初中数学二次函数的简单应用
二次函数的应用

二次函数的应用题型一 几何型【例1】如图,等腰直角三角形ABC 的直角边与正方形DEFG 的边长均为2,AC 与DE 在同一直线上,开始时C 与D 重合,ABC 沿这条直线向右平移,直到A 与E 重合为止.设CD 的长为x ,ABC 与正方形DEFG 重合部分的面积为y ,则y 与x 之间的函数关系的图象大致是( )A B C D【例2】如图,在ABC 中,90,12,24B AB mm BC mm ∠===,动点P 从点A 开始沿边AB 向B 以2/mm s 的速度移动(不与点B 重合),点Q 从点B 开始沿边BC 向C 以4/mm s 的速度移动(不与点C 重合).如果,P Q 分别从,A B 同时出发,那么经过 秒,四边形APQC 的面积最小.【例3】如图,在矩形ABCD 中,()0,8AB m m BC =>=,E 为线段BC 上的动点(不与,B C 重合).连结DE ,作EF DE ⊥,EF 与射线BA 交于点F ,设,CE x BF y ==. (1)求y 关于x 的函数关系式;(2)若8m =,求x 为何值时,y 的值最大,最大值是多少? (3)若12y m=,要使DEF 为等腰三角形,m 的值应为多少?【例4】小张要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米,矩形ABCD 的面积为S 平方米. (1)求S 与x 之间的函数关系式;(2)当x 为何值时,S 有最大值?并求出最大值.题型二 图象型【例5】从地面竖立向上抛出一个小球,小球的高度h 与小球运动时间t 之间的关系式为2305h t t =-,那么小球从抛出至回落到地面所需要的时间是 .【例6】某种火箭竖直向上发射时,它的高度()h m 与时间()t s 的关系可以用公式2515010h t t =-++表示,则经过______s ,火箭达到它的最高点.【例7】如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.【例8】如图,人工喷泉有一个竖直的喷水枪AB ,喷水口A 距地面2米,喷水水流的轨迹是抛物线,如果要求水流的最高点P 到喷水枪AB 所在直线的距离为1米,且水流着地点C 距离水枪底部B 的距离为2.5米,那么水流的最高点距离地面是多少米?APDCB【例9】如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C 距守门员多少米?(3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?【例10】如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA 与水平方向OC 的夹角为30,83OA 米. (1)求出点A 的坐标及直线OA 的解析式; (2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点 .MA DC B Oyx421题型三 实际型【例11】儿童商场购进一批M 型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M 型服装开展促销活动,每件在8折的基础上再降价x 元销售,已知每天销售数量y (件)与降价x (元)之间的函数关系式为()2040y x x =+>. (1)求M 型服装的进价;(2)求促销期间每天销售M 型服装所获得的利润的最大值.【例12】随着南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,如图①所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图②所示(利润与投资量的单位:万元).(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(2)若这位园林专业户投资8万元种植花卉和树木,他至少获得多少利润?至多获得多少利润?。
人教版九年级上册数学课件:二次函数的应用

a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y=ax2+bx+c (1)a确定抛物线的开口方向:
y
•(0,c)
0
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
(小)值,这个最大(小)值是多少?
(6)x为何值时,y<0?x为何值时,y>0?
解:(6)
y
由图象可知
当-3 < x < 1时,y < 0 当x< -3或x>1时,y > 0
•(-3,0) • • (-1,-2)
•(1,0) x
0
•(0,-3–) 2
人教版九年级上册数学课件:二次函 数的应 用
人教版九年级上册数学课件:二次函 数的应 用
(6)x为何值时,y<0?x为何值时,y>0?
解 :(4)由对称性可知
y
MA=MB=√22+22=2√2
• • AB=|x1-x2|=4
A(-3,0) D B(1,0) x
∴ ΔMAB的周长=2MA+AB
0
=2 √2×2+4=4 √2+4 Δ=M—12 A×B4面×积2==4—12AB×MD
3
• •C(0,-2–) • M(-1,-2)
人教版九年级上册数学课件:二次函 数的应 用
2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)

热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。
此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。
只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。
考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。
1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。
初中数学《二次函数的应用》教案

初中数学《二次函数的应用》教案2.3二次函数的应用教学目标设计1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。
能力训练要求1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。
2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。
情感与价值观要求1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。
2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。
教学方法设计由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。
为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
教学过程导学提纲设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。
从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
九下数学课件利用二次函数解决实际问题中的最值问题(课件)

