线性代数复习题

合集下载

线性代数 复习题

线性代数 复习题

第一章 行列式1.4 独立作业1.4.1 基础训练1.设ij a D =为n 阶行列式,则11342312n n n a a a a a - 在行列式中的符号为( ) . (A) 正 (B) 负 (C) 1)1(--n (D) 2)1()1(--n n2.行列式n D 为0的充分条件是( ).(A) 零元素的个数大于n; (B) n D 中各行元素的和为零; (C) 次对角线上元素全为零; (D) 主对角线上元素全为零. 3.行列式n D 不为零,利用行列式的性质对n D 进行变换后,行列式的值( ). (A) 保持不变; (B) 可以变成任何值; (C) 保持不为零; (D)保持相同的正负号.4.方程0881441221111132=--x xx 的根为 ( ).(A) 1,2,2- (B)1,2,3 (C)1,1-,2 (D)0,1,25.如果4333231232221131211==a a a a a a a a a D ,则=------=3332333123222321131213111434343a a a a a a a a a a a a D ( ). (A)-12 (B)12 (C)48 (D)-486.行列式=9092709262514251( ).7.abba log 11log = ( ).8.行列式cb dc a bcb a, 则=++312111A A A ( ).9.函数xx xxx f 121312)(-=中,3x 的系数为( ). 10.4444333322225432154321543215432111111= ( ).11.49362516362516925169416941, 12.0000000x yy x y x x y D =13.20001200000013012000101--=D , 14.xyz zx yyz x111 15.520003520003520035200035, 16.44342414433323134232221241312111y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ++++++++++++++++17.nn n n a a a a a a b b b b b 13221132100000000-----,(其中),,2,1(,0n i a i =≠) 18.nx x x D0100101111021= (),,2,1,0n i x i =≠19.43211111111111111111x x x x ++++, 20.n222232222222221 21.211121112=n D .22.当μ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=--+-=-+-=-++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ有非零解?23.证明αααααααsin )1sin(cos 211cos 200000cos 210001cos 210001cos 2+=n(其中0sin ≠α).1.4.2 提高练习1.设A 为n 阶方阵,*A 为A 的伴随矩阵,则*A A 为( )(A) 2A (B) 12-n A (C) nA 2 (D) nA2.设A 为n 阶方阵,B 为m 阶方阵,=00AB ( ).(A)BA - (B)BA (C)B A mn )1(- (D) BA n m +-)1(3.若xx x x xx g 171341073221)(----=,则2x 的系数为( ).(A) 29 (B) 38 (C) —22 (D) 344.347534453542333322212223212---------------=x x x xx x x x x x x x x x x x g(x),则方程=)(x g 0的根的个数为( ). (A)1 (B)2 (C)3 (D)45.当≠a ( )时,方程组⎪⎩⎪⎨⎧=+-=++=+02020z y ax z ax x z ax 只有零解.(A)-1 (B) 0 (C) -2 (D) 26.排列n r r r r 321可经过( )次对换后变为排列121r r r r n n n --. 7.四阶行列式中带负号且含有因子12a 和21a 的项为( ).8.设y x ,为实数,则当=x ( ),=y ( )时,01100=---x yy x. 9.设A 为4阶方阵,B 为5阶方阵,且,2,2-==B A 则 =-A B ( ),=-B A ( ).10.设A ,B 为n 阶方阵,且,2,3-==B A 则 =-1*3B A ( ).11.设A 为3阶正交矩阵,0>A ,若73=+B A ,则=+T AB E 21( ). 12.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=653042001A ,则=+-12A E ( ).13.解方程组011112222212112=nnn nnnn b b b b b b b b b x x x,其中n b b b b ,,,,321 为各不相同的常数.14.证明:)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a dx d nn n n n n =∑=n i nn n n in i i n x a x a x a x a dx dx a dx d x a dxd x a x a x a 1212111211)()()()()()()()()(15.设xx x x x x x g 620321)(332=,求)(x g '.16.设17131231533111)(85222------=x x x x x x x g ,试证:存在)1,0(∈ξ,使得0)(='ξg .17.证明:奇数阶反对称矩阵的行列式为零. 18.设z y x ,,是互异的实数,证明:0111333=z y x z y x 的充要条件是0=++z y x . 19.设4322321143113151-=A ,计算44434241A A A A +++的值,其中)4,3,2,1(4=i A i 是A 的代数余子式.20.利用克莱默法则求解方程组⎪⎩⎪⎨⎧=+-=+-=-+3232222321321321x x x x x x x x x .21.求极限111cos sin 3212sin 1231lim230x x x x x x x →.第一章 参考答案1.4 独立作业 1.4.1 基础训练1. (C) 2. (B) 3. (C) 4.(A) 5. (B) 6.解=⨯==17092142512000200070922000425190927092625142515682000.7.0 , 8. 