高考数学专题训练专题131—函数与导数压轴题命题区间
高考数学压轴专题专题备战高考《函数与导数》真题汇编及解析

数学《函数与导数》高考复习知识点一、选择题1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.2.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足()()3f x f x x'->,则关于x 的不等式31(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭的解集为( )A .()3,6B .()0,3C .()0,6D .()6,+∞【答案】A 【解析】 【分析】根据条件,构造函数3()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】解:Q 3(1)(3)(3)03x f x f ---<,3(3)(3)27x f x f ∴---(3)0<, 3(3)(3)27x f x f ∴--<(3),Q 定义在(0,)+∞的函数()f x ,3x ∴<,令3()()g x x f x =,∴不等式3(3)(3)27x f x f --<(3),即为(3)g x g -<(3),323()(())3()()g x x f x x f x x f x '='=+',Q()()3f x f x x'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,32()3()0x f x x f x ∴+>,()0g x ∴'>, ()g x ∴单调递增,又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q , 36x ∴<<.故选:A . 【点睛】本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.3.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.4.三个数0.20.40.44,3,log 0.5的大小顺序是 ( ) A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D 【解析】由题意得,120.20.4550.40log0.514433<<<==== D.5.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e <<⎧⎨+>⎩,解得1e m e -<<.故选:C 【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.6.已知()ln xf x x=,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020log 20202019>【答案】D 【解析】 【分析】根据21ln (),(0,)xf x x x-'=∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】21ln (),(0,)xf x x x -'=∈+∞Q ∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;对于选项B ,()2ln 4ln 2ln 24(2)442f f ====,故B 正确;对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,ln ln a ba b∴<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,(2019)(2020)f f ∴>,即ln 2019ln 202022019020>⇒20192020ln 2020log 2020ln 02019219>=, 故选项D 不正确. 故选:D 【点睛】本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.7.函数22cos x xy x x--=-的图像大致为( ).A .B .C .D .【答案】A 【解析】 【分析】 本题采用排除法: 由5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭排除选项D ;根据特殊值502f π⎛⎫>⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】对于选项D:由题意可得, 令函数()f x = 22cos x xy x x--=-,则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫= ⎪⎝⎭;即5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.故选项D 排除; 对于选项C :因为55225220522f ππππ--⎛⎫=> ⎪⎝⎭,故选项C 排除;对于选项B:当0x >,且x 无限接近于0时,cos x x -接近于10-<,220x x -->,此时()0f x <.故选项B 排除;故选项:A 【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.8.已知()2ln33,33ln3,ln3a b c ==+=,则,,a b c 的大小关系是( ) A .c b a << B .c a b << C .a c b <<D .a b c <<【答案】B 【解析】 【分析】根据,,a b c 与中间值3和6的大小关系,即可得到本题答案. 【详解】因为323e e <<,所以31ln 32<<,则3ln3223336,33ln 36,(ln 3)3a b c <=<=<=+>=<, 所以c a b <<. 故选:B 【点睛】本题主要考查利用中间值比较几个式子的大小关系,属基础题.9.函数()2sin f x x x x =-的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】分析函数()y f x =的奇偶性,并利用导数分析该函数在区间()0,+∞上的单调性,结合排除法可得出合适的选项. 【详解】因为()()()()()22sin sin f x x x x x x x f x -=----=-=,且定义域R 关于原点对称,所以函数()y f x =为偶函数,故排除B 项;()()2sin sin f x x x x x x x =-=-,设()sin g x x x =-,则()1cos 0g x x ='-≥恒成立,所以函数()y g x =单调递增,所以当0x >时,()()00g x g >=, 任取120x x >>,则()()120g x g x >>,所以,()()1122x g x x g x >,()()12f x f x ∴>,所以,函数()y f x =在()0,+∞上为增函数,故排除C 、D 选项. 故选:A.【点睛】本题考查利用函数解析式选择图象,一般分析函数的定义域、奇偶性、单调性、函数零点以及函数值符号,结合排除法得出合适的选项,考查分析问题和解决问题的能力,属于中等题.10.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个 【答案】B 【解析】 【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.11.已知函数f (x )(x ∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x−3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑A .0B .mC .2mD .4m【答案】B 【解析】试题分析:因为2(),23y f x y x x ==--的图像都关于1x =对称,所以它们图像的交点也关于1x =对称,当m 为偶数时,其和为22mm ⨯=;当m 为奇数时,其和为1212m m -⨯+=,因此选B. 【考点】 函数图像的对称性 【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+.12.若函数f (x )=()x 1222a x 1log x 1x 1⎧++≤⎪⎨+⎪⎩,,>有最大值,则a 的取值范围为( ) A .()5,∞-+ B .[)5,∞-+ C .(),5∞-- D .(],5∞-- 【答案】B 【解析】 【分析】分析函数每段的单调性确定其最值,列a 的不等式即可求解. 【详解】由题()xf x 22a,x 1=++≤,单调递增,故()()f x f 14a,;≤=+()()12f x log x 1,x 1,=+>单调递减,故()()f x f 11>=-,因为函数存在最大值,所以4a 1+≥-,解a 5≥-. 故选B. 【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.13.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】 令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减, 所以10m e<≤, 所以10a e <≤,当1a e=时,x e =,只有一个零点,不合题意, 所以10a e<< 故选:B 【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.14.已知函数()()2f x x +∈R 为奇函数,且函数()y f x =的图象关于直线1x =对称,当[]0,1x ∈时,()2020x f x =,则()2020f =( ) A .2020B .12020C .11010D .0【答案】D【解析】【分析】 根据题意,由函数()f x 的对称性可得()()42f x f x +=-+,即()()2f x f x +=-,进而可得()()4f x f x +=,即函数()f x 是周期为4的周期函数,据此可得()()20200f f =,由函数的解析式计算可得答案.【详解】解:根据题意,函数()2f x +为奇函数,即函数()f x 的图象关于点()2,0对称,则有()()4f x f x -=-+,函数()y f x =的图象关于直线1x =对称,则()()2f x f x -=+,变形可得:()()42f x f x +=-+,即()()2f x f x +=-,则有()()4f x f x +=,即函数()f x 是周期为4的周期函数,()()()20200505400f f f ∴=+⨯==;故选:D .【点睛】本题考查函数的奇偶性、对称性、周期性的综合应用,难度一般.一般地,若一个奇函数有对称轴(或一个偶函数有对称中心),可分析出函数具有周期性.15.已知函数()1f x +是偶函数,当()1,x ∈+∞时,函数()f x 单调递减,设12a f ⎛⎫=- ⎪⎝⎭,()3b f =,()0c f =,则a b c 、、的大小关系为() A .b a c <<B .c b d <<C .b c a <<D .a b c << 【答案】A【解析】【分析】根据()1f x +图象关于y 轴对称可知()f x 关于1x =对称,从而得到()f x 在(),1-∞上单调递增且()()31f f =-;再根据自变量的大小关系得到函数值的大小关系.【详解】()1f x +Q 为偶函数 ()1f x ∴+图象关于y 轴对称()f x ∴图象关于1x =对称()1,x ∈+∞Q 时,()f x 单调递减 (),1x ∈-∞∴时,()f x 单调递增又()()31f f =-且1102-<-< ()()1102f f f ⎛⎫∴-<-< ⎪⎝⎭,即b a c << 本题正确选项:A【点睛】 本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.16.函数()3ln 2x f x x x =+的图象在点()()1,1f 处的切线方程为( ) A .64y x =-B .75y x =-C .63=-y xD .74y x =- 【答案】B【解析】【分析】首先求得切线的斜率,然后求解切线方程即可.【详解】由函数的解析式可得:()221ln '6x f x x x -=+, 则所求切线的斜率()221ln1'16171k f -==+⨯=, 且:()012121f =+⨯=,即切点坐标为()1,2, 由点斜式方程可得切线方程为:()271y x -=-,即75y x =-.本题选择B 选项.【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.17.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.18.设123log 2,ln 2,5a b c -===则A .a b c <<B .b c a <<C .c a b <<D .c b a << 【答案】C【解析】【分析】由ln 2ln 2ln 3a b =<=及311log ,22a c >==<=可比较大小. 【详解】 ∵2031a ln ln =>,>,∴ln 2ln 2ln 3a b =<=,即a b <.又3311log 2log ,22a c =>==<=.∴a c >.综上可知:c a b << 故选C.【点睛】本题主要考查了指数与对数的运算性质及对数函数的单调性比较大小,属于中档题.19.已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C【解析】【分析】 利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】 Q 函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=, 32023<<=<Q ,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>.故选:C.【点睛】本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.20.函数2ln x xy x =的图象大致是( )A .B .C .D .【答案】D【解析】【分析】根据函数为偶函数排除B ,当0x >时,利用导数得()f x 在1(0,)e 上递减,在1(,)e+∞上递增,根据单调性分析,A C 不正确,故只能选D .【详解】 令2ln ||()||x x f x x =,则2()ln ||()()||x x f x f x x ---==-, 所以函数()f x 为偶函数,其图像关于y 轴对称,故B 不正确,当0x >时,2ln ()ln x x f x x x x==,()1ln f x x '=+, 由()0f x '>,得1x e >,由()0f x '<,得10x e<<, 所以()f x 在1(0,)e上递减,在1(,)e +∞上递增,结合图像分析,,A C 不正确.故选:D【点睛】本题考查了利用函数的奇偶性判断函数的图象,考查了利用导数研究函数的单调性,利用单调性判断函数的图象,属于中档题.。
高考数学压轴专题人教版备战高考《函数与导数》技巧及练习题附答案解析

高考数学《函数与导数》练习题一、选择题1.已知函数()0,1ln ,1x f x x x <⎧=⎨≥⎩,若不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是( ) A .(],1-∞B .[)1,+∞C .[)0,1D .(]1,0-【答案】A【解析】【分析】先求出函数()f x 在(1,0)处的切线方程,在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象,利用数形结合进行求解即可. 【详解】当1x ≥时,()''1ln ,()(1)1f x x f x f x=⇒=⇒=,所以函数()f x 在(1,0)处的切线方程为:1y x =-,令()g x x k =-,它与横轴的交点坐标为(,0)k .在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象如下图的所示:利用数形结合思想可知:不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是1k ≤.故选:A【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.2.给出下列说法:①“tan 1x =”是“4x π=”的充分不必要条件;②定义在[],a b 上的偶函数2()(5)f x x a x b =+++的最大值为30;③命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+>R ”. 其中错误说法的个数为( ) A .0B .1C .2D .3 【答案】C【解析】【分析】利用充分条件与必要条件的定义判断①;利用函数奇偶性的性质以及二次函数的性质判断②;利用特称命题的否定判断③,进而可得结果.【详解】对于①,当4x π=时,一定有tan 1x =,但是当tan 1x =时,,4x k k ππ=+∈Z ,所以“tan 1x =”是“4x π=”的必要不充分条件,所以①不正确;对于②,因为()f x 为偶函数,所以5a =-.因为定义域[],a b 关于原点对称,所以5b =,所以函数2()5,[5,5]f x x x =+∈-的最大值为()()5530f f -==,所以②正确;对于③,命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+<R ”,所以③不正确; 故错误说法的个数为2.故选:C.【点睛】 本题考查了特称命题的否定、充分条件与必要条件,考查了函数奇偶性的性质,同时考查了二次函数的性质,属于中档题..3.已知3215()632f x x ax ax b =-++的两个极值点分别为()1212,x x x x ≠,且2132x x =,则函数12()()f x f x -=( )A .1-B .16C .1D .与b 有关【答案】B【解析】【分析】求出函数的导数,利用韦达定理得到12,,a x x 满足的方程组,解方程组可以得到12,,a x x ,从而可求()()12f x f x -.【详解】()2'56f x x ax a =-+,故125x x a +=,126x x a =,且225240a a ->, 又2132x x =,所以122,3x a x a ==,故266a a =,解得0a =(舎)或者1a =. 此时122,3x x ==, ()3215632f x x x x b =-++, 故()()()()()1215182749623326f x f x -=⨯---+-= 故选B .【点睛】 如果()f x 在0x 处及附近可导且0x 的左右两侧导数的符号发生变化,则0x x =必为函数的极值点且()00f x =.极大值点、极小值点的判断方法如下:(1)在0x 的左侧附近,有()'0f x >,在0x 的右侧附近,有()'0f x <,则0x x =为函数的极大值点;(2)在0x 的左侧附近,有()'0f x <,在0x 的右侧附近()'0f x >,有,则0x x =为函数的极小值点.4.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( )A .ln 2B .1C .1ln2-D .1ln2+ 【答案】D【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.5.在二项式26()2a x x+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )A .146π+ B .146π- C .4π D .16【答案】B【解析】【分析】 用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积.【详解】(x 2+a 2x )6展开式中,由通项公式可得122r 162r r r r a T C x x --+⎛⎫= ⎪⎝⎭, 令12﹣3r =0,可得r =4,即常数项为4462a C ⎛⎫ ⎪⎝⎭,可得4462a C ⎛⎫ ⎪⎝⎭=15,解得a =2. 