【归纳总结】
最大值问题的一般步骤:
(1)利用应用题中已知条件和学过有关数学公式列出关系数;
(2)把关系式转化为二次函数的关系式;
(3)求二次函数的最大值或最小值.
知识点一 根据文字语言解决问题
【变式1】某工厂2019年产品的产量为100吨,该产品产量的年平均增长
率为x(x>0),设2021年该产品的产量为y吨,则y关于x的函数表达式为
解:设药店每天获得的利润为W元,由题意得
W=(x-50)(-2x+220)=-2(x-80)2+1 800.
∵-2<0,
∴当x=80时,W有最大值,最大值是1 800.
答:每桶消毒液的销售价定为80元时,药店每天获得的利润最大,最
大利润是1 800元.
知识点二 根据函数的图像解决问题
【变式2】一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场
k=-500,
解得
5k+b=9 500,
b=12 000.
∴y=-500x+12 000.
知识点二 根据函数的图像解决问题
(2)在销售过程中要求售价不低于进价,且不高于15元/件.若某一周该商品的销
售量不少于6 000件,求这一周该商场销售这种商品获得的最大利润和售价
分别为多少?
解:根据“在销售过程中要求售价不低于进价,且不高于 15 元/
随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售
策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销
售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整
数).
(1)写出y与x的函数表达式;
知识点二 根据函数的图像解决问题
《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
二次函数初中数学教学中的二次函数与应用

二次函数初中数学教学中的二次函数与应用二次函数是数学中的一个重要概念。
在初中数学教学中,学生通常会学习到二次函数及其应用。
本文将对二次函数在初中数学教学中的教学方法和应用进行论述。
一、二次函数的基本概念二次函数是指函数的定义域为实数集,且可以表示为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a≠0。
其中a决定了抛物线的开口方向,b决定了抛物线的位置,c决定了抛物线在y轴上的截距。
二、二次函数图像的性质1. 开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 顶点坐标:抛物线的顶点坐标为(-b/2a, f(-b/2a))。
3. 对称轴:抛物线的对称轴为直线x=-b/2a。
4. 零点:即抛物线与x轴的交点,可通过求解ax^2 + bx + c = 0的根来得到。
三、二次函数的图像与应用1. 二次函数图像的观察与分析:学生可以通过观察二次函数图像的特点,来分析函数的性质。
比如,当抛物线开口向上时,函数的值随着自变量的增大而增大;当抛物线开口向下时,函数的值随着自变量的增大而减小。
同时,可以通过顶点坐标和对称轴的特点,帮助学生更好地理解和掌握二次函数的图像。
2. 二次函数在几何问题中的应用:二次函数在几何问题中有着广泛的应用。
比如,可以利用二次函数的性质来分析抛物线的高度、最大值、最小值等问题。
同时,可以通过建立二次函数模型,解决与抛物线相关的实际问题,如抛物线的轨迹、碗碟的形状等。
举例:小明站在一个高度为10米的建筑物上往下扔一个物体,假设物体的下落轨迹为抛物线。
已知小明所站的位置为抛物线的顶点,求此抛物线的方程,并分析物体落地的位置。
解答:由题意可知,小明所站的位置为抛物线的顶点,设小明所站的位置为点A,抛物线与地面的交点为点B,则AB的距离为10米。
设抛物线的方程为f(x) = ax^2 + bx + c。
由于顶点的横坐标即为对称轴的横坐标,所以顶点的横坐标为0,即b/2a = 0,解得b=0。
初中数学中的二次函数