解 0111312111==++cb c acb A A A ,故答案为09.解 因为在此行列式的展开式中,含有3x 的只有主对角线上的元素的积,故答案为2- 10.解 由范德蒙行列式得行列式的值为28811.解0222222229753169411311971197597531694149362516362516925169416941===.12.解 xy xy x x x y y y x y xyy x y x x y D 0000000000000000--==22222)(y x xyy x xxyy x y --=-=13.解 013120101420000013012001012200012000000130012000101-⨯-=-⨯-=--=D2031124313120014=--⨯-=--⨯-=14.解 yz x z x y x z y xz x y z x y yz x xyzzx y yz x----=------=11))(()(0)(01111=))()((x z z y y x ---15.解 52000352000352000350000335200035200035200035200032520003520003520035200035+==52003520035200353252000352000352000350000332000032000032000320000325+=+== 66516.解1413121414131213141312121413121144342414433323134232221241312111y y y y y y y x y y y y y y y x y y y y y y y x y y y y y y y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ---+---+---+---+=++++++++++++++++=017.解132111322113210000000000)1(0000000-+------⨯-=---=n n n n n n n n a a a a b a a a a a a b b b b b D=--⨯+----12221122100000n n n n n a a a a a b b b b a==+- 121n n n n nD a a b a a a )(121∑=ni ii n a b a a a18.解 由第i (n i ,,2,1 =)列的ix 1-倍加到第一列上去.nni inx x x x x x x D000000111101001001111021121∑=-===)1(121∑=-ni in x x x x19.解43211114321100100111111111111111111x x x x x x x x x x x ---+=++++432111413121100000001x x x x x x x x x x x x x ---++++==3214214314324321x x x x x x x x x x x x x x x x ++++20.解 2020012000200021222232222222221--=n n202012002--=n=)!2(2--n21.解 211121111)1(211121111*********+=+++==n n n n D n111011001)1(+=+=n n22.解 由齐次线性方程组有非零解的条件可知0111213142=------μμμ解之得μ=0,2,3. 于是当μ=0,2,3时,齐次方程组⎪⎩⎪⎨⎧=--+-=-+-=-++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ有非零解.23.证明 (1)当1=n 时,结论显然成立, (2)假设当k n ≤时,结论成立, (3)当1+=k n 时11cos 210001cos 200000cos 210001cos 210001cos 2++=k k D αααααk k D ααααcos 2100010000cos 210001cos 2100001)1(cos 23-+=ααααααααααsin )2sin(sin sin sin sin cos 2sin )1sin(cos 21+=-=-+=-k k k D k k ααsin ]1)1sin[(++=k 故结论成立. 1.4.2 提高练习1.B , 2.C , 3.D , 4.B , 5.D, 6.2)1(-n n , 7.44332112a a a a 8.0, 0, 9.32, 64 , 10.2312--n , 11.277, 12.613.提示:用范德蒙行列式将行列式展开求解,答案为i b x =,(n i ,,2,1 =), 14.(用行列式的定义和导数的运算法则)证明))()()()1(()()()()()()()()()(11)(12122221112112211x a x a x a dx dx a x a x a x a x a x a x a x a x a dx d n n p p p p p p t nn n n n n ∑-==))())(()()()1((111)(12211x a x a dx d x a x an i n p p p p p p p t∑-=∑=ni nn n n in i i n x a x a x a x a dx d x a dx d x a dxd x a x a x a 1212111211)()()()()()()()()(15.利用(14)的结论进行计算便可得结果,答案为62x .16.(用罗尔中值定理证)证明 (1)显然)(x g 是多项式,故)(x g 在]1,0[上连续,在)1,0(内可导,且0)1()0(==g g ,从而由罗尔中值定理知,存在)1,0(∈ξ,使得0)(='ξg . 17.用行列式的性质3的推论(同济四版)18.证明 333333333333001111xz xy x z x y x z x y x x z x y xz y x z y x----=----=0))()()((11))((2222=++---=++++--=z y x y z x z x y x xz z x xy y x z x y由于z y x ,,是互异的实数,故要使上式成立,当且仅当0=++z y x .19.解 61111321143113151********=-=+++A A A A , 20. 11=x ,22=x ,33=x21.解 (用罗必塔法则求解)111000132120012300001112310011sin cos 3212sin 1230230cos 11231lim111cos sin 3212sin 1231lim2230230=+=-+=→→x x x x x x x x x x x x x x x x x。