曲线y =x 2和圆x 2+y 2=2的在第一象限的交点为(1,1) 所以阴影部分的面积为()1223100111-x-x |442346dx x x πππ⎛⎫=--=- ⎪⎝⎭⎰. 故选:B【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.6.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ). A 5B .3C .23 D .22【答案】D【解析】 试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =- 所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---2()22a b a b ≥-⨯=-当且仅当2a b a b-=-,即a b -=时等号成立所以22a b a b+-的最下值为故答案选D考点:基本不等式.7.已知定义在R 上的函数()f x 满足(2)(2)f x f x +=-,且当2x >时,()()2()x f x f x f x ''⋅+>,若(1)1f =.则不等式1()2f x x <-的解集是( ) A .(2,3)B .(,1)-∞C .()(1,2)2,3⋃D .()(,1)3,-∞⋃+∞ 【答案】C【解析】【分析】 令()|2|()F x x f x =-,当2x >时,则()(2)()F x x f x =-,利用导数可得当2x >时,()F x 单调递增,根据题意可得()F x 的图象关于2x =对称,不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠,从而()(1)F x F <,利用对称性可得|2||12|x -<-,解不等式即可.【详解】当2x >时,()()2()x f x f x f x ''⋅+>,∴(2)()()0x f x f x '-+>,令()|2|()F x x f x =-.当2x >时,则()(2)()F x x f x =-,()(2)()()0F x x f x f x ''=-+>,即当2x >时,()F x 单调递增.函数()f x 满足(2)(2)f x f x +=-,所以(2)(2)F x F x +=-,即()F x 的图象关于2x =对称, 不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠, (1)|12|(1)(1)1F f f =-==,即()(1)F x F <,所以|2||12|x -<-,解得13x <<且2x ≠,解集为(1,2)(2,3)U .故选:C【点睛】本题考查了导数在解不等式中的应用、函数的对称性的应用以及绝对值不等式的解法,属于中档题.8.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6- 【答案】C【解析】【分析】首先求出当0x ≥时不等式的解集,在根据偶函数的对称性求出当0x <时不等式的解集,从而求出()5f x <的解集,则525x -<+<,即可得解.【详解】当0x ≥时,2()45f x x x =-<的解为05x <≤;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<, 所以不等式()5f x <的解集为{}55x x -<<,所以不等式(2)5f x +<的解集为{}{}52573x x x x -<+<=-<<.故选:C【点睛】本题考查偶函数的性质,涉及一元二次不等式,属于基础题.9.函数()xe f x x=的图象大致为( ) A . B .C .D .【答案】B【解析】函数()xe f x x=的定义域为(,0)(0,)-∞+∞U ,排除选项A ; 当0x >时,()0f x >,且()2(1)'xx e f x x-= ,故当()0,1x ∈时,函数单调递减,当()1,x ∈+∞时,函数单调递增,排除选项C ;当0x <时,函数()0xe f x x=<,排除选项D ,选项B 正确.选B . 点睛:函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.10.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( )A.13+ BCD【答案】B【解析】【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可.【详解】22222sin 2sin cos 2cos 2sin cos 1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭.令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >.故()min 33f x f π⎛⎫==⎪⎝⎭. 故选:A【点睛】 本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.11.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n +的最小值为() A .16B .24C .50D .25【答案】D【解析】【分析】 由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值.【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1),∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号, 故则41m n+的最小值为25, 故选D .【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.12.若函数f (x )=()x 1222a x 1log x 1x 1⎧++≤⎪⎨+⎪⎩,,>有最大值,则a 的取值范围为( ) A .()5,∞-+B .[)5,∞-+C .(),5∞--D .(],5∞-- 【答案】B【解析】【分析】分析函数每段的单调性确定其最值,列a 的不等式即可求解.【详解】由题()x f x 22a,x 1=++≤,单调递增,故()()f x f 14a,;≤=+ ()()12f x log x 1,x 1,=+>单调递减,故()()f x f 11>=-,因为函数存在最大值,所以4a 1+≥-,解a 5≥-. 故选B.【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.13.函数()||()a f x x a R x=-∈的图象不可能是( ) A . B .C .D .【答案】C【解析】【分析】变成分段函数后分段求导,通过对a 分类讨论,得到函数的单调性,根据单调性结合四个选项可得答案.【详解】,0(),0a x x x f x a x x x ⎧->⎪⎪=⎨⎪--<⎪⎩,∴221,0()1,0a x x f x a x x ⎧+>⎪⎪=⎨⎪-+<⎩'⎪.(1)当0a =时,,0(),0x x f x x x >⎧=⎨-<⎩,图象为A; (2)当0a >时,210a x+>,∴()f x 在(0,)+∞上单调递增,令210a x-+=得x =∴当x <,210a x-+<,当0x <<时,210a x-+>,∴()f x 在(,-∞上单调递减,在(上单调递增,图象为D;(3)当0a <时,210a x -+<,∴()f x 在(,0)-∞上单调递减,令210a x+=得x =∴当x >时,210a x+>,当0x <<,210a x +<,∴()f x 在上单调递减,在)+∞上单调递增,图象为B;故选:C.【点睛】本题考查了分段函数的图像的识别,考查了分类讨论思想,考查了利用导数研究函数的单调性,属于中档题.14.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( )A .a c b >>B .a b c >>C .b a c >>D .c a b >> 【答案】B【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.15.已知函数2()f x x m =+与函数1()ln 3g x x x =--,1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( )A .5ln )4[2,2+ B .5[2ln 2,ln 2)4-+ C .5(ln 2,2ln 2)4+- D .(]2ln2,2-【答案】A 【解析】 【分析】将问题转化为()()f x g x =-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,令()()()h x f x g x =+,将问题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定区间端点值和最值,由此构造不等式求得结果. 【详解】()f x Q 与()g x 在1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,()()f x g x ∴=-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,即221ln3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤⎢⎥⎣⎦上恰有两个不同的解, 令()2ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x---+'=+-==, ∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当()1,2x ∈时,()0h x '>,()h x ∴在1,12⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增,又15ln 224h m ⎛⎫=--+⎪⎝⎭,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1,22⎡⎤⎢⎥⎣⎦上恰有两个零点,则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡⎫+⎪⎢⎣⎭.故选:A . 【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.16.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞ C .()1,+∞D .()+∞【答案】B 【解析】 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+?即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4x x xf x e x a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭()f x Q 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e > 04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭ sin ,142x π⎛⎤⎛⎫∴+∈- ⎥ ⎪ ⎝⎭⎝⎦(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.17.已知函数()2cos f x x x =-,若15log 3a f ⎛⎫= ⎪⎝⎭,31log 5b f ⎛⎫= ⎪⎝⎭,315c f ⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭=⎪,则( ) A .a b c >> B .b a c >> C .c b a >> D .c a b >>【答案】B 【解析】【分析】判断()f x 为偶函数,利用导数得出()f x 在()0,π上单调递增,由对数函数的性质,结合函数()f x 的单调性和奇偶性,即可得出答案. 【详解】()()()()22cos cos f x x x x x f x -=---=-=,故()f x 为偶函数故只需考虑()0,x ∈+∞的单调性即可.()'2sin f x x x =+,当()0,x π∈时,易得()'0f x >故()f x 在()0,π上单调递增,()155log 3log 3a f f ⎛⎫== ⎪⎝⎭,()331log log 55b f f ⎛⎫== ⎪⎝⎭,由函数单调性可知()()3531log 3log 55f f f ⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭,即c a b << 故选:B 【点睛】本题主要考查了利用函数的奇偶性以及单调性比较大小,属于中档题.18.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.31.130. 20.54f f log f <<B .()()()0.31.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log << D .()()()0.31.130.50.24f log f f << 【答案】A 【解析】 【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.31.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,则0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增, 所以()()()0.31.130.20.54f f log f <<.故选:A. 【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.19.函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则a 的取值范围是( ) A .5,3⎛⎫+∞ ⎪⎝⎭B .1,15⎛⎫ ⎪⎝⎭C .51,3⎛⎫ ⎪⎝⎭D .51,3⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】根据0a >可知5y ax =-在定义域内单调递减,若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则需1530a a >⎧⎨-≥⎩,解不等式即可.【详解】 0a >Q5y ax ∴=-在定义域内单调递减若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数则需1530a a >⎧⎨-≥⎩,解得513a <≤故选:D 【点睛】本题考查对数函数的单调性,属于中档题.20.已知函数()2ln 2xx f x e x =+-的极值点为1x ,函数()2xg x e x =+-的零点为2x ,函数()ln 2xh x x=的最大值为3x ,则( ) A .123x x x >> B .213x x x >>C .312x x x >>D .321x x x >>【答案】A 【解析】 【分析】根据()f x '在()0,∞+上单调递增,且11024f f ⎛⎫⎛⎫''⋅<⎪ ⎪⎝⎭⎝⎭,可知导函数零点在区间11,42⎛⎫⎪⎝⎭内,即()f x 的极值点111,42x ⎛⎫∈ ⎪⎝⎭;根据()g x 单调递增且11024g g ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知211,42x ⎛⎫∈ ⎪⎝⎭;通过判断()()12g x g x >,结合()g x 单调性可得12x x >;利用导数可求得()max 1124h x e =<,即314x <,从而可得三者的大小关系. 【详解】()1x f x e x x'=+-Q 在()0,∞+上单调递增且1213022f e ⎛⎫'=-> ⎪⎝⎭,14115044f e ⎛⎫'=-< ⎪⎝⎭ 111,42x ⎛⎫∴∈ ⎪⎝⎭且11110x e x x +-= Q 函数()2x g x e x =+-在()0,∞+上单调递增且1213022g e ⎛⎫=-> ⎪⎝⎭,14112044g e ⎛⎫=+-< ⎪⎝⎭211,42x ⎛⎫∴∈ ⎪⎝⎭又()()11111211112220xg x e x x x g x x x ⎛⎫=+-=-+-=->=⎪⎝⎭且()g x 单调递增 12x x ∴> 由()21ln 2x h x x -'=可得:()()max12h x h e e ==,即31124x e =< 123x x x ∴>>本题正确选项:A 【点睛】本题考查函数极值点、零点、最值的判断和求解问题,涉及到零点存在定理的应用,易错点是判断12,x x 大小关系时,未结合()g x 单调性判断出()()12g x g x >,造成求解困难.。
(完整版)高三导数压轴题题型归纳

导数压轴题题型1. 高考命题回顾例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷)(1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.(1)解 f (x )=e x -ln(x +m )⇒f ′(x )=e x -1x +m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{x |x >-1},f ′(x )=e x-1x +m=e x x +1-1x +1,显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1x +2(x >-2).h (x )=g ′(x )=e x -1x +2(x >-2)⇒h ′(x )=e x +1x +22>0,所以h (x )是增函数,h (x )=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (x )=g ′(x )=0的唯一实根在区间⎝⎛⎭⎫-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0⎝⎛⎭⎫-12<t <0, 所以,e t =1t +2⇒t +2=e -t ,当x ∈(-2,t )时,g ′(x )<g ′(t )=0,g (x )单调递减; 当x ∈(t ,+∞)时,g ′(x )>g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2t +2>0,当m ≤2时,有ln(x +m )≤ln(x +2),所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2121)0()1(')(x x f ef x f x +-=-(2012全国新课标) (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值。
《导数大题压轴题难点突破》(PDF)

(Ⅰ)证明:当 x 1时, f (x) x ; x 1
(Ⅱ)当 x 0时, f (x) x 恒成立,求 a 的取值范围. ax 1
17.已知函数 f (x) (x 1)2 ex x(x 1).
(Ⅰ)试判断方程 f (x) 0 根的个数.
10.设函数 f (x) a ln x bx 2, a,b R
(Ⅰ)若函数 f (x) 在 x 1 处与直线 y 1 相切,①求实数 a, b 的值;②求函数 f (x) 在 2
1 e
,
e
的最大值;
(Ⅱ
)当 b 0 时,若不等式
f
(
x)
m
x
对所有的
a
f (x)min 0 .
9.设 f (x) 与 g(x) 的定义域的交集为 D,若 x D f (x) g(x) 恒成立,则有
f (x) g(x) min 0 .
10.若对 x1 I1 、 x2 I2 , f (x1) g(x2 ) 恒成立,则 f (x)min g(x)max . 若对 x1 I1 , x2 I2 ,使得 f (x1) g(x2 ) ,则 f (x)min g(x)min . 若对 x1 I1 , x2 I2 ,使得 f (x1) g(x2 ) ,则 f (x)max g(x)max .
