空分工艺培训教程
空分培训教材

空分培训教材一、工艺流程:原料空气由吸入箱吸入,经自洁式空气过滤器AF去除灰尘和机械杂质,在离心式空压机中被压缩至0.52Mpa、100℃左右,压缩空气经空气冷却塔洗涤冷却至6~10℃,然后进入自动切换使用的分子筛吸附器,以清除H20、C02、C2H2和CmHn,出分子筛的空气为≤24℃分为三路:一路进入分馏塔中,空气经过主换热器与返流气体换热,被冷却至液化温度(-173℃),并有少量气体液化,这些气液混合物一起进入下塔。
另一路空气(5000m3/h)作为膨胀气体,去增压膨胀机增压后再进入主换热器与返流气体换热。
这部分空气被冷却至-120℃左右,从主换热器中抽出,部份与未抽出的在主换热冷端引出的-173℃,气体汇合后去膨胀机,膨胀后的空气进入上塔中部。
第三路少量空气去仪表空气系统,作为仪表气。
在下塔,空气被初步分离成氮和富氧液空,在塔顶获得99.99%的气氮,除少量被引出塔外作为压力氮外,大部份进入主冷与液氧换热冷凝成液氮,部分液氮回下塔作为下塔的回流液。
另一部分液氮,经过冷器过冷节流后进入上塔顶部,作为上塔回流液,下塔釜液36%02的液空,经过冷器过冷节流后进入上塔中部参加精馏。
不同状态的三股流体进入上塔经再分离后,在上塔顶部得到纯度为99.99%的氮气,经过冷器、主换热器复热后出分馏塔。
上塔底部的液氧在主冷被下塔的氮气加热而蒸发,其中12000m3/h、纯度99.6%的氧气,经主换热器复热后出分馏塔,其余部分作为上升蒸气参加精馏;在上塔上部把污氮抽出,经主换热器复热引出分馏塔。
从主冷引出(折合气200m3/h)液氧作为产品液氧送用户。
从分馏塔出来的污氮,一部分去纯化系统,再生分子筛,其余去水冷塔升温、增湿后放空。
合格的氮气出分馏塔后,送入用户氮气压缩机,压缩送出,其余部份去预冷系统的水冷却塔,升温、增湿后放空。
合格的氧气出分馏塔后,氧压机压缩送出。
下塔出来的压力氮出分馏塔后,送往氧透作密封气。
2024版年度空分培训课件教材

保持设备清洁,及时清 理灰尘、油污等杂物。
设备异常处理措施
01
02
03
04
发现设备异常情况,立即采取 措施停机检查。
对于设备故障,应及时通知专 业维修人员进行维修。
对于设备事故,应按照应急预 案进行处理,防止事故扩大。
详细记录设备异常情况、处理 措施及效果,为后续工作提供
参考。
2024/2/3
空气压缩机 空气预冷系统 分子筛纯化系统
精馏塔
2024/2/3
用于将原料空气压缩至所需压力, 是空分设备的动力来源。
利用分子筛的吸附性能,除去空 气中的水分、二氧化碳等杂质。
10
操作参数及影响因素
操作参数
包括原料空气流量、压力、温度、产品纯度等,这 些参数直接影响空分设备的运行效果和产品质量。
影响因素
29
培训效果反馈机制建立
学员反馈
通过问卷调查、座谈会等方式收集学员对培训的 意见和建议。
教师评估
对教师的教学质量进行评估,以便及时调整教学 策略。
企业反馈
与企业保持沟通,了解学员在实际工作中的表现, 评估培训效果。
2024/2/3
30
持续改进方向和目标
01
完善课程体系
根据学员反馈和企业 需求,不断完善空分 培训课程体系。
2024/2/3
生产过程监控
对生产过程中的关键参数 进行实时监控,如温度、 压力、流量等,确保生产 过程处于受控状态。
产品抽样检测
定期对产品进行抽样检测, 及时发现并处理潜在的质 量问题。
19
不合格产品处理流程
隔离存放
对不合格产品进行隔离存放,避 免与合格产品混淆。
处理措施
空分工艺流程培训PPT