线性代数期末复习题

线性代数期末复习题

线性代数期末复习题《线性代数》综合复习题⼀、单项选择题:1、若三阶⾏列式D 的第三⾏的元素依次为1、2、3,它们的余⼦式分别为4、2、1,则D =()(A)-3 (B) 3 (C) -11 (D) 112、设123,,ααα是三阶⽅阵A 的列向量组,且齐次线性⽅程组AX =O 仅有零解,则()(A) 1α可由23,αα线性表⽰ (B) 2α可由13,αα线性表⽰ (C) 3α可由12,αα线性表⽰ (D) 以上说法都不对3、设A 为n(n ≥2)阶⽅阵,且A 的⾏列式|A |=a ≠0,A *为A 的伴随矩阵,则| 3A * | 等于()(A) 3n a (B) 3a n -1(C) 3n a n -1 (D) 3a n4、设A =333231232221131211a a aa a a a a a , B =????? ??+++133311311232232122131112a a a a a a a a a a a a ,????? ??=1000010101P ,????=1010100012P ,则有()(A) B AP P =12 (B) B AP P =21 (C) B A P P =21 (D) B A P P =12 5、设A 是正交矩阵,则下列结论错误..的是() (A) |A |2必为1 (B) |A |必为1 (C) A -1=A T (D) A 的⾏向量组是正交单位向量组 6、设A 是n 阶⽅阵,且O E A A =+-232,则()(A) 1和2必是A 的特征值 (B) 若,2E A ≠则E A =(C) 若,E A ≠则E A 2= (D) 若1不是A 的特征值,则E A 2=7、设矩阵210120001A ??=,矩阵B 满⾜2ABA BA E **=+,其中E 为三阶单位矩阵,A *为A 的伴随矩阵,则B = (A )13;(B )19;(C )14;(D )13。

线性代数复习题

线性代数复习题

,
2 )T 3
,= α 2
(
2 3
,
1 3
,

2 )T 3
,α=3
( 2 , − 2 , 1)T 是 R3 的一组标准正 3 33
交基,则向量 β = (1,1,1)T 在这组基下的坐标为
.
28.设矩阵 A 的特征多项式 λE − A = (λ + 1)(λ + 5)(λ + 7) ,则 A−1 = __ _ .
A.
r
(α1
,
α
2
,
,
α
r)≥
r(β1,
β
2
,
,
βs )
B. r ≥ s
C. r(α1,α2 ,,αr)≤ r(β1, β2 ,, βs )
D. r ≤ s
14.设α1 , α2 是非齐次线性方程组 AX = b 的两个解,则下列仍为线性方程组 AX = b 的解的