4
高考数学 2018 届◆难点突破系列
题型二:导数与函数的切线问题
19.已知函数 f (x) x ln x, g(x) ax 3 1 x 2 . 2 3e
(Ⅰ)求 f (x) 的单调增区间和最小值;
函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
2020新高考专题数学压轴题汇编 专题131—函数与导数压轴题命题区间

函数与导数压轴题命题函数与导数专题131—函数与导数压轴题命题区间目录第一部分构造辅助函数求解导数问题 (2)技法一:“比较法”构造函数 (2)技法二:“拆分法”构造函数 (3)技法三:“换元法”构造函数 (5)技法四:二次(甚至多次)构造函数 (8)强化训练 (10)第二部分利用导数探究含参数函数的性质 (14)技法一:利用导数研究函数的单调性 (14)技法二:利用导数研究函数的极值 (17)技法三:利用导数研究函数的最值 (19)强化训练 (22)第三部分导数的综合应用 (29)技法一:利用导数研究函数的零点或方程的根 (29)技法二:利用导数证明不等式 (31)技法三:利用导数研究不等式恒成立问题 (34)技法四:利用导数研究存在性与任意性问题 (44)技法五:利用导数研究探究性问题 (47)强化训练 (50)第一部分构造辅助函数求解导数问题对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.技法一:“比较法”构造函数[典例](2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.[解](1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2,令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)单调递减;当x>ln 2时,f′(x)>0,f(x)单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.[方法点拨]在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的结论求解.[对点演练]已知函数f(x)=xe x,直线y=g(x)为函数f(x)的图象在x=x0(x0<1)处的切线,求证:f(x)≤g(x).证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0e0x =1-x e 0x -1-x 0e x e 0+x x .设φ(x )=(1-x )e 0x -(1-x 0)e x ,则φ′(x )=-e 0x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,又φ(x 0)=0,∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ).技法二:“拆分法”构造函数[典例] 设函数f (x )=ae x ln x +bex -1x ,曲线y =f (x )在点(1,f (1))处的切线为y=e (x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.[解] (1)f ′(x )=ae x ⎝ ⎛⎭⎪⎫ln x +1x +be x-1x -1x 2(x >0),由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2), 所以⎩⎨⎧ f 1=2,f ′1=e ,即⎩⎨⎧ b =2,ae =e ,解得⎩⎨⎧a =1,b =2.(2)证明:由(1)知f (x )=e x ln x +2ex -1x (x >0),从而f (x )>1等价于x ln x >xe -x -2e . 构造函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0,故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .构造函数h (x )=xe -x -2e , 则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0;故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e . 综上,当x >0时,g (x )>h (x ),即f (x )>1. [方法点拨]对于第(2)问“ae x ln x +be x -1x >1”的证明,若直接构造函数h (x )=ae x ln x +bex -1x-1,求导以后不易分析,因此并不宜对其整体进行构造函数,而应先将不等式“ae x ln x +be x -1x >1”合理拆分为“x ln x >xe -x -2e ”,再分别对左右两边构造函数,进而达到证明原不等式的目的.QQ 群 545423319 微信公众号:中学数学研讨部落[对点演练] 已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln xx -1.解:(1)f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln xx +12-bx 2(x >0).由于直线x +2y -3=0的斜率为-12,且过点(1,1), 故⎩⎪⎨⎪⎧f 1=1,f ′1=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得⎩⎨⎧a =1,b =1.(2)证明:由(1)知f (x )=ln x x +1+1x(x >0), 所以f (x )-ln x x -1=11-x 2⎝ ⎛⎭⎪⎫2ln x -x 2-1x . 考虑函数h (x )=2ln x -x 2-1x (x >0), 则h ′(x )=2x -2x 2-x 2-1x 2=-x -12x 2.所以当x ≠1时,h ′(x )<0.而h (1)=0, 故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0; QQ 群 545423319 微信公众号:中学数学研讨部落当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0.从而当x >0,且x ≠1时,f (x )-ln xx -1>0, 即f (x )>ln xx -1. 技法三:“换元法”构造函数[典例] 已知函数f (x )=ax 2+x ln x (a ∈R )的图象在点(1,f (1))处的切线与直线x +3y =0垂直.(1)求实数a 的值;(2)求证:当n >m >0时,ln n -ln m >m n -n m . [解] (1)因为f (x )=ax 2+x ln x , 所以f ′(x )=2ax +ln x +1,因为切线与直线x +3y =0垂直,所以切线的斜率为3,所以f ′(1)=3,即2a +1=3,故a =1. (2)证明:要证ln n -ln m >m n -nm ,即证ln n m >m n -n m ,只需证ln n m -m n +nm >0. 令n m =x ,构造函数g (x )=ln x -1x +x (x ≥1), 则g ′(x )=1x +1x 2+1.因为x ∈[1,+∞),所以g ′(x )=1x +1x 2+1>0, 故g (x )在(1,+∞)上单调递增. 由已知n >m >0,得nm >1, 所以g ⎝ ⎛⎭⎪⎫n m >g (1)=0,即证得ln n m -m n +nm >0成立,所以命题得证. [方法点拨]对“待证不等式”等价变形为“ln n m -m n +n m >0”后,观察可知,对“nm ”进行换元,变为“ln x -1x +x >0”,构造函数“g (x )=ln x -1x +x (x ≥1)”来证明不等式,可简化证明过程中的运算.[对点演练]已知函数f (x )=x 2ln x . (1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的s ,使t =f (s );(3)设(2)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g t ln t<12.解:(1)由已知,得f ′(x )=2x ln x +x =x (2ln x +1)(x >0), 令f ′(x )=0,得x =1e.当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝ ⎛⎭⎪⎫0,1e1e ⎝ ⎛⎭⎪⎫1e ,+∞ f ′(x ) - 0 + f (x )极小值所以函数f (x )的单调递减区间是⎝⎛⎭⎪⎫0,1e ,单调递增区间是⎝ ⎛⎭⎪⎫1e ,+∞. (2)证明:当0<x ≤1时,f (x )≤0, ∵t >0,∴当0<x ≤1时不存在t =f (s ). 令h (x )=f (x )-t ,x ∈[1,+∞).由(1)知,h (x )在区间(1,+∞)上单调递增. h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0. 故存在唯一的s ∈(1,+∞),使得t =f (s )成立. (3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1, 从而ln g tln t=ln s ln f s =ln sln s 2ln s=ln s 2ln s +ln ln s =u2u +ln u , 其中u =ln s . 要使25<ln g t ln t<12成立,只需0<ln u <u 2.当t >e 2时,若s =g (t )≤e ,则由f (s )的单调性,有t =f (s )≤f (e )=e 2,矛盾. 所以s >e ,即u >1,从而ln u >0成立.另一方面,令F (u )=ln u -u 2,u >1,F ′(u )=1u -12, 令F ′(u )=0,得u =2. 当1<u <2时,F ′(u )>0; 当u >2时,F ′(u )<0. 故对u >1,F (u )≤F (2)<0,因此ln u <u2成立.综上,当t >e 2时,有25<ln g tln t<12.技法四:二次(甚至多次)构造函数[典例] (2017·广州综合测试)已知函数f (x )=e x +m -x 3,g (x )=ln(x +1)+2. (1)若曲线y =f (x )在点(0,f (0))处的切线斜率为1,求实数m 的值; (2)当m ≥1时,证明:f (x )>g (x )-x 3. [解] (1)因为f (x )=e x +m -x 3, 所以f ′(x )=e x +m -3x 2.因为曲线y =f (x )在点(0,f (0))处的切线斜率为1, 所以f ′(0)=e m =1,解得m =0.(2)证明:因为f (x )=e x +m -x 3,g (x )=ln(x +1)+2, 所以f (x )>g (x )-x 3等价于e x +m -ln(x +1)-2>0. 当m ≥1时,e x +m -ln(x +1)-2≥e x +1-ln(x +1)-2. 要证e x +m -ln(x +1)-2>0, 只需证明e x +1-ln(x +1)-2>0.设h (x )=e x +1-ln(x +1)-2,则h ′(x )=e x +1-1x +1. 设p (x )=e x +1-1x +1,则p ′(x )=e x +1+1x +12>0,所以函数p (x )=h ′(x )=e x +1-1x +1在(-1,+∞)上单调递增.因为h ′⎝ ⎛⎭⎪⎫-12=e 12-2<0,h ′(0)=e -1>0,所以函数h ′(x )=ex +1-1x +1在(-1,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫-12,0.因为h ′(x 0)=0,所以ex 0+1=1x 0+1,即ln(x 0+1)=-(x 0+1). 当x ∈(-1,x 0)时,h ′(x )<0, 当x ∈(x 0,+∞)时,h ′(x )>0,所以当x =x 0时,h (x )取得最小值h (x 0),所以h(x)≥h(x0)=ex0+1-ln(x0+1)-2=1x0+1+(x0+1)-2>0.综上可知,当m≥1时,f(x)>g(x)-x3.QQ 群545423319 微信公众号:中学数学研讨部落[方法点拨]本题可先进行适当放缩,m≥1时,e x+m≥e x+1,再两次构造函数h(x),p(x).[对点演练](2016·合肥一模)已知函数f(x)=ex-x ln x,g(x)=e x-tx2+x,t∈R,其中e为自然对数的底数.(1)求函数f(x)的图象在点(1,f(1))处的切线方程;(2)若g(x)≥f(x)对任意的x∈(0,+∞)恒成立,求t的取值范围.解:(1)由f(x)=ex-x ln x,知f′(x)=e-ln x-1,则f′(1)=e-1,而f(1)=e,则所求切线方程为y-e=(e-1)(x-1),即y=(e-1)x+1.(2)∵f(x)=ex-x ln x,g(x)=e x-tx2+x,t∈R,∴g(x)≥f(x)对任意的x∈(0,+∞)恒成立等价于e x-tx2+x-ex+x ln x≥0对任意的x∈(0,+∞)恒成立,即t≤e x+x-ex+x ln xx2对任意的x∈(0,+∞)恒成立.令F(x)=e x+x-ex+x ln xx2,则F′(x)=xe x+ex-2e x-x ln xx3=1x2⎝⎛⎭⎪⎫e x+e-2e xx-ln x,令G(x)=e x+e-2e xx-ln x,则G′(x)=e x-2xe x-e xx2-1x=e x x-12+e x-xx2>0对任意的x∈(0,+∞)恒成立.∴G(x)=e x+e-2e xx-ln x在(0,+∞)上单调递增,且G(1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0, 即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0, ∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1, ∴t ≤1,即t 的取值范围是(-∞,1].强化训练1.设函数f (x )=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f (x )的极值点. (1)求a ,b 的值; (2)讨论f (x )的单调性;(3)设g (x )=23x 3-x 2,比较f (x )与g (x )的大小. 解:(1)因为f ′(x )=e x -1(2x +x 2)+3ax 2+2bx =xe x -1(x +2)+x (3ax +2b ), 又x =-2和x =1为f (x )的极值点, 所以f ′(-2)=f ′(1)=0, 因此⎩⎨⎧-6a +2b =0,3+3a +2b =0,解得⎩⎪⎨⎪⎧a =-13,b =-1.(2)因为a =-13,b =-1, 所以f ′(x )=x (x +2)(e x -1-1), 令f ′(x )=0,解得x 1=-2,x 2=0,x 3=1.因为当x ∈(-∞,-2)∪(0,1)时,f ′(x )<0; 当x ∈(-2,0)∪(1,+∞)时,f ′(x )>0. 所以f (x )在(-2,0)和(1,+∞)上是单调递增的; 在(-∞,-2)和(0,1)上是单调递减的.(3)由(1)可知f (x )=x 2e x -1-13x 3-x 2. 故f (x )-g (x )=x 2e x -1-x 3=x 2(e x -1-x ), 令h (x )=e x -1-x ,则h ′(x )=e x -1-1. 令h ′(x )=0,得x =1,因为当x ∈(-∞,1]时,h ′(x )≤0, 所以h (x )在(-∞,1]上单调递减; 故当x ∈(-∞,1]时,h (x )≥h (1)=0; 因为当x ∈[1,+∞)时,h ′(x )≥0, 所以h (x )在[1,+∞)上单调递增; 故x ∈[1,+∞)时,h (x )≥h (1)=0. 所以对任意x ∈(-∞,+∞),恒有h (x )≥0; 又x 2≥0,因此f (x )-g (x )≥0.故对任意x ∈(-∞,+∞),恒有f (x )≥g (x ). 2.(2015·北京高考)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33;(3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值.解:(1)因为f (x )=ln(1+x )-ln(1-x )(-1<x <1), 所以f ′(x )=11+x +11-x,f ′(0)=2. QQ 群 545423319 微信公众号:中学数学研讨部落 又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x .(2)证明:令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33,则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33.(3)由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立.当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33,则h ′(x )=f ′(x )-k (1+x 2)=kx 4-k +21-x 2.所以当0<x <4k -2k 时,h ′(x )<0, 因此h (x )在区间⎝ ⎛⎭⎪⎫0,4k -2k 上单调递减. 故当0<x <4k -2k 时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.QQ 群 545423319 微信公众号:中学数学研讨部落所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.3.(2016·广州综合测试)已知函数f (x )=me x -ln x -1. (1)当m =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)当m ≥1时,证明:f (x )>1. 解:(1)当m =1时,f (x )=e x -ln x -1, 所以f ′(x )=e x -1x .所以f (1)=e -1,f ′(1)=e -1.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -(e -1)=(e -1)(x -1),即y =(e -1)x .(2)证明:当m ≥1时,f (x )=me x -ln x -1≥e x -ln x -1(x >0). 要证明f (x )>1,只需证明e x -ln x -2>0.设g (x )=e x -ln x -2,则g ′(x )=e x -1x . 设h (x )=e x -1x ,则h ′(x )=e x +1x 2>0,所以函数h (x )=g ′(x )=e x -1x 在(0,+∞)上单调递增. 因为g ′⎝ ⎛⎭⎪⎫12=e 12-2<0,g ′(1)=e -1>0,所以函数g ′(x )=e x-1x 在(0,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫12,1.因为g ′(x 0)=0,所以ex 0=1x 0,即ln x 0=-x 0.当x ∈(0,x 0)时,g ′(x )<0;当x ∈(x 0,+∞)时,g ′(x )>0. 所以当x =x 0时,g (x )取得最小值g (x 0). 故g (x )≥g (x 0)=ex 0-ln x 0-2=1x 0+x 0-2>0.综上可知,当m ≥1时,f (x )>1.QQ 群 545423319 微信公众号:中学数学研讨部落4.(2017·石家庄质检)已知函数f (x )=a x -x 2e x (x >0),其中e 为自然对数的底数.(1)当a =0时,判断函数y =f (x )极值点的个数;(2)若函数有两个零点x 1,x 2(x 1<x 2),设t =x 2x 1,证明:x 1+x 2随着t 的增大而增大.解:(1)当a =0时,f (x )=-x 2e x (x >0),f ′(x )=-2x ·e x --x 2·e xe x 2=x x -2e x,令f ′(x )=0,得x =2,当x ∈(0,2)时,f ′(x )<0,y =f (x )单调递减, 当x ∈(2,+∞)时,f ′(x )>0,y =f (x )单调递增, 所以x =2是函数的一个极小值点,无极大值点, 即函数y =f (x )有一个极值点.(2)证明:令f (x )=a x -x 2e x =0,得x 32=ae x ,因为函数有两个零点x 1,x 2(x 1<x 2),所以x 1321=aex 1,x 322=aex 2,可得32ln x 1=ln a +x 1,32ln x 2=ln a +x 2.故x 2-x 1=32ln x 2-32ln x 1=32ln x 2x 1.又x 2x 1=t ,则t >1,且⎩⎪⎨⎪⎧x 2=tx 1,x 2-x 1=32ln t ,解得x 1=32ln t t -1,x 2=32t ln tt -1.