4
平面向量与三角函数的关系

平面向量与三角函数的关系平面向量是数学中一个重要的概念,而三角函数则是数学中不可或缺的工具。
本文将探讨平面向量与三角函数之间的关系,揭示它们在数学和物理问题中的应用。
一、平面向量的定义与表示方法平面向量是指具有大小和方向的量,通常用箭头表示。
一个平面向量可以由两个有序实数构成,分别表示向量在水平方向和垂直方向的分量。
常用的表示方法有坐标表示法和向量代数表示法。
二、平面向量的加减运算平面向量的加法和减法运算可以理解为将向量按照箭头首尾相接的方式进行连接或相减。
具体计算时,将向量的坐标分量相加或相减即可。
三、平面向量的数量积平面向量的数量积又称为点积或内积,用符号"·"表示。
数量积的结果是一个实数,表示两个向量的夹角的余弦值与向量的模的乘积。
数量积的计算公式为:A·B = |A||B|cosθ,其中A和B分别为平面向量,θ为它们的夹角。
四、平面向量的叉积平面向量的叉积又称为向量积或外积,用符号"×"表示。
叉积的结果是一个向量,垂直于原来两个向量所在的平面,并满足右手定则。
叉积的计算公式为:A×B = |A||B|sinθn,其中A和B分别为平面向量,θ为它们的夹角,n为垂直于二维平面的单位向量。
五、三角函数的定义与性质三角函数是以三角形的边长比值来定义的。
常见的三角函数有正弦函数、余弦函数和正切函数等。
它们的定义与性质如下:1. 正弦函数:sinθ = 对边/斜边;2. 余弦函数:cosθ = 邻边/斜边;3. 正切函数:tanθ = 对边/邻边;4. 三角函数的周期性和奇偶性等性质。
六、平面向量与三角函数的关系平面向量与三角函数之间存在着密切的关系。
具体来说,平面向量A的模可以表示为:|A| = √(x² + y²),其中(x, y)为向量的坐标分量。
而三角函数中的正弦函数和余弦函数也是以二维平面上的点的坐标为基础来定义的。
三角函数与平面向量的综合应用

ʏ山东省威海市第二中学丛丽伟三角函数与平面向量之间的交汇与综合问题,一直是高考数学试卷中比较常见的一类热点问题,通过平面向量的工具性加以转化问题,结合三角函数中的概念及相应公式加以恒等变换,有时涉及正㊁余弦定理等相关知识,用来综合考查三角函数的基础知识㊁基本公式㊁基本技能与基本应用等㊂一㊁三角函数的求值与平面向量的综合以平面向量为载体,利用诱导公式㊁同角三角函数关系式㊁两角和与差的三角函数及倍角公式等解决三角函数中的求值问题,是高考的重要考向,考查同学们分析问题㊁解决问题的能力㊂例1已知向量m=(s i n x,3c o s x),n=(s i n x,s i n x),函数f(x)=m㊃n㊂(1)求fπ12的值;(2)当xɪ0,π2时,求函数f(x)的最大值与最小值㊂分析:(1)根据题设条件,利用平面向量的数量积公式,通过数量积的坐标运算来构建函数f(x)的解析式,把x=π12代入即可;(2)利用题设中x的取值范围所对应角的取值范围,结合三角函数的图像与性质来确定三角函数在给定区间上的最大值与最小值㊂解:(1)依题意可得f(x)=m㊃n=(s i n x,3c o s x)㊃(s i n x,s i n x)=s i n2x+3c o s x s i n x=1-c o s2x2+32s i n2x=32s i n2x-12c o s2x+12=s i n2x-π6+12,故fπ12=s i n2ˑπ12-π6+12=12㊂(2)当xɪ0,π2时,有2x-π6ɪ-π6,5π6㊂故当2x-π6=π2,即x=π3时,f(x)m a x=s i nπ2+12=1+12=32;当2x-π6=-π6,即x=0时,f(x)m i n=s i n-π6+12=-12+12=0㊂规律方法:平面向量在三角函数求值中的应用步骤:(1)利用平面向量的基本性质㊁运算公式㊁数量积等构建对应的三角函数关系式,特别是涉及向量的平行与垂直关系等;(2)利用三角恒等变换公式,以及题设条件中的角的取值限制等,通过三角函数的图像与性质来分析与求解㊂二㊁三角函数的性质与平面向量的综合以平面向量的坐标运算为载体,引入三角函数,通过三角恒等变换化为一个角的三角函数,重点考查三角函数的单调性㊁周期性㊁最值㊁取值范围及三角函数的图像变换等㊂例2已知向量m=(s