).
A. α1 + α2 B. α1 − α2
3.
已知向量组 α1
=
−421,α
2
=
3 1 2

3
=
−5 3 6
,
α
4
=
−2 2 0

5
=
−8611,
.求向量组的秩
和一个极大线性无关组;将其余向量用所求的极大线性无关组线性表示.
x1 + x2 + x3 + x4 + x5 = a
4.
已知线性方程组
3x1
+2 x2
− 1
1
β1 = 1 , β 2 = 1 ,则 AX = b 的全部解可表示为

线性代数(本科)总复习题

线性代数(本科)总复习题

《线性代数》(本科)总复习题一、单项选择题1.矩阵运算AB 有意义是T B A +有意义的 。

(A)充分条件 (B)必要条件 (C)充要条件 (D)无关条件2.设同阶方阵C B A ,,满足AC AB =,则必有 。

(A)0=A 或C B =(B)0=A 且C B = (C)0=A 或C B = (D)0=A 且C B = 3.设B A ,为同阶可逆矩阵,则下列等式中一定成立的是 。

(A)()T T T B A AB = (B)()***B A AB = (C)()111−−−=B A AB (D)B A AB =4.设A 为n 阶可逆矩阵,且n 为奇数,则下列等式中未必成立的是 。

(A)()T T A A −=− (B)()**A A −=− (C)()11−−−=−A A (D)A A −=−5.设方阵A 满足O A =2,则必有 。

(A)O A = (B)O AA T = (C)O AA =* (D)O A A T =*6.设矩阵B A ,满足I AB =,则 。

(A)I B A T T = (B)I BA = (C)I A B T T = (D)都不对7.设方阵A 满足A A =2,则 。

(A)O A = (B)I A = (C)O A =或I A = (D)都不对8.设方阵A 可逆,且BA AB =,则下列等式未必成立的是 。

(A)22BA B A = (B)T T BA B A = (C)11−−=BA B A (D)**BA B A =9.设向量组s ααα,,,21L 可由向量组t βββ,,,21L 线性表示,且()121,,,r r s =αααL ,()221,,,r r t =βββL ,()32121,,,,,,,r r t s =βββαααL L ,则 。

(A)321r r r =< (B)321r r r =≤ (C)321r r r <= (D)321r r r ≤=10.设n m ×齐次线性方程组O AX =仅有零解,则 。