所以x 1+x 2=32·t +1ln tt -1.①令h (x )=x +1ln xx -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1xx -12.令u (x )=-2ln x +x -1x ,得u ′(x )=⎝⎛⎭⎪⎫x -1x 2. 当x ∈(1,+∞)时,u ′(x )>0. 因此,u (x )在(1,+∞)上单调递增, 故对于任意的x ∈(1,+∞),u (x )>u (1)=0, 由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增. 因此,由①可得x 1+x 2随着t 的增大而增大.第二部分 利用导数探究含参数函数的性质技法一:利用导数研究函数的单调性[典例] 已知函数g (x )=ln x +ax 2+bx ,函数g (x )的图象在点(1,g (1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性.[解](1)依题意得g′(x)=1x+2ax+b(x>0).由函数g(x)的图象在点(1,g(1))处的切线平行于x轴得:g′(1)=1+2a+b=0,∴b=-2a-1.(2)由(1)得g′(x)=2ax2-2a+1x+1x=2ax-1x-1x.∵函数g(x)的定义域为(0,+∞),∴当a=0时,g′(x)=-x-1 x.由g′(x)>0,得0<x<1,由g′(x)<0,得x>1,当a>0时,令g′(x)=0,得x=1或x=12a,若12a<1,即a>12,由g′(x)>0,得x>1或0<x<12a,由g′(x)<0,得12a<x<1;若12a>1,即0<a<12,由g′(x)>0,得x>12a或0<x<1,由g′(x)<0,得1<x<12a,若12a=1,即a=12在(0,+∞)上恒有g′(x)≥0.综上可得:当a=0时,函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a<12时,函数g(x)在(0,1)上单调递增,在⎝ ⎛⎭⎪⎫1,12a 上单调递减,在⎝ ⎛⎭⎪⎫12a ,+∞上单调递增; 当a =12时,函数g (x )在(0,+∞)上单调递增, 当a >12时,函数g (x )在⎝ ⎛⎭⎪⎫0,12a 上单调递增,在⎝ ⎛⎭⎪⎫12a ,1上单调递减,在(1,+∞)上单调递增. [方法点拨](1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(3)本题(2)求解应先分a =0或a >0两种情况,再比较12a 和1的大小. [对点演练](2016·太原一模)已知函数f (x )=x -a ln x (a ∈R ). (1)当a =2时,求曲线y =f (x )在x =1处的切线方程; (2)设函数h (x )=f (x )+1+ax ,求函数h (x )的单调区间. 解:(1)当a =2时,f (x )=x -2ln x ,f (1)=1, 即切点为(1,1),∵f ′(x )=1-2x ,∴f ′(1)=1-2=-1,∴曲线y =f (x )在点(1,1)处的切线方程为y -1=-(x -1),即x +y -2=0. (2)由题意知,h (x )=x -a ln x +1+ax (x >0), 则h ′(x )=1-a x -1+a x 2=x 2-ax -1+ax 2=x +1[x -1+a]x 2,①当a +1>0,即a >-1时, 令h ′(x )>0,∵x >0,∴x >1+a , 令h ′(x )<0,∵x >0,∴0<x <1+a .②当a+1≤0,即a≤-1时,h′(x)>0恒成立,综上,当a>-1时,h(x)的单调递减区间是(0,a+1),单调递增区间是(a+1,+∞);当a≤-1时,h(x)的单调递增区间是(0,+∞),无单调递减区间.技法二:利用导数研究函数的极值[典例]设a>0,函数f(x)=12x2-(a+1)x+a(1+ln x).(1)若曲线y=f(x)在(2,f(2))处的切线与直线y=-x+1垂直,求切线方程.(2)求函数f(x)的极值.[解](1)由已知,得f′(x)=x-(a+1)+ax(x>0),又由题意可知y=f(x)在(2,f(2))处切线的斜率为1,所以f′(2)=1,即2-(a+1)+a2=1,解得a=0,此时f(2)=2-2=0,故所求的切线方程为y=x-2.(2)f′(x)=x-(a+1)+ax=x2-a+1x+ax=x-1x-ax(x>0).①当0<a<1时,若x∈(0,a),则f′(x)>0,函数f(x)单调递增;若x∈(a,1),则f′(x)<0,函数f(x)单调递减;若x∈(1,+∞),则f′(x)>0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的极小值点,函数f(x)的极大值是f(a)=-12a2+a ln a,极小值是f(1)=-1 2.②当a=1时,f′(x)=x-12x≥0,所以函数f(x)在定义域(0,+∞)内单调递增,此时f (x )没有极值点,故无极值. ③当a >1时,若x ∈(0,1),则f ′(x )>0,函数f (x )单调递增; 若x ∈(1,a ),则f ′(x )<0,函数f (x )单调递减; 若x ∈(a ,+∞),则f ′(x )>0,函数f (x )单调递增.此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点,函数f (x )的极大值是f (1)=-12,极小值是f (a )=-12a 2+a ln a .综上,当0<a <1时,f (x )的极大值是-12a 2+a ln a , 极小值是-12;当a =1时,f (x )没有极值;当a >1时f (x )的极大值是-12,极小值是-12a 2+a ln a . [方法点拨]对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1) 参数是否影响f ′(x )零点的存在;QQ 群 545423319 微信公众号:中学数学研讨部落 (2)参数是否影响f ′(x )不同零点(或零点与函数定义域中的间断点)的大小; (3)参数是否影响f ′(x )在零点左右的符号(如果有影响,需要分类讨论). [对点演练](2016·山东高考)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x .当a ≤0,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增; 当a >0,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增, 所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =1处取得极小值,不合题意. ②当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增, 可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.技法三:利用导数研究函数的最值[典例] 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.[解] (1)由题意,f ′(x )=1x -a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调递增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1a , 当0<x <1a 时,f ′(x )=1-ax x >0; 当x >1a 时,f ′(x )=1-ax x <0, 故函数f (x )的单调递增区间为⎝ ⎛⎦⎥⎤0,1a ,单调递减区间为⎣⎢⎡⎭⎪⎫1a ,+∞.综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝ ⎛⎦⎥⎤0,1a ,单调递减区间为⎣⎢⎡⎭⎪⎫1a ,+∞.(2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ; 当ln 2≤a <1时,最小值为f (2)=ln 2-2a .综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a . [方法点拨](1)在闭区间上图象连续的函数一定存在最大值和最小值,在不是闭区间的情况下,函数在这个区间上的最大值和最小值可能都存在,也可能只存在一个,或既无最大值也无最小值;(2)在一个区间上,如果函数只有一个极值点,则这个极值点就是最值点. [对点演练] 1.若函数f (x )=x x 2+a(a >0)在[1,+∞)上的最大值为33,则a 的值为( ) A .33 B .3 C .3+1 D .3-1解析:选D f ′(x )=x 2+a -2x 2x 2+a 2=a -x 2x 2+a2.令f ′(x )=0,得x =a 或x =-a (舍去),若a ≤1,即0<a ≤1时,在[1,+∞)上f ′(x )<0,f (x )max =f (1)=11+a =33.解得a =3-1,符合题意.若a >1,即a >1时,在[1,a )上f ′(x )>0,在(a ,+∞)上f ′(x )<0,所以f (x )max =f (a )=a 2a =33, 解得a =34<1,不符合题意,综上知,a =3-1. 2.已知函数f (x )=x ln x ,g (x )=(-x 2+ax -3)e x (a 为实数). (1)当a =5时,求函数y =g (x )在x =1处的切线方程; (2)求f (x )在区间[]t ,t +2(t >0)上的最小值. 解:(1)当a =5时,g (x )=(-x 2+5x -3)e x ,g (1)=e . 又g ′(x )=(-x 2+3x +2)e x , 故切线的斜率为g ′(1)=4e . 所以切线方程为y -e =4e (x -1), 即y =4ex -3e .(2)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1, 当x 变化时,f ′(x ),f (x )的变化情况如下表:x⎝ ⎛⎭⎪⎫0,1e 1e ⎝ ⎛⎭⎪⎫1e ,+∞f ′(x ) - 0 + f (x )极小值①当t ≥1e 时,在区间[]t ,t +2上f (x )为增函数, 所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间⎣⎢⎡⎭⎪⎫t ,1e 上f (x )为减函数,在区间⎝ ⎛⎦⎥⎤1e ,t +2上f (x )为增函数,所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e .综上,f (x )min =⎩⎪⎨⎪⎧t ln t ,t ≥1e ,-1e ,0<t <1e .强化训练1.已知函数f (x )=x -12ax 2-ln(1+x )(a >0). (1)若x =2是f (x )的极值点,求a 的值; (2)求f (x )的单调区间. 解:f ′(x )=x 1-a -axx +1,x ∈(-1,+∞). (1)依题意,得f ′(2)=0,即21-a -2a 2+1=0,解得a =13.经检验,a =13符合题意,故a 的值为13. (2)令f ′(x )=0,得x 1=0,x 2=1a-1.①当0<a <1时,f (x )与f ′(x )的变化情况如下: x (-1,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x ) - 0 + 0 -f (x )f (x 1)f (x 2)∴f (x )的单调增区间是⎝ ⎛⎭⎪⎫0,1a -1,单调减区间是(-1,0)和⎝ ⎛⎭⎪⎫1a -1,+∞.②当a =1时,f (x )的单调减区间是(-1,+∞). ③当a >1时,-1<x 2<0,f (x )与f ′(x )的变化情况如下:∴f (x )的单调增区间是⎝ ⎛⎭⎪⎫1a -1,0,单调减区间是⎝ ⎛⎭⎪⎫-1,1a -1和(0,+∞).综上,当0<a <1时,f (x )的单调增区间是⎝ ⎛⎭⎪⎫0,1a -1,单调减区间是(-1,0)和⎝ ⎛⎭⎪⎫1a -1,+∞;当a =1时,f (x )的单调减区间是(-1,+∞);当a >1时,f (x )的单调增区间是⎝ ⎛⎭⎪⎫1a -1,0,单调减区间是⎝ ⎛⎭⎪⎫-1,1a -1和(0,+∞).2.已知函数f (x )=⎩⎨⎧-x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e ](e 为自然对数的底数)上的最大值. 解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:=3. (2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增.因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0; 当a >0时,f (x )在[1,e ]上单调递增, 则f (x )在[1,e ]上的最大值为f (e )=a .综上所述,当a ≥2时,f (x )在[-1,e ]上的最大值为a ; 当a <2时,f (x )在[-1,e ]上的最大值为2. 3.已知函数f (x )=ax -1-ln x (a ∈R ). (1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围.解:(1)由已知得f ′(x )=a -1x =ax -1x (x >0).当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减, ∴f (x )在(0,+∞)上没有极值点. 当a >0时,由f ′(x )<0,得0<x <1a , 由f ′(x )>0,得x >1a ,∴f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,即f (x )在x =1a 处有极小值.∴当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点. (2)∵函数f (x )在x =1处取得极值,∴f ′(1)=0,解得a =1,∴f (x )≥bx -2⇒1+1x -ln xx ≥b , 令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2, 令g ′(x )=0,得x =e 2.则g (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2, 故实数b 的取值范围为⎝ ⎛⎦⎥⎤-∞,1-1e 2. 4.已知方程f (x )·x 2-2ax +f (x )-a 2+1=0,其中a ∈R ,x ∈R . (1)求函数f (x )的单调区间;(2)若函数f (x )在[0,+∞)上存在最大值和最小值,求实数a 的取值范围. 解:(1)由f (x )·x 2-2ax +f (x )-a 2+1=0得f (x )=2ax +a 2-1x 2+1,则f ′(x )=-2x +a ax -1x 2+12.①当a =0时,f ′(x )=2x x 2+12,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减, 即f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0).②当a >0时,令f ′(x )=0,得x 1=-a ,x 2=1a ,当x 变化时,f ′(x )与f (x )的变化情况如下:x (-∞,x 1)x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x ) - 0 + 0 -f (x )极小值极大值故f (x )的单调递减区间是(-∞,-a ),⎝ ⎛⎭⎪⎫1a ,+∞,单调递增区间是⎝ ⎛⎭⎪⎫-a ,1a . ③当a <0时,令f ′(x )=0,得x 1=-a ,x 2=1a ,当x 变化时,f ′(x )与f (x )的变化情况如下:x (-∞,x 2)x 2 (x 2,x 1) x 1 (x 1,+∞)f ′(x ) + 0 - 0 +f (x )极大值极小值所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,1a ,(-a ,+∞),单调递减区间是⎝ ⎛⎭⎪⎫1a ,-a .(2)由(1)得,a =0不合题意.当a >0时,由(1)得,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,所以f (x )在[0,+∞)上存在最大值f ⎝ ⎛⎭⎪⎫1a =a 2>0.设x 0为f (x )的零点,易知x 0=1-a 22a ,且x 0<1a . 从而当x >x 0时,f (x )>0;当x <x 0时,f (x )<0. 若f (x )在[0,+∞)上存在最小值,必有f (0)≤0, 解得-1≤a ≤1.所以当a >0时,若f (x )在[0,+∞)上存在最大值和最小值,则实数a 的取值范围是(0,1].当a <0时,由(1)得,f (x )在(0,-a )上单调递减,在(-a ,+∞)上单调递增,所以f (x )在[0,+∞)上存在最小值f (-a )=-1.易知当x ≥-a 时,-1≤f (x )<0,所以若f (x )在[0,+∞)上存在最大值,必有f (0)≥0,解得a ≥1或a ≤-1.所以当a <0时,若f (x )在[0,+∞)上存在最大值和最小值,则实数a 的取值范围是(-∞,-1].综上所述,实数a 的取值范围是(-∞,-1]∪(0,1]. 5.设函数f (x )=x 2-ax +b .(1)讨论函数f (sin x )在⎝ ⎛⎭⎪⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值;(2)记f 0(x )=x 2-a 0x +b 0,求函数|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值D ;(3)在(2)中,取a 0=b 0=0,求z =b -a 24满足条件D ≤1时的最大值. 解:(1)由题意,f (sin x )=sin 2x -a sin x +b =sin x (sin x -a )+b , 则f ′(sin x )=(2sin x -a )cos x ,因为-π2<x <π2,所以cos x >0,-2<2sin x <2. ①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值;②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值;③对于-2<a <2,在⎝ ⎛⎭⎪⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时,函数f (sin x )单调递减; x 0≤x <π2时,函数f (sin x )单调递增.因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值f (sin x 0)=f ⎝ ⎛⎭⎪⎫a 2=b-a 24.(2)当-π2≤x ≤π2时,|f (sin x )-f 0(sin x )|=|(a 0-a )sin x +b -b 0|≤|a -a 0|+|b -b 0|, 当(a 0-a )(b -b 0)≥0,x =π2时等号成立, 当(a 0-a )(b -b 0)<0时,x =-π2时等号成立.由此可知,|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值为D =|a -a 0|+|b -b 0|.(3)D ≤1即为|a |+|b |≤1,此时0≤a 2≤1,-1≤b ≤1,从而z =b -a 24≤1.取a =0,b =1,则|a |+|b |≤1,并且z =b -a 24=1. 由此可知,z =b -a 24满足条件D ≤1的最大值为1. 6.已知函数f (x )=x -1x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间;(2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈⎝ ⎛⎦⎥⎤0,12,求h (x 1)-h (x 2)的最小值.解:(1)由题意得F (x )=x -1x -a ln x (x >0),则F ′(x )=x 2-ax +1x 2,令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,所以F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为 x 1=a -a 2-42,x 2=a +a 2-42,所以F (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞, F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. 