i n x,-1),n=c o s x,32,函数f(x)=(m+n)㊃m㊂(1)求函数f(x)的最小正周期及单调递增区间;(2)当xɪ0,π2时,求函数f(x)的值域;(3)将函数f(x)的图像左移3π8个单位32解题篇创新题追根溯源高考数学2024年1月长度后得函数g (x )的图像,求函数g (x )在-π3,π3上的最大值㊂分析:(1)根据题设条件,通过向量的坐标运算及数量积公式,构建三角函数f (x )的解析式,并通过三角恒等变换转化为正弦型函数,进而求解对应的基本性质;(2)结合题设条件中角的取值范围,通过三角函数的图像与性质来确定函数的最值,进而得以确定函数f (x )的值域;(3)利用三角函数图像的平移变换可得函数g (x )的解析式,进而利用三角函数的图像与性质来求解最大值问题㊂解:(1)由已知可得f (x )=(m +n )㊃m =s i n x +c o s x ,12㊃(s i n x ,-1)=s i n 2x +s i n x c o s x -12=12s i n 2x -12c o s 2x =22s i n 2x -π4㊂故f (x )的最小正周期T =2π2=π㊂由2k π-π2ɤ2x -π4ɤ2k π+π2,k ɪZ ,可得k π-π8ɤx ɤk π+3π8,k ɪZ ,所以函数f (x )的单调递增区间是k π-π8,k π+3π8(k ɪZ )㊂(2)当x ɪ0,π2时,有2x -π4ɪ-π4,3π4 ,故-22ɤs i n 2x -π4 ɤ1,所以-12ɤ22s i n 2x -π4ɤ22㊂所以当x ɪ0,π2 时,函数f (x )的值域为-12,22㊂(3)根据题意可得函数g (x )=22s i n 2x +3π8-π4 =22s i n 2x +π2=22c o s 2x ㊂当x ɪ-π3,π3时,有2x ɪ-2π3,2π3㊂所以当2x =0,即x =0时,g (x )m a x =22c o s 0=22㊂规律方法:平面向量与三角函数的基本性质的综合问题的解法:(1)利用向量的相关概念㊁公式等构建相应的三角函数解析式;(2)利用三角恒等变换公式等将相应的三角函数关系式转化为正弦型(或余弦型)函数;(3)根据三角函数的图像与性质来研究相关函数的基本性质问题㊂三、平面向量在三角形计算中的应用以平面向量的线性运算㊁数量积为载体,考查三角形中正㊁余弦定理的应用,以及简单的三角恒等变换,主要解决三角形中的边㊁角及面积等问题㊂例3 在әA B C中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知s i n C =2s i n (B +C )㊃c o s B ㊂(1)判断әA B C 的形状;(2)设向量m =(a +c ,b ),n =(b +a ,c -a ),若m ʊn ,求A ㊂分析:(1)利用三角形的内角和公式A +B +C =π转化角后,结合题设条件进行消元处理,进而得到涉及角A ,B 的基本关系,结合三角函数值及三角形的性质来分析与判断;(2)利用两平面向量平行的关系,结合向量的坐标加以转化与应用,合理构建三角形中边与角的关系式,进而利用余弦定理加以分析与求解㊂解:(1)在әA B C 中,因为s i n C =s i n (A +B ),s i n A =s i n (B +C ),所以s i n C=s i n (A +B )=2s i n (B +C )c o s B =2s i n A c o s B ,所以s i n A c o s B +c o s A s i n B=2s i n A c o s B ,即s i n A c o s B -c o s A s i n B =0,即s i n (A -B )=0㊂又因为-π<A -B <π,所以A -B =0,即A =B ,故әA B C 