线性代数复习题部分参考答案

线性代数复习题部分参考答案

线性代数复习题部分参考答案线性代数试题(一) 一、填空题(每小题4分)1.行列式4100031000210001的值 242.设a b 为实数,则当a= 0 且b= 0 时,10100--a b b a =03.10111111)(-=x x f 中,x 的一次项系数是 -1 4.已知矩阵A 3×2 B 2×3 C 3×3,则B A ⋅为 3 × 3 矩阵 5.A 为n 阶方阵,且d A =,则A K ⋅=d K n ⋅ 二、选择题(4分/题) 1.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3.用一初等矩阵左乘一矩阵B ,等于对B 施行相应的 ① 变换 ①行变换 ②列变换 ③既不是行变换也不是列变换4.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④25.向量组r ααα⋅⋅⋅21线性无关的充要条件是 ②①向量组中不含0向量 ②向量组的秩等于它所含向量的个数 ③向量组中任意r -1个向量无关 ④向量组中存在一个向量,它不能由其余向量表出 6.向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t7.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②设解 ③只有0解 ④有非0解8.当K= ④ 时,(2. 1. 0. 3)与(1. -1. 1. K )的内积为2 ①-1 ②1 ③23 ④329.已知A 2=A ,则A 的特征值是 ③①λ=0 ②λ=1 ③λ=0或=λ1 ④λ=0和λ=110.1111111111111111b a a +-+的值为 ④ ①1 ②0 ③a ④-a 2b线性代数试题(二)一、填空题(4分/题)1.行列式21064153247308021的值为 0 2.二次型yz xy z y x yz x f 222)(2221-+-+=对应的实对称矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---110121011 3.10110111)(--=x x f 中x 的一次项系数是 -14.已知A 为3×3矩阵,且A =3,则A 2= 24二、选择题(4分/题) 1.下列各式中 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3. 向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t4.齐次线性方程组Ax=0是Ax=B 的导出组则①Ax=0只有零解,Ax=B 有唯一解 ②Ax=0有非零解,Ax=B 有无穷多解 ③U 是Ax=0的通解,X0是Ax=B 的一个解,则X0+U 是Ax=B 的通解 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα线性代数试题(三) 一、填空题(4分/题)1.向量)1.0.0.1(=α )0.1.1.0(-=β,则2βα+= (2. 1. -1. 2)2.设aER bER ,则当a= 0 ,b= 0 时10100b a a b -=03.10111111)(-=x x f 中,x 的一次项系数是 1 4.已知A 为3×3矩阵,且1=A ,则A 2= 85.已知A3×3 B3×2 C2×4,则矩阵A.B.C 为 3 × 4 矩阵6.用一初等矩阵右乘矩阵C ,等价于对C 施行 初等列变换7.向量组γααα⋅⋅⋅21.可由向量组s βββ⋅⋅⋅21线性表示且γααα⋅⋅⋅21.线性无关则 s ≤γ 8.如果线性方程组Ax=B 有解则必有)(A γ=)~(A γ9.行列式1111141111311112的值为 6 10.当K= 2 时(1. 0. 0. 1)与(a. 1. 5. 3)的内积为5 二、选择题(4分/题)1.已知矩阵满足A 2=3A ,则A 的特征值是 ③ ①λ=1 ②λ=0 ③λ=3或λ=0 ④λ=3和λ=02.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②没解 ③只有零解 ④有非0解3.矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④2 4.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②D 中对角线上元素全为0 ③D 中有两行含有相同的公因子 ④D 中有一行元素与另一行元素对应成比例 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα三、复习题及参考答案1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 12 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=⎽⎽⎽⎽1⎽⎽⎽。

线性代数复习题含答案

线性代数复习题含答案

(C )a +a ,a +a ,a +a (D )a −a ,a −a ,a −a
1 2 2 3 3 1 1 2 2 3 3 1
分析:(A )含有0 的向量组一定线性相关,0 +0a2 +0a3 0 ;
分析:∵A 的特征值是 1,2,−3 .
∴ A −E 0 , A −2E 0 , A +3E 0 .
∴ (A )A −E ,(D )A −2E ,(C )A +3E 不可逆.
二. 填空题
1. 已知a31a21a13a5k a44 是 5 阶行列式中的一项且带正号,则i 5 ,k 2 .
⎪ 21 1 22 2 2n n 2


n n−1 n−2 2 1 n n−1 n−2 2 1
共交换了n −2 次;……;r 与r 交换,共交换了 1 次.
2 1
( )
(A )D D (B )D =−D (C )D =−1 2 D (D )D =−1 D
(C )一定无解 (D )不能确定是否有解
分析:系数行列式D 0 =⇒R A <n ,方程组无解或无穷多解
( )
( ) ( )
) 1 ( ) 1
⎛a11 a12 a13 ⎞
2 1 2 1 2 ( ) 1 2 ( ) 1
分析:r 依次与r ,r ,,r ,r 交换,共交换了n −1次(r 移到第 1 行);r 依次与r ,,r ,r 交换,
1 2 3
----------------------- Page 2-----------------------
(A )0,a ,a (B )a ,2a ,a