综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞); 当a >2时,F (x )的单调递增区间为 ⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. (2)对h (x )=x -1x +a ln x ,x ∈(0,+∞)求导得, h ′(x )=1+1x 2+a x =x 2+ax +1x 2,h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a , 所以x 2=1x 1,从而有a =-x 1-1x 1.令H (x )=h (x )-h ⎝ ⎛⎭⎪⎫1x=x -1x +⎝ ⎛⎭⎪⎫-x -1x ln x -⎣⎢⎡⎦⎥⎤1x -x +⎝ ⎛⎭⎪⎫-x -1x ·ln 1x =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-x -1x ln x +x -1x ,即H ′(x )=2⎝ ⎛⎭⎪⎫1x 2-1ln x =21-x1+x ln xx 2(x >0).当x ∈⎝ ⎛⎦⎥⎤0,12时,H ′(x )<0,所以H (x )在⎝ ⎛⎦⎥⎤0,12上单调递减,又H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎫1x 1=h (x 1)-h (x 2),所以[h (x 1)-h (x 2)]min =H ⎝ ⎛⎭⎪⎫12=5ln 2-3.第三部分 导数的综合应用(一)技法一:利用导数研究函数的零点或方程的根[典例] (2016·北京高考)设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. [解] (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-23,x 3∈⎝ ⎛⎭⎪⎫-23,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点. (3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0.当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增.所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0.故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.[方法点拨]利用导数研究方程根的方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.[对点演练]已知函数f (x )=(2-a )x -2(1+ln x )+a .(1)当a =1时,求f (x )的单调区间.(2)若函数f (x )在区间⎝ ⎛⎭⎪⎫0,12上无零点,求a 的最小值. 解:(1)当a =1时,f (x )=x -1-2ln x ,则f ′(x )=1-2x ,其中x ∈(0,+∞).由f ′(x )>0,得x >2,由f ′(x )<0,得0<x <2,故f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)f (x )=(2-a )x -2(1+ln x )+a=(2-a )(x -1)-2ln x ,令m (x )=(2-a )(x -1),h (x )=2ln x ,其中x >0,则f (x )=m (x )-h (x ).①当a <2时,m (x )在⎝ ⎛⎭⎪⎫0,12上为增函数,h (x )在⎝ ⎛⎭⎪⎫0,12上为增函数, 结合图象知,若f (x )在⎝ ⎛⎭⎪⎫0,12上无零点, 则m ⎝ ⎛⎭⎪⎫12≥h ⎝ ⎛⎭⎪⎫12, 即(2-a )⎝ ⎛⎭⎪⎫12-1≥2ln 12, 所以a ≥2-4ln 2,所以2-4ln 2≤a <2.②当a ≥2时,在⎝ ⎛⎭⎪⎫0,12上m (x )≥0,h (x )<0, 所以f (x )>0,所以f (x )在⎝ ⎛⎭⎪⎫0,12上无零点. 由①②得a ≥2-4ln 2,所以a min =2-4ln 2.技法二:利用导数证明不等式[典例] 设f (x )=e x -1.(1)当x >-1时,证明:f (x )>2x 2+x -1x +1; (2)当a >ln 2-1且x >0时,证明:f (x )>x 2-2ax .[证明] (1)当x >-1时,f (x )>2x 2+x -1x +1,即e x-1>2x2+x-1x+1=2x-1,当且仅当ex>2x,即e x-2x>0恒成立时原不等式成立.令g(x)=e x-2x,则g′(x)=e x-2.令g′(x)=0,即e x-2=0,解得x=ln 2.当x∈(-∞,ln 2)时,g′(x)=e x-2<0,故函数g(x)在(-1,ln 2)上单调递减;当x∈[ln 2,+∞)时,g′(x)=e x-2≥0,故函数g(x)在[ln 2,+∞)上单调递增.所以g(x)在(-1,+∞)上的最小值为g(ln 2)=e ln 2-2ln 2=2(1-ln 2)>0,所以在(-1,+∞)上有g(x)≥g(ln 2)>0,即e x>2x.故当x∈(-1,+∞)时,f(x)>2x2+x-1x+1.(2)f(x)>x2-2ax,即e x-1>x2-2ax,则e x-x2+2ax-1>0.令p(x)=e x-x2+2ax-1,则p′(x)=e x-2x+2a,令h(x)=e x-2x+2a,则h′(x)=e x-2.由(1)可知,当x∈(-∞,ln 2)时,h′(x)<0,函数h(x)单调递减;当x∈[ln 2,+∞)时,h′(x)≥0,函数h(x)单调递增.所以h(x)的最小值为h(ln 2)=e ln 2-2ln 2+2a=2-2ln 2+2a.因为a>ln 2-1,所以h(ln 2)>2-2ln 2+2(ln 2-1)=0,即h(x)≥h(ln 2)>0,所以p′(x)=h(x)>0,即p(x)在R上为增函数,故p(x)在(0,+∞)上为增函数,所以p(x)>p(0),而p(0)=0,所以p(x)=e x-x2+2ax-1>0,即当a>ln 2-1且x>0时,f(x)>x2-2ax.[方法点拨]对于最值与不等式的证明相结合试题的求解往往先对不等式进行化简,然后通过构造新函数,转化为函数的最值,利用导数来解决.解决此类问题应该注意三个方面:(1)在化简所证不等式的时候一定要注意等价变形,尤其是两边同时乘以或除以一个数或式的时候,注意该数或式的符号;(2)灵活构造函数,使研究的函数形式简单,便于计算最值;(3)在利用导数求解最值时要注意定义域的限制,且注意放缩法的灵活应用.[对点演练](2017·兰州诊断)已知函数f(x)=e x-ax-1(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.(1)求a的值及函数y=f(x)的单调区间;(3)若x1<ln 2,x2>ln 2,且f(x1)=f(x2),试证明:x1+x2<2ln 2.解:(1)由f(x)=e x-ax-1,得f′(x)=e x-a.又f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x-1,f′(x)=e x-2.由f′(x)=e x-2>0,得x>ln 2.所以函数y=f(x)在区间(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增.(2)证明:设x>ln 2,所以2ln 2-x<ln 2,f(2ln 2-x)=e(2ln 2-x)-2(2ln 2-x)-1=4e x+2x-4ln 2-1.令g(x)=f(x)-f(2ln 2-x)=e x-4e x-4x+4ln 2(x≥ln 2),所以g′(x)=e x+4e-x-4≥0,当且仅当x=ln 2时,等号成立,所以g(x)=f(x)-f(2ln 2-x)在(ln 2,+∞)上单调递增.又g(ln 2)=0,所以当x>ln 2时,g(x)=f(x)-f(2ln 2-x)>g(ln 2)=0,即f(x)>f(2ln 2-x),所以f(x2)>f(2ln 2-x2),又因为f(x1)=f(x2),所以f(x1)>f(2ln 2-x2),由于x2>ln 2,所以2ln 2-x2<ln 2,因为x1<ln 2,由(1)知函数y=f(x)在区间(-∞,ln 2)上单调递减,所以x1<2ln 2-x2,即x1+x2<2ln 2.技法三:利用导数研究不等式恒成立问题[典例]设f(x)=e x-a(x+1).(1)若∀x∈R,f(x)≥0恒成立,求正实数a的取值范围;(2)设g(x)=f(x)+ae x,且A(x1,y1),B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围.[解](1)因为f(x)=e x-a(x+1),所以f′(x)=e x-a.由题意,知a>0,故由f′(x)=e x-a=0,解得x=ln a.故当x∈(-∞,ln a)时,f′(x)<0,函数f(x)单调递减;当x∈(ln a,+∞)时,f′(x)>0,函数f(x)单调递增.所以函数f(x)的最小值为f(ln a)=e ln a-a(ln a+1)=-a ln a.由题意,若∀x∈R,f(x)≥0恒成立,即f(x)=e x-a(x+1)≥0恒成立,故有-a ln a≥0,又a>0,所以ln a≤0,解得0<a≤1.所以正实数a的取值范围为(0,1].(2)设x1,x2是任意的两个实数,且x1<x2.则直线AB的斜率为k=g x2-g x1x2-x1,由已知k>m,即g x2-g x1x2-x1>m.因为x2-x1>0,所以g(x2)-g(x1)>m(x2-x1),即g(x2)-mx2>g(x1)-mx1.因为x1<x2,所以函数h(x)=g(x)-mx在R上为增函数,故有h′(x)=g′(x)-m≥0恒成立,所以m≤g′(x).而g′(x)=e x-a-ae x,又a≤-1<0,故g′(x)=e x+-ae x-a≥2ex·-ae x-a=2-a-a.而2-a-a=2-a+(-a)2。
高考导数压轴题-函数与导数核心考点(完美版)

题型二 单调型
1.主导函数需 “二次求导 ”型 I 不含参求单调区间
例
1.求函数
f
(x
)=
x(
ex
-
1)-
1 2x
2的单调区间
.
解: f(x)的定义域为 R f ′x()= ex(1+x)-1-x=(x+ 1)(ex+1)
令 f ′x()>0,得 x<- 1 或 x> 0;令 f ′x()<0,得- 1< x<0
所以切线方程为: y- 13x03+43=x02(x-x0),
由切线经过点
P(2,4),可得
4-
13x03+
4 3=
x02(2-
x0),整理得:
x03-
3x02+
4
= 0,解得 x0=- 1 或 x0=2
当 x0=- 1 时,切线方程为: x-y+ 2= 0;
当 x0=2 时,切线方程为: 4x-y-4=0. 例 2.求 f(x)=x3- 4x2+5x-4 过点 (2,- 2)的切线方程 . 解:设切点为 (x0,x03- 4x02+5x0-4),则切线斜率 f ′x(0)= 3x02-8x0+5,
点 P 在曲线上 切点
点 P 不在曲线上 不是切点
点 P 在曲线上 不确定是切点
O
P
O
O
P
P
Step1 设切点为 (x0,f(x0)),则切线斜率 f ′x(0),切线方程为:
y- f(x0)=f ′x(0)(x- x0)
Step2 因为切线过点 (a, b),所以 b-f(x0)= f ′x(0)(a-x0),解得 x0=x1 或 x0=x2
∵切线经过点 P(1,m), ∴ m- (x03-4x02+5x0-4)= (3x02- 8x0+ 5) (1-x0), 即:- 2x03+ 3x02-3-m=0,即 m=- 2x03+3x02-3 ∵过点 A(1, m)(m≠2可) 作 f(x)=x3- 3x 的三条切线, ∴方程 m=- 2x03+ 3x02-3,有三个不同的实数根 .
高考数学压轴专题新备战高考《函数与导数》全集汇编附答案

【高中数学】数学高考《函数与导数》试题含答案一、选择题1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( )ABCD【答案】B【解析】【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可.【详解】22222sin 2sin cos 2cos 2sin cos 1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫==⎪⎝⎭. 故选:A【点睛】 本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.2.已知()f x 是定义在R 上的偶函数,其图象关于点(1,0)对称.以下关于()f x 的结论:①()f x 是周期函数;②()f x 满足()(4)f x f x =-;③()f x 在(0,2)单调递减;④()cos 2x f x π=是满足条件的一个函数.其中正确结论的个数是( ) A .4B .3C .2D .1【答案】B【解析】【分析】题目中条件:(2)()f x f x +=-可得(4)()f x f x +=知其周期,利用奇函数图象的对称性,及函数图象的平移变换,可得函数的对称中心,结合这些条件可探讨函数的奇偶性,及单调性.【详解】解:对于①:()()f x f x -=Q ,其图象关于点(1,0)对称(2)()f x f x +=-所以(4)(2)()f x f x f x +=-+=, ∴函数()f x 是周期函数且其周期为4,故①正确;对于②:由①知,对于任意的x ∈R ,都有()f x 满足()(4)f x f x -=-,函数是偶函数,即()(4)f x f x =-,故②正确.对于③:反例:如图所示的函数,关于y 轴对称,图象关于点(1,0)对称,函数的周期为4,但是()f x 在(0,2)上不是单调函数,故③不正确;对于④:()cos2x f x π=是定义在R 上的偶函数,其图象关于点(1,0)对称的一个函数,故④正确.故选:B .【点睛】 本题考查函数的基本性质,包括单调性、奇偶性、对称性和周期性,属于基础题.3.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足()()3f x f x x'->,则关于x的不等式31(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭的解集为( ) A .()3,6B .()0,3C .()0,6D .()6,+∞【答案】A【解析】【分析】根据条件,构造函数3()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可.【详解】解:Q 3(1)(3)(3)03x f x f ---<, 3(3)(3)27x f x f ∴---(3)0<,3(3)(3)27x f x f ∴--<(3),Q 定义在(0,)+∞的函数()f x ,3x ∴<,令3()()g x x f x =, ∴不等式3(3)(3)27x f x f --<(3),即为(3)g x g -<(3),323()(())3()()g x x f x x f x x f x '='=+', Q ()()3f x f x x'->, ()3()xf x f x ∴'>-,()3()0xf x f x ∴'+>,32()3()0x f x x f x ∴+>,()0g x ∴'>,()g x ∴单调递增,又因为由上可知(3)g x g -<(3),33x ∴-<,3x <Q ,36x ∴<<.故选:A .【点睛】本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.4.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞) 【答案】B【解析】【分析】 利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2 的取值范围.【详解】由题得f′(x )=4k k x +﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()24x k x k x ⎛⎫-- ⎪⎝⎭,(x >0,k >0) 由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2), 即21144k k x x +-﹣1=24k k x +﹣224x ﹣1, 化简得4(x 1+x 2)=(k+4k )x 1x 2, 而x 1x 2<212()2x x +, 4(x 1+x 2)<(k+4k )212()2x x +, 即x 1+x 2>164k k+对k ∈[4,+∞)恒成立,令g (k )=k+4k, 则g′(k )=1﹣24k =()()222k k k +->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴164k k+≤165, ∴x 1+x 2>165,故x 1+x 2的取值范围为(165,+∞). 故答案为B【点睛】 本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键,属于中档题.5.函数22cos x xy x x--=-的图像大致为( ). A . B .C .D .【答案】A【解析】【分析】本题采用排除法:由5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭排除选项D ; 根据特殊值502f π⎛⎫> ⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ;【详解】对于选项D:由题意可得, 令函数()f x = 22cos x xy x x--=-, 则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫= ⎪⎝⎭; 即5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.故选项D 排除; 对于选项C :因为55225220522f ππππ--⎛⎫=> ⎪⎝⎭,故选项C 排除;对于选项B:当0x >,且x 无限接近于0时,cos x x -接近于10-<,220x x -->,此时()0f x <.故选项B 排除;故选项:A【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.6.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ). AB.C.2 D.【答案】D【解析】 试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =- 所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---≥= 当且仅当2a b a b-=-,即a b -=时等号成立 所以22a b a b+-的最下值为故答案选D考点:基本不等式.7.已知定义在R 上的函数()f x 满足(2)(2)f x f x +=-,且当2x >时,()()2()x f x f x f x ''⋅+>,若(1)1f =.则不等式1()2f x x <-的解集是( ) A .(2,3)B .(,1)-∞C .()(1,2)2,3⋃D .()(,1)3,-∞⋃+∞ 【答案】C【解析】【分析】 令()|2|()F x x f x =-,当2x >时,则()(2)()F x x f x =-,利用导数可得当2x >时,()F x 单调递增,根据题意可得()F x 的图象关于2x =对称,不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠,从而()(1)F x F <,利用对称性可得|2||12|x -<-,解不等式即可.【详解】当2x >时,()()2()x f x f x f x ''⋅+>,∴(2)()()0x f x f x '-+>,令()|2|()F x x f x =-.当2x >时,则()(2)()F x x f x =-,()(2)()()0F x x f x f x ''=-+>,即当2x >时,()F x 单调递增.函数()f x 满足(2)(2)f x f x +=-,所以(2)(2)F x F x +=-,即()F x 的图象关于2x =对称, 不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠, (1)|12|(1)(1)1F f f =-==,即()(1)F x F <,所以|2||12|x -<-,解得13x <<且2x ≠,解集为(1,2)(2,3)U .故选:C【点睛】本题考查了导数在解不等式中的应用、函数的对称性的应用以及绝对值不等式的解法,属于中档题.8.函数()2sin f x x x x =-的图象大致为( )A .B .C .D .【答案】A【解析】【分析】分析函数()y f x =的奇偶性,并利用导数分析该函数在区间()0,+∞上的单调性,结合排除法可得出合适的选项.