二次函数:了解它的定义、性质和应用在初中数学中,我们学习了很多关于函数的知识。
其中,二次函数是一种非常常见的函数形式,被广泛应用于各个领域,例如经济学、物理学等。
本文将为您详细介绍二次函数的定义、性质和应用。
1. 什么是二次函数?二次函数是指形如$y=ax^2+bx+c$ 的函数,其中$a,b,c$ 都是实数且$a\neq0$。
其中,$a$ 控制着二次函数的开口方向和大小,$b$ 控制着二次函数的平移位置,$c$ 则是二次函数的纵截距。
2. 二次函数的性质(1)对称性二次函数的图像关于其顶点对称。
当$a>0$ 时,二次函数开口朝上,顶点为最小值点;当$a<0$ 时,二次函数开口朝下,顶点为最大值点。
(2)零点二次函数的零点是指函数图像与 $x$ 轴相交的点。
当 $b^2-4ac>0$ 时,二次函数有两个不同的实根;当$b^2-4ac=0$ 时,二次函数有一个重根;当$b^2-4ac<0$ 时,二次函数没有实根。
(3)最值当 $a>0$ 时,二次函数的最小值等于其顶点的纵坐标;当 $a<0$ 时,二次函数的最大值等于其顶点的纵坐标。
3. 二次函数的应用(1)物理学在物理学中,二次函数常被用于描述抛物线运动。
例如,一个运动物体在重力作用下的运动轨迹就可以用二次函数来表示。
(2)经济学在经济学中,二次函数常被用于分析成本和收益之间的关系。
例如,一家企业的生产成本可以用二次函数来表示,通过求导可以得到该企业的最优生产量。
(3)统计学在统计学中,二次函数常被用于拟合散点图。
例如,通过将散点图拟合成二次函数,可以预测出未来的趋势和表现。
总结在本文中,我们详细介绍了二次函数的定义、性质和应用。
二次函数在数学和其他学科中都有着广泛的应用,是我们必须掌握的一种函数形式。
希望本文对您学习二次函数有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.3 二次函数的简单应用
一、函数图象的平移变换与对称变换
1.平移变换
问题1 在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次
函数的图象平移?
我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、
不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可. 例1 求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式: (1)向右平移2个单位,向下平移1个单位; (2)向上平移3个单位,向左平移2个单位.
分析:由于平移变换只改变函数图象的位置而不改变其形状(即不改变二次项系数),所以只改
变二次函数图象的顶点位置(即只改变一次项和常数项),所以,首先将二次函数的解析式变形为顶点式,然后,再依据平移变换后的二次函数图象的顶点位置求出平移后函数图像所对应的解析式.
解:二次函数y =2x 2-4x -3的解析式可变为
y =2(x -1)2-1, 其顶点坐标为(1,-1).
(1)把函数y =2(x -1)2-1的图象向右平移2个单位,向下平移1个单位后,其函数图象的顶
点坐标是(3,-2),所以,平移后所得到的函数图象对应的函数表达式就为 y =2(x -3)2-2.
(2)把函数y =2(x -1)2-1的图象向上平移3个单位,向左平移2个单位后,其函数图象的顶
点坐标是(-1, 2),所以,平移后所得到的函数图象对应的函数表达式就为 y =2(x +1)2+2.
2.对称变换
问题2 在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,有什么特点?依据这
一特点,可以怎样来研究二次函数的图象平移?
我们不难发现:在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,具有这样的特
点——只改变函数图象的位置或开口方向、不改变其形状,因此,在研究二次函数图象的对称变换问题时,关键是要抓住二次函数的顶点位置和开口方向来解决问题.
例2 求把二次函数y =2x 2-4x +1的图象关于下列直线对称后
x
y
O
x =-1
A (1,-1)
图2.2-7
所得到图象对应的函数解析式:
(1)直线x=-1;
(2)直线y=1.
解:(1)如图2.2-7,把二次函数y=2x2-4x+1的图象关于直线x=-1作对称变换后,只改变图象的顶点位置,不改变其形状.
由于y=2x2-4x+1=2(x-1)2-1,可知,函数y=2x2-4x+1图象的顶点为A(1,-1),所以,对称后所得到图象的顶点为A1(-3,1),所以,二次函数y=2x2-4x+1的图象关于直线x=-1对称后所得到图象的函数解析式为y=2(x+3)2-1,即y=2x2+12x+17.
(2)如图2.2-8,把二次函数y=2x2-4x+1的图象关于直线x=-1作对称变换后,只改变图象的顶点位置和开口方向,不改变其形状.
由于y=2x2-4x+1=2(x-1)2-1,可知,函数y=2x2-4x+1图象的顶点为
A(1,-1),所以,对称后所得到图象的顶点为B(1,3),且开口向下,所以,二次
函数y=2x2-4x+1的图象关于直线y=1对称后所得到图象的函数解析式为y=
-2(x-1)2+3,即y=-2x2+4x+1.
二、分段函数
一般地,如果自变量在不同取值范围内时,函数由不同的解析式给出,
这种函数,叫作分段函数.
例3在国内投递外埠平信,每封信不超过20g付邮资80分,超过20g不
超过40g付邮资160分,超过40g不超过60g付邮资240分,依此类推,每封x g(0<x≤100)的信应付多少邮资(单位:分)?写出函数表达式,作出函数图
象.
分析:由于当自变量x在各个不同的范围内时,应付邮资的数量是不同的.所以,可以用分段函数给出其对应的函数解析式.在解题时,需要注意的是,当x在各个小范围内(如20<x≤40)变化时,它所对应的函数值(邮资)并不变化(都是160分).
解:设每封信的邮资为y(单位:分),则y是x的函数.这个函数的解析式为
x y
O
y=1
A(1,-1)
B(1,3)
图2.2-8
80,(0,20]160(20,40]
240,940,80]320(60,80]400,(80,100]
x x y x x x ∈⎧⎪∈⎪⎪
=∈
⎨⎪∈⎪∈
⎪⎩ 由上述的函数解析式,可以得到其图象如图2.2-9所示.
例4如图9-2所示,在边长为2的正方形ABCD 的边上有一个动点P ,从点A 出发沿折线ABCD 移动一周后,回到A 点.设点A 移动的路程为x ,ΔPAC 的面积为y .
(1)求函数y 的解析式; (2)画出函数y 的图像; (3)求函数y 的取值范围.
分析:要对点P 所在的位置进行分类讨论.
解:(1)①当点P 在线段AB 上移动(如图2.2-10①),即0<x ≤2时,
y =
1
2
AP BC ⋅=x ;
②当点P 在线段BC 上移动(如图2.2-10②),即2<x <4时,
y =
12PC AB ⋅=1
(4)22
x -⋅=4-x ; ③当点P 在线段CD 上移动(如图2.2-10③),即4<x ≤6时,
y =12PC AD ⋅=1(4)22
x -⋅=x -4;
④当点P 在线段DA 上移动(如图2.2-10④),即6<x <8时,
A
C
B
D
P
图2.2-10。