线代复习题

线代复习题

线代复习题
1. 矩阵的基本概念
- 定义矩阵及其元素
- 矩阵的阶数
- 矩阵的表示方法
2. 矩阵的运算
- 矩阵的加法和减法
- 矩阵的数乘
- 矩阵的乘法
- 矩阵的转置
- 矩阵的逆
3. 特殊矩阵
- 零矩阵
- 单位矩阵
- 对角矩阵
- 斜对角矩阵
- 正交矩阵
4. 行列式
- 行列式的定义
- 行列式的计算方法
- 行列式的性质
5. 线性方程组
- 线性方程组的表示
- 高斯消元法
- 线性方程组的解的存在性
- 齐次线性方程组的解
6. 向量空间
- 向量空间的定义
- 基和维数
- 向量的线性组合
- 向量的线性相关性
7. 特征值和特征向量
- 特征值和特征向量的定义
- 特征值和特征向量的计算方法 - 特征多项式
8. 二次型
- 二次型的定义
- 二次型的矩阵表示
- 正定二次型
9. 线性变换
- 线性变换的定义
- 线性变换的矩阵表示
- 线性变换的性质
10. 矩阵分解
- 矩阵的对角化
- 矩阵的谱分解
- 矩阵的QR分解
11. 应用题
- 利用矩阵解决实际问题
- 矩阵在不同领域的应用案例分析
请根据以上复习题进行复习,确保掌握线性代数的基本概念和运算法则。

大学线性代数复习题(48课时)

大学线性代数复习题(48课时)

一(1).选择题1. 设A ,B 为n 阶矩阵,则必有( )A.222()2+=++A B A AB BB.22()()+-=-A B A B A B C.()()()()-+=+-A E A E A E A E D.222()=AB A B 2.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是( )(A) 若A 的列向量组线性无关,则0=Ax 有非零解;(B) 若A 的行向量组线性无关,则0=Ax 有非零解;(C) 若A 的行向量组线性相关,则0=Ax 有非零解(D) 若A 的列向量组线性相关,则0=Ax 有非零解;3.若齐次线性方程组⎪⎩⎪⎨⎧=++=-+=+-0002321321321x x kx x kx x x x x 有非零解,则k 必须满足( )。

(A )4=k (B )1-=k (C )1-≠k 且4≠k (D )1-=k 或4=k4.若存在可逆矩阵C ,使1B C AC -=,则A 与B( )(A) 相等 (B) 相似 (C) 合同 (D) 可交换5. 向量组r ααα,,,21 线性相关且秩为s ,则( )(A )s r = (B) s r ≤ (C) r s ≤ (D) r s <6.矩阵A 与B 相似的充分条件是( )。