【详解】因为()()()()()22sin sin f x x x x x x x f x -=----=-=,且定义域R 关于原点对称,所以函数()y f x =为偶函数,故排除B 项; ()()2sin sin f x x x x x x x =-=-,设()sin g x x x =-,则()1cos 0g x x ='-≥恒成立,所以函数()y g x =单调递增,所以当0x >时,()()00g x g >=,任取120x x >>,则()()120g x g x >>,所以,()()1122x g x x g x >,()()12f x f x ∴>,所以,函数()y f x =在()0,+∞上为增函数,故排除C 、D 选项.故选:A.【点睛】本题考查利用函数解析式选择图象,一般分析函数的定义域、奇偶性、单调性、函数零点以及函数值符号,结合排除法得出合适的选项,考查分析问题和解决问题的能力,属于中等题.9.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个【答案】B【解析】【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数.【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =,即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误.故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.10.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n +的最小值为() A .16B .24C .50D .25【答案】D【解析】【分析】 由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值.【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1),∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号, 故则41m n+的最小值为25, 故选D .【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.11.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b - B .3223b - C .0 D .2316b b - 【答案】A【解析】【分析】 求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--,∵函数()f x 在区间[3,1]-上不是单调函数, 31b ∴-<<,由()0f x '>,解得:2x >或x b <, 由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-,故选:A. 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.12.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】 令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解,令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减, 所以10m e<≤, 所以10a e <≤,当1a e=时,x e =,只有一个零点,不合题意, 所以10a e<< 故选:B 【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.13.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >> B .a b c >>C .b a c >>D .c a b >>【答案】B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.14.已知函数()2cos f x x x =-,若15log 3a f ⎛⎫= ⎪⎝⎭,31log 5b f ⎛⎫= ⎪⎝⎭,315c f ⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭=⎪,则( ) A .a b c >> B .b a c >> C .c b a >> D .c a b >>【答案】B 【解析】 【分析】判断()f x 为偶函数,利用导数得出()f x 在()0,π上单调递增,由对数函数的性质,结合函数()f x 的单调性和奇偶性,即可得出答案. 【详解】()()()()22cos cos f x x x x x f x -=---=-=,故()f x 为偶函数故只需考虑()0,x ∈+∞的单调性即可.()'2sin f x x x =+,当()0,x π∈时,易得()'0f x >故()f x 在()0,π上单调递增,()155log 3log 3a f f ⎛⎫== ⎪⎝⎭,()331log log 55b f f ⎛⎫== ⎪⎝⎭,由函数单调性可知()()3531log 3log 55f f f ⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭,即c a b << 故选:B 【点睛】本题主要考查了利用函数的奇偶性以及单调性比较大小,属于中档题.15.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( ) A .x -y =0 B .x -y -2=0 C .x +y -2=0 D .3x -y -2=0【答案】A 【解析】 【分析】先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案. 【详解】当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以2()ln f x x x =-,(1)1f =,所以'1()2f x x x=-,'(1)1f =,故切线方程为11y x -=-,即y x =.故选:A . 【点睛】本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.16.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.17.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.18.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积最大.A .34B .23C .13D .12【答案】B 【解析】 【分析】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)312x -,则可得正六棱柱容器的容积为()())()32921224V x x x x x x x =+⋅⋅-=-+,再利用导函数求得最值,即可求解. 【详解】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)12x -, 所以正六棱柱容器的容积为()())()329214V x x x x x x x =+-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<, 所以()V x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,13⎛⎫⎪⎝⎭上单调递减, 所以当23x =时,()V x 取得最大值, 故选:B 【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.19.40cos2d cos sin xx x xπ=+⎰( )A.1) B1C1D.2【答案】C 【解析】 【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分. 【详解】因为22cos2cos sin cos sin cos sin cos sin x x xx x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0xx x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.20.设123log 2,ln 2,5a b c -===则 A .a b c << B .b c a <<C .c a b <<D .c b a <<【答案】C【解析】 【分析】由ln 2ln 2ln 3a b =<=及311log ,22a c >==<=可比较大小. 【详解】∵2031a ln ln =>,>,∴ln 2ln 2ln 3a b =<=,即a b <.又3311log 2log ,22a c =>==<=.∴a c >.综上可知:c ab << 故选C. 【点睛】本题主要考查了指数与对数的运算性质及对数函数的单调性比较大小,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题131—函数与导数压轴题命题区间目录第一部分构造辅助函数求解导数问题 (2)技法一:“比较法”构造函数 (2)技法二:“拆分法”构造函数 (3)技法三:“换元法”构造函数 (5)技法四:二次(甚至多次)构造函数 (8)强化训练 (10)第二部分利用导数探究含参数函数的性质 (14)技法一:利用导数研究函数的单调性 (14)技法二:利用导数研究函数的极值 (17)技法三:利用导数研究函数的最值 (19)强化训练 (22)第三部分导数的综合应用 (29)技法一:利用导数研究函数的零点或方程的根 (29)技法二:利用导数证明不等式 (31)技法三:利用导数研究不等式恒成立问题 (34)技法四:利用导数研究存在性与任意性问题 (44)技法五:利用导数研究探究性问题 (47)强化训练 (50)第一部分构造辅助函数求解导数问题对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.技法一:“比较法”构造函数[典例](2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.[解](1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2,令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)单调递减;当x>ln 2时,f′(x)>0,f(x)单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.[方法点拨]在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的结论求解.[对点演练]已知函数f(x)=xe x,直线y=g(x)为函数f(x)的图象在x=x0(x0<1)处的切线,求证:f (x )≤g (x ).证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0e0x =1-x e 0x -1-x 0e x e 0+x x .设φ(x )=(1-x )e 0x -(1-x 0)e x ,则φ′(x )=-e 0x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,又φ(x 0)=0,∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ).技法二:“拆分法”构造函数[典例] 设函数f (x )=ae x ln x +bex -1x ,曲线y =f (x )在点(1,f (1))处的切线为y=e (x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.[解] (1)f ′(x )=ae x ⎝ ⎛⎭⎪⎫ln x +1x +be x-1x -1x 2(x >0),由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2), 所以⎩⎨⎧ f 1=2,f ′1=e ,即⎩⎨⎧ b =2,ae =e ,解得⎩⎨⎧a =1,b =2.(2)证明:由(1)知f (x )=e x ln x +2ex -1x (x >0),从而f (x )>1等价于x ln x >xe -x -2e .构造函数g (x )=x ln x ,则g ′(x )=1+ln x , 所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0, 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0,故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .构造函数h (x )=xe -x -2e , 则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0;故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e . 综上,当x >0时,g (x )>h (x ),即f (x )>1. [方法点拨]对于第(2)问“ae x ln x +be x -1x >1”的证明,若直接构造函数h (x )=ae x ln x +bex -1x-1,求导以后不易分析,因此并不宜对其整体进行构造函数,而应先将不等式“ae x ln x +be x -1x >1”合理拆分为“x ln x >xe -x -2e ”,再分别对左右两边构造函数,进而达到证明原不等式的目的.QQ 群 545423319 微信公众号:中学数学研讨部落[对点演练] 已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln xx -1. 解:(1)f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln xx +12-bx 2(x >0).由于直线x +2y -3=0的斜率为-12,且过点(1,1), 故⎩⎪⎨⎪⎧f 1=1,f ′1=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得⎩⎨⎧a =1,b =1.(2)证明:由(1)知f (x )=ln x x +1+1x(x >0), 所以f (x )-ln x x -1=11-x 2⎝ ⎛⎭⎪⎫2ln x -x 2-1x . 考虑函数h (x )=2ln x -x 2-1x (x >0), 则h ′(x )=2x -2x 2-x 2-1x 2=-x -12x 2.所以当x ≠1时,h ′(x )<0.而h (1)=0, 故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0; QQ 群 545423319 微信公众号:中学数学研讨部落当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0.从而当x >0,且x ≠1时,f (x )-ln xx -1>0, 即f (x )>ln xx -1. 技法三:“换元法”构造函数[典例] 已知函数f (x )=ax 2+x ln x (a ∈R )的图象在点(1,f (1))处的切线与直线x +3y =0垂直.(1)求实数a 的值;(2)求证:当n >m >0时,ln n -ln m >m n -n m . [解] (1)因为f (x )=ax 2+x ln x ,所以f ′(x )=2ax +ln x +1,因为切线与直线x +3y =0垂直,所以切线的斜率为3, 所以f ′(1)=3,即2a +1=3,故a =1. (2)证明:要证ln n -ln m >m n -nm ,即证ln n m >m n -n m ,只需证ln n m -m n +nm >0. 令n m =x ,构造函数g (x )=ln x -1x +x (x ≥1), 则g ′(x )=1x +1x 2+1.因为x ∈[1,+∞),所以g ′(x )=1x +1x 2+1>0, 故g (x )在(1,+∞)上单调递增. 由已知n >m >0,得nm >1, 所以g ⎝ ⎛⎭⎪⎫n m >g (1)=0,即证得ln n m -m n +nm >0成立,所以命题得证. [方法点拨]对“待证不等式”等价变形为“ln n m -m n +n m >0”后,观察可知,对“nm ”进行换元,变为“ln x -1x +x >0”,构造函数“g (x )=ln x -1x +x (x ≥1)”来证明不等式,可简化证明过程中的运算.[对点演练]已知函数f (x )=x 2ln x . (1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的s ,使t =f (s );(3)设(2)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g t ln t<12.解:(1)由已知,得f ′(x )=2x ln x +x =x (2ln x +1)(x >0),令f ′(x )=0,得x =1e. 当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝ ⎛⎭⎪⎫0,1e1e ⎝ ⎛⎭⎪⎫1e ,+∞ f ′(x ) - 0 + f (x )极小值所以函数f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e ,单调递增区间是⎝ ⎛⎭⎪⎫1e ,+∞.(2)证明:当0<x ≤1时,f (x )≤0, ∵t >0,∴当0<x ≤1时不存在t =f (s ). 令h (x )=f (x )-t ,x ∈[1,+∞).由(1)知,h (x )在区间(1,+∞)上单调递增. h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0. 故存在唯一的s ∈(1,+∞),使得t =f (s )成立. (3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1, 从而ln g tln t=ln s ln f s =ln sln s 2ln s=ln s 2ln s +ln ln s =u2u +ln u,其中u =ln s . 要使25<ln g t ln t<12成立,只需0<ln u <u 2.当t >e 2时,若s =g (t )≤e ,则由f (s )的单调性,有t =f (s )≤f (e )=e 2,矛盾. 所以s >e ,即u >1,从而ln u >0成立.另一方面,令F (u )=ln u -u 2,u >1,F ′(u )=1u -12, 令F ′(u )=0,得u =2. 当1<u <2时,F ′(u )>0;当u >2时,F ′(u )<0. 故对u >1,F (u )≤F (2)<0, 因此ln u <u2成立.综上,当t >e 2时,有25<ln g tln t<12.技法四:二次(甚至多次)构造函数[典例] (2017·广州综合测试)已知函数f (x )=e x +m -x 3,g (x )=ln(x +1)+2. (1)若曲线y =f (x )在点(0,f (0))处的切线斜率为1,求实数m 的值; (2)当m ≥1时,证明:f (x )>g (x )-x 3. [解] (1)因为f (x )=e x +m -x 3, 所以f ′(x )=e x +m -3x 2.因为曲线y =f (x )在点(0,f (0))处的切线斜率为1, 所以f ′(0)=e m =1,解得m =0.(2)证明:因为f (x )=e x +m -x 3,g (x )=ln(x +1)+2, 所以f (x )>g (x )-x 3等价于e x +m -ln(x +1)-2>0. 当m ≥1时,e x +m -ln(x +1)-2≥e x +1-ln(x +1)-2. 要证e x +m -ln(x +1)-2>0, 只需证明e x +1-ln(x +1)-2>0.设h (x )=e x +1-ln(x +1)-2,则h ′(x )=e x +1-1x +1. 设p (x )=ex +1-1x +1,则p ′(x )=e x +1+1x +12>0,所以函数p (x )=h ′(x )=e x +1-1x +1在(-1,+∞)上单调递增.因为h ′⎝ ⎛⎭⎪⎫-12=e 12-2<0,h ′(0)=e -1>0,所以函数h ′(x )=e x +1-1x +1在(-1,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫-12,0.因为h ′(x 0)=0,所以ex 0+1=1x 0+1,即ln(x 0+1)=-(x 0+1). 当x ∈(-1,x 0)时,h ′(x )<0,当x∈(x0,+∞)时,h′(x)>0,所以当x=x0时,h(x)取得最小值h(x0),所以h(x)≥h(x0)=ex0+1-ln(x0+1)-2=1x0+1+(x0+1)-2>0.