为等腰三角形㊂(2)由m ʊn 得(a +c )(c -a )=b (b +a ),展开整理得b 2+a 2-c 2=-a b ,所以c o s C =a 2+b 2-c 22a b =-12㊂42 解题篇 创新题追根溯源 高考数学 2024年1月因为0<C<π,所以C=2π3㊂又A=B,故A+B=π3,所以A=π6㊂规律方法:平面向量与三角形计算综合问题的解法:(1)借助平面向量的基本概念㊁基本公式等,往往可以合理构建三角函数关系式,为利用解三角形来处理问题奠定基础;(2)合理综合解三角形㊁三角函数及平面向量的相关知识加以合理转化与巧妙应用㊂特别地,在解决三角形中的向量夹角问题时需注意向量的方向㊂四㊁三角函数㊁平面向量与其他知识的综合应用以平面向量为问题场景,通过坐标公式㊁数量积公式等变形,转化为相应的三角函数问题,综合函数与方程㊁不等式等其他相关知识来分析与综合,也是高考中比较常见的一类综合应用问题㊂例4设向量a=(4s i n x,c o s x-s i n x),b=s i n2π+2x4,c o s x+s i n x,函数f(x)=a㊃b㊂(1)求函数f(x)的解析式;(2)已知常数ω>0,若y=f(ωx)在-π2,2π3上是增函数,求ω的取值范围;(3)设集合A=xπ6ɤxɤ2π3,B= {x||f(x)-m|<2},若A⊆B,求实数m的取值范围㊂分析:(1)利用向量的数量积把三角函数关系式加以转化,即可得到函数f(x)= 2s i n x+1;(2)根据三角函数在给定区间上的单调性,通过不等式组的求解来确定参数的取值范围;(3)结合绝对值不等式的求解㊁集合的包含关系㊁三角关系式的最值,以及三角函数的图像与性质来加以直观转化与求解㊂解:(1)因为a=(4s i n x,c o s x-s i n x), b=s i n2π+2x4,c o s x+s i n x,所以函数f(x)=a㊃b=4s i n xˑs i n2π+2x4+(c o s x-s i n x)ˑ(c o s x+s i n x)= 4s i n x㊃1-c o sπ2+x2+c o s2x= 2s i n x(1+s i n x)+1-2s i n2x=2s i n x+1㊂(2)由于f(ωx)=2s i nωx+1,由2kπ-π2ɤωxɤ2kπ+π2,kɪZ,可得函数y= f(ωx)的增区间是2kπω-π2ω,2kπω+π2ω,kɪZ㊂又因为y=f(ωx)在区间-π2,2π3上是增函数,所以-π2,2π3⊆-π2ω,π2ω,即-π2ωɤ-π2,2π3ɤπ2ω,解得0<ωɤ34㊂所以ω的取值范围为0,34㊂(3)由|f(x)-m|<2解得-2<m-f(x)<2,即f(x)-2<m<f(x)+2㊂因为A⊆B,所以当π6ɤxɤ2π3时,不等式f(x)-2<m<f(x)+2恒成立㊂所以[f(x)-2]m a x<m<[f(x)+2]m i n,即[f(x)]m a x-2<m<[f(x)]m i n+2㊂因为f(x)=2s i n x+1,所以在π6,2π3上,[f(x)]m a x=fπ2=3, [f(x)]m i n=fπ6=2,所以1<m<4㊂故实数m的取值范围为(1,4)㊂规律方法:本题巧妙地把平面向量㊁三角函数㊁集合㊁不等式等相关知识加以交汇,以平面向量为问题背景,通过平面向量的数量积为媒介,结合三角函数的图像与性质来考查数学基本知识点,得以达到提高数学品质与提升数学能力的目的㊂注意高考中三角函数与平面向量的交汇综合问题往往以平面向量的相关概念与数量积等来建立相应的三角函数关系式,结合三角函数的基本公式与三角恒等变换公式㊁解三角形公式等来综合考查,一般难度中等,真正达到考查能力,注意应用的目的㊂(责任编辑王福华)52解题篇创新题追根溯源高考数学2024年1月。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
45 ( 4) 53 ( 3)
5
5
25
B
A
向量的数量积的运算,向量的夹角与三角形的内角的联 系,一定要注意“方向”.