(A )B A = (B ))()(B r A r =(C )A 与B 有相同的特征多项式(D )n 阶矩阵A 与B 有相同的特征值且n 个特征值互不相同。

一(2).选择题1. 设A ,B 为n 阶矩阵,则必有( )A.222()2+=++A B A AB BB.22()()+-=-A B A B A B C.()()()()-+=+-A E A E A E A E D.222()=AB A B 2、设有n 维向量组(Ⅰ):12,,,r ααα和(Ⅱ):12,,,()m m r ααα>,则( ).(A) 向量组(Ⅰ)线性无关时,向量组(Ⅱ)线性无关;(B) 向量组(Ⅰ)线性相关时,向量组(Ⅱ)线性相关;(C) 向量组(Ⅱ)线性相关时,向量组(Ⅰ)线性相关;(D) 向量组(Ⅱ)线性无关时,向量组(Ⅰ)线性相关.3.设A 是n 阶矩阵,O 是n 阶零矩阵,且A 2-E =O ,则必有( )A. A =EB. A =-E C . A =A -1 D .|A |=14.已知向量组()()()2,5,4,0,0,,0,2,1,1,2,1321--==-=αααt 的秩为2,则=t ( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若干公式
|A*|=|A|n-1, A*=A-1
|AT|=|A|
|lA|=ln|A|,AX=b 有解, AX=b 有唯一解
基本问题
lCh1计算行列式, 求逆矩阵,求解矩阵方程.
lCh2判断线性相关性, 求秩, 求最大无关组
lCh2解线性方程组(齐次的和非齐次的)
lCh3向量组的正交化
lCh4求特征值和特征向量
lCh4矩阵的对角化
lCh5二次型的正交标准化
lCh5二次型正定性的判断
一、 Ch1计算行列式
1.13 计算下列行列式
(2)
二、求逆矩阵
1.7利用初等行变换求下列矩阵的逆矩阵:
(1)
(2)求解X:;
三、 Ch2判断线性相关性
2.1 讨论下列向量组的线性相关性
(3)
四、 Ch2求秩, 求最大无关组
2.2 求下列矩阵的秩
(3)
补充: 最大无关组有
五、 Ch2解线性方程组(齐次的)
2.3 求解下列齐次线性方程组
(1) ;
(1) 对方程组的系数矩阵作行初等变换
得简化行阶梯形(Reduced row echelon form, RREF). 对应的同解方程组为,
方程组的解为
.
六、 Ch2解线性方程组(非齐次的)
2.5 求下列非齐次线性方程组的通解
(1)
对方程组的增广矩阵作行初等变换, 将之化为简化行阶梯形
立刻得到方程组的解
七、 Ch3向量组的正交化
3.5设试用施密特正交化方法把这组向量正交规范化.
正交化:
单位化:
八、 Ch4求特征值和特征向量
4.1求下列矩阵的特征值和特征向量
(3)
(3)解特征方程
得特征值.
对于特征值, 解齐次线性方程组. 其系数矩阵
,
可见特征向量为.
对于特征值, .
可见特征向量为(不全为0).
九、 Ch4矩阵的对角化
4.10将下列矩阵对角化, 并求, 使(为对角阵)
(1)
解特征方程
得特征值.
对于,, 得特征向量. 选.
对于,, 得特征向量 (k2, k3不全为0). 选..
令, 则有.
十、 Ch5二次型的正交标准化
5.3 用正交变换化下列二次型为标准形
(2)
二次型的矩阵为. 解特征方程
,
得的特征值,,.
对于特征值, , 取特征向量.
对于特征值, . 取特征向量.
对于特征值, . 取特征向量.
是正交的. 令
,
则是正交的. 作正交变换, 则给出的二次型化为标准形
.
十一、Ch5二次型正定性的判断
5.7判别下列二次型的正定性:
(1)
(2)
(1)二次型的矩阵的各阶主子式依次为
.
故二次型是负定的.
(2) 二次型的矩阵的各阶主子式依次为
.
故二次型是正定的.
若干联系
向量组构成矩阵
线性组合
向量能由向量组线性表示Û有解Û
向量组线性相关Û有非零解Û(=向量个数=未知数个数)
基础解系含个解向量.
部分定理
定理2.1若线性无关, 而线性相关. 则可以由线性表示.
定理2.2()线性相关的充要条件是至少有一个向量是其余向量的线性组合.
定理2.3m个行向量线性相关的充要条件是
定理2.4矩阵A的秩等于r的充要条件是A中有r个行向量线性无关,但任意r+1个行向量(如果存在)都线性相关。