综上可知,当m≥1时,f(x)>g(x)-x3.QQ 群545423319 微信公众号:中学数学研讨部落[方法点拨]本题可先进行适当放缩,m≥1时,e x+m≥e x+1,再两次构造函数h(x),p(x).[对点演练](2016·合肥一模)已知函数f(x)=ex-x ln x,g(x)=e x-tx2+x,t∈R,其中e为自然对数的底数.(1)求函数f(x)的图象在点(1,f(1))处的切线方程;(2)若g(x)≥f(x)对任意的x∈(0,+∞)恒成立,求t的取值范围.解:(1)由f(x)=ex-x ln x,知f′(x)=e-ln x-1,则f′(1)=e-1,而f(1)=e,则所求切线方程为y-e=(e-1)(x-1),即y=(e-1)x+1.(2)∵f(x)=ex-x ln x,g(x)=e x-tx2+x,t∈R,∴g(x)≥f(x)对任意的x∈(0,+∞)恒成立等价于e x-tx2+x-ex+x ln x≥0对任意的x∈(0,+∞)恒成立,即t≤e x+x-ex+x ln xx2对任意的x∈(0,+∞)恒成立.令F(x)=e x+x-ex+x ln xx2,则F′(x)=xe x+ex-2e x-x ln xx3=1x2⎝⎛⎭⎪⎫e x+e-2e xx-ln x,令G(x)=e x+e-2e xx-ln x,则G′(x)=e x-2xe x-e xx2-1x=e x x-12+e x-xx2>0对任意的x∈(0,+∞)恒成立.∴G (x )=e x+e -2e xx -ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0, 即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0, ∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1, ∴t ≤1,即t 的取值范围是(-∞,1].强化训练1.设函数f (x )=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f (x )的极值点. (1)求a ,b 的值; (2)讨论f (x )的单调性;(3)设g (x )=23x 3-x 2,比较f (x )与g (x )的大小. 解:(1)因为f ′(x )=e x -1(2x +x 2)+3ax 2+2bx =xe x -1(x +2)+x (3ax +2b ), 又x =-2和x =1为f (x )的极值点, 所以f ′(-2)=f ′(1)=0, 因此⎩⎨⎧-6a +2b =0,3+3a +2b =0,解得⎩⎪⎨⎪⎧a =-13,b =-1.(2)因为a =-13,b =-1, 所以f ′(x )=x (x +2)(e x -1-1), 令f ′(x )=0,解得x 1=-2,x 2=0,x 3=1.因为当x ∈(-∞,-2)∪(0,1)时,f ′(x )<0; 当x ∈(-2,0)∪(1,+∞)时,f ′(x )>0.所以f (x )在(-2,0)和(1,+∞)上是单调递增的; 在(-∞,-2)和(0,1)上是单调递减的. (3)由(1)可知f (x )=x 2e x -1-13x 3-x 2. 故f (x )-g (x )=x 2e x -1-x 3=x 2(e x -1-x ), 令h (x )=e x -1-x ,则h ′(x )=e x -1-1. 令h ′(x )=0,得x =1,因为当x ∈(-∞,1]时,h ′(x )≤0, 所以h (x )在(-∞,1]上单调递减; 故当x ∈(-∞,1]时,h (x )≥h (1)=0; 因为当x ∈[1,+∞)时,h ′(x )≥0, 所以h (x )在[1,+∞)上单调递增; 故x ∈[1,+∞)时,h (x )≥h (1)=0. 所以对任意x ∈(-∞,+∞),恒有h (x )≥0; 又x 2≥0,因此f (x )-g (x )≥0.故对任意x ∈(-∞,+∞),恒有f (x )≥g (x ). 2.(2015·北京高考)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33;(3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值.解:(1)因为f (x )=ln(1+x )-ln(1-x )(-1<x <1), 所以f ′(x )=11+x +11-x,f ′(0)=2. QQ 群 545423319 微信公众号:中学数学研讨部落 又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x .(2)证明:令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33,则g ′(x )=f ′(x )-2(1+x 2)=2x41-x 2.因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33.(3)由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立.当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33,则h ′(x )=f ′(x )-k (1+x 2)=kx 4-k +21-x 2.所以当0<x <4k -2k 时,h ′(x )<0, 因此h (x )在区间⎝ ⎛⎭⎪⎫0,4k -2k 上单调递减. 故当0<x <4k -2k 时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.QQ 群 545423319 微信公众号:中学数学研讨部落所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.3.(2016·广州综合测试)已知函数f (x )=me x -ln x -1. (1)当m =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)当m ≥1时,证明:f (x )>1. 解:(1)当m =1时,f (x )=e x -ln x -1, 所以f ′(x )=e x -1x .所以f (1)=e -1,f ′(1)=e -1.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -(e -1)=(e -1)(x -1),即y =(e -1)x .(2)证明:当m ≥1时,f (x )=me x -ln x -1≥e x -ln x -1(x >0).要证明f (x )>1,只需证明e x -ln x -2>0. 设g (x )=e x -ln x -2,则g ′(x )=e x -1x . 设h (x )=e x -1x ,则h ′(x )=e x +1x 2>0,所以函数h (x )=g ′(x )=e x -1x 在(0,+∞)上单调递增. 因为g ′⎝ ⎛⎭⎪⎫12=e 12-2<0,g ′(1)=e -1>0,所以函数g ′(x )=e x -1x 在(0,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫12,1.因为g ′(x 0)=0,所以ex 0=1x 0,即ln x 0=-x 0.当x ∈(0,x 0)时,g ′(x )<0;当x ∈(x 0,+∞)时,g ′(x )>0. 所以当x =x 0时,g (x )取得最小值g (x 0). 故g (x )≥g (x 0)=ex 0-ln x 0-2=1x 0+x 0-2>0.综上可知,当m ≥1时,f (x )>1.QQ 群 545423319 微信公众号:中学数学研讨部落4.(2017·石家庄质检)已知函数f (x )=a x -x 2e x (x >0),其中e 为自然对数的底数.(1)当a =0时,判断函数y =f (x )极值点的个数;(2)若函数有两个零点x 1,x 2(x 1<x 2),设t =x 2x 1,证明:x 1+x 2随着t 的增大而增大.解:(1)当a =0时,f (x )=-x 2e x (x >0),f ′(x )=-2x ·e x --x 2·e xe x 2=x x -2e x,令f ′(x )=0,得x =2,当x ∈(0,2)时,f ′(x )<0,y =f (x )单调递减, 当x ∈(2,+∞)时,f ′(x )>0,y =f (x )单调递增, 所以x =2是函数的一个极小值点,无极大值点, 即函数y =f (x )有一个极值点.(2)证明:令f (x )=a x -x 2e x =0,得x 32=ae x ,因为函数有两个零点x 1,x 2(x 1<x 2),所以x 1321=aex 1,x 322=aex 2,可得32ln x 1=ln a +x 1,32ln x 2=ln a +x 2.故x 2-x 1=32ln x 2-32ln x 1=32ln x 2x 1.又x 2x 1=t ,则t >1,且⎩⎪⎨⎪⎧x 2=tx 1,x 2-x 1=32ln t ,解得x 1=32ln t t -1,x 2=32t ln tt -1.所以x 1+x 2=32·t +1ln tt -1.①令h (x )=x +1ln xx -1,x ∈(1,+∞),则h ′(x )=-2ln x +x -1xx -12.令u (x )=-2ln x +x -1x ,得u ′(x )=⎝⎛⎭⎪⎫x -1x 2. 当x ∈(1,+∞)时,u ′(x )>0. 因此,u (x )在(1,+∞)上单调递增, 故对于任意的x ∈(1,+∞),u (x )>u (1)=0, 由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增. 因此,由①可得x 1+x 2随着t 的增大而增大.第二部分 利用导数探究含参数函数的性质技法一:利用导数研究函数的单调性[典例] 已知函数g (x )=ln x +ax 2+bx ,函数g (x )的图象在点(1,g (1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性.[解](1)依题意得g′(x)=1x+2ax+b(x>0).由函数g(x)的图象在点(1,g(1))处的切线平行于x轴得:g′(1)=1+2a+b=0,∴b=-2a-1.(2)由(1)得g′(x)=2ax2-2a+1x+1x=2ax-1x-1x.∵函数g(x)的定义域为(0,+∞),∴当a=0时,g′(x)=-x-1 x.由g′(x)>0,得0<x<1,由g′(x)<0,得x>1,当a>0时,令g′(x)=0,得x=1或x=12a,若12a<1,即a>12,由g′(x)>0,得x>1或0<x<12a,由g′(x)<0,得12a<x<1;若12a>1,即0<a<12,由g′(x)>0,得x>12a或0<x<1,由g′(x)<0,得1<x<12a,若12a=1,即a=12在(0,+∞)上恒有g′(x)≥0.综上可得:当a=0时,函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a<12时,函数g(x)在(0,1)上单调递增,在⎝ ⎛⎭⎪⎫1,12a 上单调递减,在⎝ ⎛⎭⎪⎫12a ,+∞上单调递增; 当a =12时,函数g (x )在(0,+∞)上单调递增, 当a >12时,函数g (x )在⎝ ⎛⎭⎪⎫0,12a 上单调递增,在⎝ ⎛⎭⎪⎫12a ,1上单调递减,在(1,+∞)上单调递增. [方法点拨](1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(3)本题(2)求解应先分a =0或a >0两种情况,再比较12a 和1的大小. [对点演练](2016·太原一模)已知函数f (x )=x -a ln x (a ∈R ). (1)当a =2时,求曲线y =f (x )在x =1处的切线方程; (2)设函数h (x )=f (x )+1+ax ,求函数h (x )的单调区间. 解:(1)当a =2时,f (x )=x -2ln x ,f (1)=1, 即切点为(1,1),∵f ′(x )=1-2x ,∴f ′(1)=1-2=-1,∴曲线y =f (x )在点(1,1)处的切线方程为y -1=-(x -1),即x +y -2=0. (2)由题意知,h (x )=x -a ln x +1+ax (x >0), 则h ′(x )=1-a x -1+a x 2=x 2-ax -1+ax 2=x +1[x -1+a]x 2,①当a +1>0,即a >-1时, 令h ′(x )>0,∵x >0,∴x >1+a , 令h ′(x )<0,∵x >0,∴0<x <1+a .②当a+1≤0,即a≤-1时,h′(x)>0恒成立,综上,当a>-1时,h(x)的单调递减区间是(0,a+1),单调递增区间是(a+1,+∞);当a≤-1时,h(x)的单调递增区间是(0,+∞),无单调递减区间.技法二:利用导数研究函数的极值[典例]设a>0,函数f(x)=12x2-(a+1)x+a(1+ln x).(1)若曲线y=f(x)在(2,f(2))处的切线与直线y=-x+1垂直,求切线方程.(2)求函数f(x)的极值.[解](1)由已知,得f′(x)=x-(a+1)+ax(x>0),又由题意可知y=f(x)在(2,f(2))处切线的斜率为1,所以f′(2)=1,即2-(a+1)+a2=1,解得a=0,此时f(2)=2-2=0,故所求的切线方程为y=x-2.(2)f′(x)=x-(a+1)+ax=x2-a+1x+ax=x-1x-ax(x>0).①当0<a<1时,若x∈(0,a),则f′(x)>0,函数f(x)单调递增;若x∈(a,1),则f′(x)<0,函数f(x)单调递减;若x∈(1,+∞),则f′(x)>0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的极小值点,函数f(x)的极大值是f(a)=-12a2+a ln a,极小值是f(1)=-1 2.②当a=1时,f′(x)=x-12x≥0,所以函数f(x)在定义域(0,+∞)内单调递增,此时f (x )没有极值点,故无极值. ③当a >1时,若x ∈(0,1),则f ′(x )>0,函数f (x )单调递增; 若x ∈(1,a ),则f ′(x )<0,函数f (x )单调递减; 若x ∈(a ,+∞),则f ′(x )>0,函数f (x )单调递增.此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点,函数f (x )的极大值是f (1)=-12,极小值是f (a )=-12a 2+a ln a .综上,当0<a <1时,f (x )的极大值是-12a 2+a ln a , 极小值是-12;当a =1时,f (x )没有极值;当a >1时f (x )的极大值是-12,极小值是-12a 2+a ln a . [方法点拨]对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1) 参数是否影响f ′(x )零点的存在;QQ 群 545423319 微信公众号:中学数学研讨部落 (2)参数是否影响f ′(x )不同零点(或零点与函数定义域中的间断点)的大小; (3)参数是否影响f ′(x )在零点左右的符号(如果有影响,需要分类讨论). [对点演练](2016·山东高考)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x .当a ≤0,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增; 当a >0,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增, 所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =1处取得极小值,不合题意. ②当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增, 可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.技法三:利用导数研究函数的最值[典例] 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.[解] (1)由题意,f ′(x )=1x -a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调递增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1a , 当0<x <1a 时,f ′(x )=1-ax x >0; 当x >1a 时,f ′(x )=1-ax x <0, 故函数f (x )的单调递增区间为⎝ ⎛⎦⎥⎤0,1a ,单调递减区间为⎣⎢⎡⎭⎪⎫1a ,+∞.综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝ ⎛⎦⎥⎤0,1a ,单调递减区间为⎣⎢⎡⎭⎪⎫1a ,+∞.(2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ; 当ln 2≤a <1时,最小值为f (2)=ln 2-2a .综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a . [方法点拨](1)在闭区间上图象连续的函数一定存在最大值和最小值,在不是闭区间的情况下,函数在这个区间上的最大值和最小值可能都存在,也可能只存在一个,或既无最大值也无最小值;(2)在一个区间上,如果函数只有一个极值点,则这个极值点就是最值点. [对点演练] 1.若函数f (x )=x x 2+a(a >0)在[1,+∞)上的最大值为33,则a 的值为( ) A .33 B . 3 C .3+1 D .3-1解析:选D f ′(x )=x 2+a -2x 2x 2+a 2=a -x 2x 2+a2.令f ′(x )=0,得x =a 或x =-a (舍去),若a ≤1,即0<a ≤1时,在[1,+∞)上f ′(x )<0,f (x )max =f (1)=11+a =33.解得a =3-1,符合题意.若a >1,即a >1时,在[1,a )上f ′(x )>0,在(a ,+∞)上f ′(x )<0,所以f (x )max =f (a )=a 2a =33, 解得a =34<1,不符合题意,综上知,a =3-1. 2.已知函数f (x )=x ln x ,g (x )=(-x 2+ax -3)e x (a 为实数). (1)当a =5时,求函数y =g (x )在x =1处的切线方程; (2)求f (x )在区间[]t ,t +2(t >0)上的最小值. 解:(1)当a =5时,g (x )=(-x 2+5x -3)e x ,g (1)=e . 又g ′(x )=(-x 2+3x +2)e x , 故切线的斜率为g ′(1)=4e . 所以切线方程为y -e =4e (x -1), 即y =4ex -3e .(2)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1, 当x 变化时,f ′(x ),f (x )的变化情况如下表:x⎝ ⎛⎭⎪⎫0,1e 1e ⎝ ⎛⎭⎪⎫1e ,+∞f ′(x ) - 0 + f (x )极小值①当t ≥1e 时,在区间[]t ,t +2上f (x )为增函数, 所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间⎣⎢⎡⎭⎪⎫t ,1e 上f (x )为减函数,在区间⎝ ⎛⎦⎥⎤1e ,t +2上f (x )为增函数,所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e .综上,f (x )min =⎩⎪⎨⎪⎧t ln t ,t ≥1e ,-1e ,0<t <1e .强化训练1.已知函数f (x )=x -12ax 2-ln(1+x )(a >0). (1)若x =2是f (x )的极值点,求a 的值; (2)求f (x )的单调区间. 解:f ′(x )=x 1-a -axx +1,x ∈(-1,+∞). (1)依题意,得f ′(2)=0,即21-a -2a 2+1=0,解得a =13.经检验,a =13符合题意,故a 的值为13. (2)令f ′(x )=0,得x 1=0,x 2=1a-1.①当0<a <1时,f (x )与f ′(x )的变化情况如下: x (-1,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x ) - 0 + 0 -f (x )f (x 1)f (x 2)∴f (x )的单调增区间是⎝ ⎛⎭⎪⎫0,1a -1,单调减区间是(-1,0)和⎝ ⎛⎭⎪⎫1a -1,+∞.②当a =1时,f (x )的单调减区间是(-1,+∞). ③当a >1时,-1<x 2<0,f (x )与f ′(x )的变化情况如下:∴f (x )的单调增区间是⎝ ⎛⎭⎪⎫1a -1,0,单调减区间是⎝ ⎛⎭⎪⎫-1,1a -1和(0,+∞).综上,当0<a <1时,f (x )的单调增区间是⎝ ⎛⎭⎪⎫0,1a -1,单调减区间是(-1,0)和⎝ ⎛⎭⎪⎫1a -1,+∞;当a =1时,f (x )的单调减区间是(-1,+∞);当a >1时,f (x )的单调增区间是⎝ ⎛⎭⎪⎫1a -1,0,单调减区间是⎝ ⎛⎭⎪⎫-1,1a -1和(0,+∞).2.