考点展示
2、在 ABC 中,已知向量 AB 与AC 满足( AB AC ) BC 0
| AB | | AC |
且 AB AC 1
| AB | | AC | 2
外心,求 AO AC, AO BC 的值.
分析:如图,
A
AO AC | AO || AC | cos OAC
R AC AC
2R
C
2
即 AO AC 2,
·O
B
D
变式演练
分析(2):如图,
A
AO BC ( AM MO) BC
·O
AM BC
C
·P
AD BC DO BC
1 (AC ABD·
C
2
中点
| AC |2 | AB |2
6 2
若P为BC中垂线上任意 一点, 则 AP·BC ?
向量中点公式.
变式演练
在ABC 中,AB 3, BC 7, AC 2, 若 O 为ABC的
,则
ABC的形状是__等__边__三_ 角形
单位向量
C
分析:设 AM AB , AN AC 则 AP BC
| AB | | AC |
N
P
又 AP MN BC ∥MN AB AC
由 AB AC 1 得 BAC A
M
B
| AB | | AC | 2
3
向量的基本运算(平行四边形法则)及几何意义.
4、以“平面向量”进行包装,考查三角形中的相关问题.
考点展示 1、已知点 A, B,C满足 AB 3,BC 4,CA 5 ,则
AB BC BC CA CA AB 的值是_-_2_5____ C 分析:AB BC BC CA CA AB 方向
| BC || CA | cos( C) | CA || AB | cos( A)
第二轮复习专题
主讲人:付福新
:
平面向量与三角函数
1
考点分析
2
考点展示
3
考点巩固
4
小结
考点分析
高频考点
1、平面向量的概念、线性运算及坐标运算.这是平面向量 的基础内容
2、平面向量的数量积、平行与垂直,这是平面向量的重 要内容 3、正弦定理、余弦定理及其应用. 考生要牢固掌握并能 熟练的应用于解斜三角形的相关问题.
R2 cos 2C R2 cos 2B R 2 (1 2 sin 2 C) R 2 (1 2 sin 2 B)
2R2 sin 2 B 2R2 sin 2 C
圆心角与 圆周角
| AC |2 | AB |2 2
5 2
正弦定理
平面向量与三角函数
小结:
一 个 中 心 : 数量积 两个基本点: 落脚点
①利用向量的运算 如:平行四边形法则; 建系,数量积运算等 ②利用三角函数性质充分变形运算
巩固练习
1、已知 OA a, OB b,且 | a || b | 2, AOB 60,则| a b | 2 3 ;
a b与 b 的夹角为______
2、设平面上有A、B四、C、D个互异的点
考点展示
3、设 P 是 ABC 内部一点,且 AP 2 AB 1 AC 则 ABP与
55
ABC 的面积之比为___1_:_5___
C
分析:如图 AEPF 则
4
AF 1 , SABP 1 .
F 1
CA 5 SABC 5 A
E
PM
N
B
如图:建立空间直角坐标系,
则设 A(0,0), B(a,0),C(b,c) y
,已知
(DB DC 2DA) (AB AC) 0 则ABC的形状一定是_______
主讲人:付福新
AP ( 2 a 1 b, 1 c) 5 55
1
SABP
c 5
1 .
A
SABC c 5
方法二
C (b, c)
P
Bx
(a, 0)
建立平面直角坐标------行之有效的手段
例题剖析
已知点 O为 ABC 的外心,且 AC 4, AB 2 ,则
AO BC 6
A
分析:AO BC ( AD DO) BC
·
M
B
AO BC 5
2
1
(AC AB) (AC AB)
2
1 (| AC |2 | AB |2 ) 2
5 2
即
方向
A
分析:如图,(方法二)
AO BC AO (BO OC)
C
AO BO AO OC
·O
B
| AO || BO | cos AOB | AO || OC | cos( AOC)