定理2.5 设有向量组T,如果
(1)在T中有r个向量线性无关。

(2)T中任意一个向量都可以由向量组线性表示。

则是向量组T的一个最大无关组。

定理2.6齐次线性方程组(2.10),当其系数矩阵的秩时,只有唯一的零解;当时,有无穷多个解。

引理2.1设向量组可由向量组线性表示.如果,则线性相关.
定理2.7非齐次线性方程组(2.16)有解的充要条件是,他的系数矩阵的秩与增广矩阵的秩相等。

定理2.8把非齐次线性方程组(2.16)的某个特解加到对应的齐次线性方程组(2.1)的每一个解向量上,就得到(2.16)的全部解向量。

基础解系含有n-r个解向量。

定理3.1对任意n 维向量χ和y ,恒有∣∣
定理3.2若n维向量组是正交向量组,则线性无关。

定理3.3设n维向量组线性无关,令
=
=-
=--
=---…-
则得到的是正交向量组,且与等价。

上述定理3.3从线性无关组导出正交向量组的过程称为施密特(Schmidt)正交化过程。

它不仅满足与等价,还满足:对任何,向量组与等价。

定理3.4(1)方阵A是正交矩阵充分必要条件为A的列向量组是标准正交向量组。

(2)方阵A是正交矩阵的充分必要条件为A的行向量组是标准正交向量组。

定理3.5正交变换不改变向量的内积,从而不改变向量的模、夹角和距离。

定理4.1阶方阵A与它的转置矩阵A-T有相同的特征值。

定理4.2 设阶方阵A 有互不相同的特征值,(λiE –A)χ= 0的基础解系为。


;;……;线性无关。

定理4.3设n阶方阵A = ( a ij ) 的特征值为λ1 ,λ2 ,… ,λn ,则有
(1)λ1 +λ2 + … +λn = a11 + a22 + … + an n (4.9)
(2) λ1λ2 …λn = | A| (4.10)
定理4.4设A为n阶方阵,(A) = a0E + a1A + am Am ,若λ为A的特征值,则(λ) = a0 +
a1λ+… + am λm是(A)的特征值。

定理4.5 若n阶方阵A与B相似,则它们具有相同的特征多项式和特征值。

定理4.6 n阶矩阵A与n阶对角阵
相似的充分必要条件是A有n个线性无关的特征向量。

P89定理4.6 阶矩阵与阶对角阵相似的充分必要条件是有个线性无关的特征向量.
P90定理4.6推论4.2 若阶矩阵有个相异的特征值, 则与对角阵相似.
P88性质4.2 若阶方阵与相似, 则(1), (2).
推论4.2 若n阶矩阵A有n个相异的特征值,则A与对角阵相似。

定理4.7n阶矩阵A与对角矩阵相似的充分必要条件是对于每一个重特征值对应着个线性无关的特征向量(证明略)。

定理4.8 实对称矩阵的特征值为实数。

定理4.9 设λ1、λ2是对称矩阵A的两个特征值,P1、P2是对应的特征向量。

若λ1≠λ2,则P1与P2正交。

定理4.10若λi是实对称矩阵A的k重特征值,则存在k个属于λi的线性无关的特征向量(证明略)。

定理4.11设A为n阶实对称矩阵,则必有正交矩阵P,使
P -1AP = =
其中λ1,λ2,…, λn 是A的特征值。

定理5.1 任给可逆矩阵C,令B=CTAC,如果A为对称矩阵,则B亦为对称矩阵,且
R(B)=R(A)
定理5.2任给二次型f()=TA,总有正交变换=Py,使f化为标准形
f=λ1y12+λ2y22+…+λnyn2
其中为A的所有特征值。

定理5.3二次型f=TA可通过可逆线性变换 =Py化为标准形
f=c1y12+c2y22+…+cryr2且 r=R(A)
(ci≠0,i=1,2, …,r; r称为f的惯性指标)
定理5.4 (Sylvester定理)二次型f=TA通过可逆线性变换化成标准形后,系数为正的平方项的个数(称为二次型f或矩阵A的惯性指标)不变。

定理5.5 实二次型f=TA为正定的的充分必要条件是:它的标准形的n个系数全为正。

定理5.6若A是n阶实对称矩阵,则下列命题等价:
(1)TA是正定二次型(或A是正定矩阵);
(2)A的正惯性指标为n。

(3)存在可逆阵P,使得A=PTP
(4)A的n个特征值全大于零。

定理5.7(1)对称矩阵A正定的充分必要条件是,A的各阶主子式都为正,即
>0,>0, …, >0
(2)对称矩阵A负定的充分必要条件是:奇数阶主子式为负,偶数阶主子式为正。


>0 , (r=1,2, …,n)
这个定理称为霍尔维茨定理,这里不予证明。

Matlab部分函数名的义源
线性代数部分词汇英汉对照。

相关文档
最新文档