已知函数f (x )=⎩⎨⎧-x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e ](e 为自然对数的底数)上的最大值. 解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:=23. (2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增.因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0; 当a >0时,f (x )在[1,e ]上单调递增, 则f (x )在[1,e ]上的最大值为f (e )=a .综上所述,当a ≥2时,f (x )在[-1,e ]上的最大值为a ; 当a <2时,f (x )在[-1,e ]上的最大值为2. 3.已知函数f (x )=ax -1-ln x (a ∈R ). (1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围.解:(1)由已知得f ′(x )=a -1x =ax -1x (x >0).当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减, ∴f (x )在(0,+∞)上没有极值点. 当a >0时,由f ′(x )<0,得0<x <1a , 由f ′(x )>0,得x >1a ,∴f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,即f (x )在x =1a 处有极小值.∴当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点. (2)∵函数f (x )在x =1处取得极值,∴f ′(1)=0,解得a =1,∴f (x )≥bx -2⇒1+1x -ln xx ≥b , 令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2, 令g ′(x )=0,得x =e 2.则g (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2, 故实数b 的取值范围为⎝ ⎛⎦⎥⎤-∞,1-1e 2. 4.已知方程f (x )·x 2-2ax +f (x )-a 2+1=0,其中a ∈R ,x ∈R . (1)求函数f (x )的单调区间;(2)若函数f (x )在[0,+∞)上存在最大值和最小值,求实数a 的取值范围. 解:(1)由f (x )·x 2-2ax +f (x )-a 2+1=0得f (x )=2ax +a 2-1x 2+1,则f ′(x )=-2x +a ax -1x 2+12.①当a =0时,f ′(x )=2x x 2+12,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减, 即f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0).②当a >0时,令f ′(x )=0,得x 1=-a ,x 2=1a ,当x 变化时,f ′(x )与f (x )的变化情况如下:x (-∞,x 1)x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x ) - 0 + 0 -f (x )极小值极大值故f (x )的单调递减区间是(-∞,-a ),⎝ ⎛⎭⎪⎫1a ,+∞,单调递增区间是⎝ ⎛⎭⎪⎫-a ,1a . ③当a <0时,令f ′(x )=0,得x 1=-a ,x 2=1a ,当x 变化时,f ′(x )与f (x )的变化情况如下:x (-∞,x 2)x 2 (x 2,x 1) x 1 (x 1,+∞)f ′(x ) + 0 - 0 +f (x )极大值极小值所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,1a ,(-a ,+∞),单调递减区间是⎝ ⎛⎭⎪⎫1a ,-a .(2)由(1)得,a =0不合题意.当a >0时,由(1)得,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,所以f (x )在[0,+∞)上存在最大值f ⎝ ⎛⎭⎪⎫1a =a 2>0.设x 0为f (x )的零点,易知x 0=1-a 22a ,且x 0<1a . 从而当x >x 0时,f (x )>0;当x <x 0时,f (x )<0. 若f (x )在[0,+∞)上存在最小值,必有f (0)≤0, 解得-1≤a ≤1.所以当a >0时,若f (x )在[0,+∞)上存在最大值和最小值,则实数a 的取值范围是(0,1].当a <0时,由(1)得,f (x )在(0,-a )上单调递减,在(-a ,+∞)上单调递增,所以f (x )在[0,+∞)上存在最小值f (-a )=-1.易知当x ≥-a 时,-1≤f (x )<0,所以若f (x )在[0,+∞)上存在最大值,必有f (0)≥0,解得a ≥1或a ≤-1.所以当a <0时,若f (x )在[0,+∞)上存在最大值和最小值,则实数a 的取值范围是(-∞,-1].综上所述,实数a 的取值范围是(-∞,-1]∪(0,1]. 5.设函数f (x )=x 2-ax +b .(1)讨论函数f (sin x )在⎝ ⎛⎭⎪⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值;(2)记f 0(x )=x 2-a 0x +b 0,求函数|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值D ;(3)在(2)中,取a 0=b 0=0,求z =b -a 24满足条件D ≤1时的最大值. 解:(1)由题意,f (sin x )=sin 2x -a sin x +b =sin x (sin x -a )+b , 则f ′(sin x )=(2sin x -a )cos x ,因为-π2<x <π2,所以cos x >0,-2<2sin x <2. ①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值;②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值;③对于-2<a <2,在⎝ ⎛⎭⎪⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时,函数f (sin x )单调递减; x 0≤x <π2时,函数f (sin x )单调递增.因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值f (sin x 0)=f ⎝ ⎛⎭⎪⎫a 2=b-a 24.(2)当-π2≤x ≤π2时,|f (sin x )-f 0(sin x )|=|(a 0-a )sin x +b -b 0|≤|a -a 0|+|b -b 0|, 当(a 0-a )(b -b 0)≥0,x =π2时等号成立, 当(a 0-a )(b -b 0)<0时,x =-π2时等号成立.由此可知,|f (sin x )-f 0(sin x )|在⎣⎢⎡⎦⎥⎤-π2,π2上的最大值为D =|a -a 0|+|b -b 0|.(3)D ≤1即为|a |+|b |≤1,此时0≤a 2≤1,-1≤b ≤1,从而z =b -a 24≤1.取a =0,b =1,则|a |+|b |≤1,并且z =b -a 24=1. 由此可知,z =b -a 24满足条件D ≤1的最大值为1. 6.已知函数f (x )=x -1x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间;(2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈⎝ ⎛⎦⎥⎤0,12,求h (x 1)-h (x 2)的最小值.解:(1)由题意得F (x )=x -1x -a ln x (x >0),则F ′(x )=x 2-ax +1x 2,令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,所以F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为 x 1=a -a 2-42,x 2=a +a 2-42,所以F (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞, F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. 综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞); 当a >2时,F (x )的单调递增区间为 ⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. (2)对h (x )=x -1x +a ln x ,x ∈(0,+∞)求导得, h ′(x )=1+1x 2+a x =x 2+ax +1x 2,h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a , 所以x 2=1x 1,从而有a =-x 1-1x 1.令H (x )=h (x )-h ⎝ ⎛⎭⎪⎫1x=x -1x +⎝ ⎛⎭⎪⎫-x -1x ln x -⎣⎢⎡⎦⎥⎤1x -x +⎝ ⎛⎭⎪⎫-x -1x ·ln 1x =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-x -1x ln x +x -1x ,即H ′(x )=2⎝ ⎛⎭⎪⎫1x 2-1ln x =21-x1+x ln xx 2(x >0).当x ∈⎝ ⎛⎦⎥⎤0,12时,H ′(x )<0,所以H (x )在⎝ ⎛⎦⎥⎤0,12上单调递减,又H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎫1x 1=h (x 1)-h (x 2),所以[h (x 1)-h (x 2)]min =H ⎝ ⎛⎭⎪⎫12=5ln 2-3.第三部分 导数的综合应用(一)技法一:利用导数研究函数的零点或方程的根[典例] (2016·北京高考)设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. [解] (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-23,x 3∈⎝ ⎛⎭⎪⎫-23,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点. (3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞), 此时函数f (x )在区间(-∞,+∞)上单调递增, 所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点. 综上所述,若函数f (x )有三个不同零点, 则必有Δ=4a 2-12b >0.故a 2-3b >0是f (x )有三个不同零点的必要条件. 当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点, 所以a 2-3b >0不是f (x )有三个不同零点的充分条件. 因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. [方法点拨]利用导数研究方程根的方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置. (3)通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.[对点演练]已知函数f (x )=(2-a )x -2(1+ln x )+a . (1)当a =1时,求f (x )的单调区间.(2)若函数f (x )在区间⎝ ⎛⎭⎪⎫0,12上无零点,求a 的最小值.解:(1)当a =1时,f (x )=x -1-2ln x ,则f ′(x )=1-2x ,其中x ∈(0,+∞).由f ′(x )>0,得x >2,由f ′(x )<0,得0<x <2,故f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)f (x )=(2-a )x -2(1+ln x )+a=(2-a )(x -1)-2ln x ,令m (x )=(2-a )(x -1),h (x )=2ln x ,其中x >0,则f (x )=m (x )-h (x ).①当a <2时,m (x )在⎝ ⎛⎭⎪⎫0,12上为增函数,h (x )在⎝ ⎛⎭⎪⎫0,12上为增函数, 结合图象知,若f (x )在⎝ ⎛⎭⎪⎫0,12上无零点, 则m ⎝ ⎛⎭⎪⎫12≥h ⎝ ⎛⎭⎪⎫12, 即(2-a )⎝ ⎛⎭⎪⎫12-1≥2ln 12, 所以a ≥2-4ln 2,所以2-4ln 2≤a <2.②当a ≥2时,在⎝ ⎛⎭⎪⎫0,12上m (x )≥0,h (x )<0, 所以f (x )>0,所以f (x )在⎝ ⎛⎭⎪⎫0,12上无零点. 由①②得a ≥2-4ln 2,所以a min =2-4ln 2.技法二:利用导数证明不等式[典例] 设f (x )=e x -1.(1)当x >-1时,证明:f (x )>2x 2+x -1x +1; (2)当a >ln 2-1且x >0时,证明:f (x )>x 2-2ax .[证明] (1)当x >-1时,f (x )>2x 2+x -1x +1,即e x-1>2x2+x-1x+1=2x-1,当且仅当ex>2x,即e x-2x>0恒成立时原不等式成立.令g(x)=e x-2x,则g′(x)=e x-2.令g′(x)=0,即e x-2=0,解得x=ln 2.当x∈(-∞,ln 2)时,g′(x)=e x-2<0,故函数g(x)在(-1,ln 2)上单调递减;当x∈[ln 2,+∞)时,g′(x)=e x-2≥0,故函数g(x)在[ln 2,+∞)上单调递增.所以g(x)在(-1,+∞)上的最小值为g(ln 2)=e ln 2-2ln 2=2(1-ln 2)>0,所以在(-1,+∞)上有g(x)≥g(ln 2)>0,即e x>2x.故当x∈(-1,+∞)时,f(x)>2x2+x-1x+1.(2)f(x)>x2-2ax,即e x-1>x2-2ax,则e x-x2+2ax-1>0.令p(x)=e x-x2+2ax-1,则p′(x)=e x-2x+2a,令h(x)=e x-2x+2a,则h′(x)=e x-2.由(1)可知,当x∈(-∞,ln 2)时,h′(x)<0,函数h(x)单调递减;当x∈[ln 2,+∞)时,h′(x)≥0,函数h(x)单调递增.所以h(x)的最小值为h(ln 2)=e ln 2-2ln 2+2a=2-2ln 2+2a.因为a>ln 2-1,所以h(ln 2)>2-2ln 2+2(ln 2-1)=0,即h(x)≥h(ln 2)>0,所以p′(x)=h(x)>0,即p(x)在R上为增函数,故p(x)在(0,+∞)上为增函数,所以p(x)>p(0),而p(0)=0,所以p(x)=e x-x2+2ax-1>0,即当a>ln 2-1且x>0时,f(x)>x2-2ax.[方法点拨]对于最值与不等式的证明相结合试题的求解往往先对不等式进行化简,然后通过构造新函数,转化为函数的最值,利用导数来解决.解决此类问题应该注意三个方面:(1)在化简所证不等式的时候一定要注意等价变形,尤其是两边同时乘以或除以一个数或式的时候,注意该数或式的符号;(2)灵活构造函数,使研究的函数形式简单,便于计算最值;(3)在利用导数求解最值时要注意定义域的限制,且注意放缩法的灵活应用.[对点演练](2017·兰州诊断)已知函数f(x)=e x-ax-1(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.(1)求a的值及函数y=f(x)的单调区间;(3)若x1<ln 2,x2>ln 2,且f(x1)=f(x2),试证明:x1+x2<2ln 2.解:(1)由f(x)=e x-ax-1,得f′(x)=e x-a.又f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x-1,f′(x)=e x-2.由f′(x)=e x-2>0,得x>ln 2.所以函数y=f(x)在区间(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增.(2)证明:设x>ln 2,所以2ln 2-x<ln 2,f(2ln 2-x)=e(2ln 2-x)-2(2ln 2-x)-1=4e x+2x-4ln 2-1.令g(x)=f(x)-f(2ln 2-x)=e x-4e x-4x+4ln 2(x≥ln 2),所以g′(x)=e x+4e-x-4≥0,当且仅当x=ln 2时,等号成立,所以g(x)=f(x)-f(2ln 2-x)在(ln 2,+∞)上单调递增.又g(ln 2)=0,所以当x>ln 2时,g(x)=f(x)-f(2ln 2-x)>g(ln 2)=0,即f(x)>f(2ln 2-x),所以f(x2)>f(2ln 2-x2),又因为f(x1)=f(x2),所以f(x1)>f(2ln 2-x2),由于x2>ln 2,所以2ln 2-x2<ln 2,因为x1<ln 2,由(1)知函数y=f(x)在区间(-∞,ln 2)上单调递减,所以x1<2ln 2-x2,即x1+x2<2ln 2.技法三:利用导数研究不等式恒成立问题[典例]设f(x)=e x-a(x+1).(1)若∀x∈R,f(x)≥0恒成立,求正实数a的取值范围;(2)设g(x)=f(x)+ae x,且A(x1,y1),B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围.[解](1)因为f(x)=e x-a(x+1),所以f′(x)=e x-a.由题意,知a>0,故由f′(x)=e x-a=0,解得x=ln a.故当x∈(-∞,ln a)时,f′(x)<0,函数f(x)单调递减;当x∈(ln a,+∞)时,f′(x)>0,函数f(x)单调递增.所以函数f(x)的最小值为f(ln a)=e ln a-a(ln a+1)=-a ln a.由题意,若∀x∈R,f(x)≥0恒成立,即f(x)=e x-a(x+1)≥0恒成立,故有-a ln a≥0,又a>0,所以ln a≤0,解得0<a≤1.所以正实数a的取值范围为(0,1].(2)设x1,x2是任意的两个实数,且x1<x2.则直线AB的斜率为k=g x2-g x1x2-x1,由已知k>m,即g x2-g x1x2-x1>m.因为x2-x1>0,所以g(x2)-g(x1)>m(x2-x1),即g(x2)-mx2>g(x1)-mx1.因为x1<x2,所以函数h(x)=g(x)-mx在R上为增函数,故有h′(x)=g′(x)-m≥0恒成立,所以m≤g′(x).而g′(x)=e x-a-ae x,又a≤-1<0,故g′(x)=e x+-ae x-a≥2ex·-ae x-a=2-a-a.而2-a-a=2-a+(-a)2=(-a +1)2-1≥3,所以m 的取值范围为(-∞,3].[方法点拨]解决该类问题的关键是根据已知不等式的结构特征灵活选用相应的方法,由不等式恒成立求解参数的取值范围问题一般采用分离参数的方法.而第(2)问则巧妙地把直线的斜率与导数问题结合在一起,命题思路比较新颖,解决此类问题需将已知不等式变形为两个函数值的大小问题,进而构造相应的函数,通过导函数研究其单调性解决.[对点演练]已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)若对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围.(2)证明:对一切x ∈(0,+∞),ln x >1e x -2ex 恒成立.解:(1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立,则a ≤2ln x +x +3x ,设h (x )=2ln x +x +3x (x >0),则h ′(x )=x +3x -1x 2.①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减;②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增.所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,所以a ≤h (x )min =4,即实数a 的取值范围是(-∞,4].(2)问题等价于证明x ln x >x e x -2e (x >0).又f (x )=x ln x (x >0),f ′(x )=ln x +1,当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,。