空气增压透平膨胀机,采用规整填料上塔、增效氩塔工艺。
•
原料空气自吸入口吸入,经自洁式空气过滤器除去灰尘及其它机械杂质。过滤后的空
气进入离心式空压机,经原料空气压缩机压缩后进入空气冷却塔冷却。冷却水为经水冷
• 一、 杂质的清除系统(空气过滤器和纯化系统);
• 二、 空气加压系统(空压机及增压机系统);
• 三、 空气的冷却和液化系统(预冷系统和膨胀机、换热器系统);
• 四、 空气的精馏系统(分馏塔系统);
2•02五0/11、/19 产品的输送、贮存系统(压氮系统空和分工液艺体流程贮培训存系统);
11
KDON-48000/80000型
• 本装置生产的纯度为99.8%的氧 气主要供下游气化装置使用,作 为气化炉的原料气参加反应;
• 纯度为99.99%的氮气供下游工 艺生产使用,作为保护气和吹扫 用气;
• 副产的工厂空气、仪表空气供所 有化工区各分厂和正常生产动力 车间生产装置使用,作为仪表气 源和吹扫用气。
2020/11/19
空分工艺流程培训
2020/11/19
空分工艺流程培训
7
二、克旗煤制气公司配 套的空分装置的流程和 特点
2020/11/19
空分工艺流程培训
8
克旗公司采用的空分装置特点
• 本界区空分装置共三期六套,其 中主精馏塔由杭州杭氧股份公司 制造,单套空分装置制氧能力 48,000Nm3/h,制氮能力 80,000Nm3/h,同时副产工厂 空气、仪表空气、液氮和液氧。
2020/11/19
空分工艺流程培训
6
• 多次的重复上述过程,气相的氮浓度就不断增加,液相的氧浓度也能 不断的增加.这样经过多次的蒸发与冷凝就能完成整个精馏过程,从 而将空气中的氧和氮分离开来。
空分技术培训课件

科学实验
为科研机构提供高纯度气体,支持 科学实验和研究。
空分技术的发展历程
初始阶段
早期的空分技术主要采用低温 精馏法,随着技术的发展逐渐
被淘汰。
经典阶段
20世纪中叶,出现了以分子筛吸 附和膜分离为代表的新型空分技 术。
现代阶段
随着科技的进步,现代空分技术已 发展成为一个综合性、系统性的工 程领域,涉及多个学科的交叉融合 。
02
空分技术的基本原理与流程
空气分离的基本原理
空气的组成与性质
空气主要由氮气、氧气、氩气等组成,不同气体之间存在一定的物理和化学 性质差异。
空气分离的依据
空气分离主要依据空气中各组分气体之间的沸点、溶解度等差异,通过制冷 、吸附、膜分离等方式实现不同气体的分离和提纯。
空气分离的工艺流程
空气的过滤与净化
空气的压缩与冷却
将空气中的灰尘、杂质等去除,达到一定纯 净度的要求。
将空气压缩并冷却到适当的温度,以便进行 后续的分离处理。
空气的分离与提纯
产品的储存与输送
通过各种分离技术如精馏、吸附、膜分离等 ,将空气中的不同组分气体分离和提纯。
将分离出的不同气体进行储存、运输或直接 输送到下游用户手中。
空气分离的主要设备
。
采用高效分离技术
利用新型的高效吸附剂、高精 度的过滤器等,提高空气分离
的精度和效率。
加强过程控制
采用先进的控制系统,实现生 产过程的自动化和智能化,提
高分离效率。
开发新型的空气分离技术及设备
开发新型吸附剂
研究新的吸附剂材料,提高吸 附效率和寿命,降低能耗。
开发高效透平机组
通过采用高效的透平机组、压缩 机等设备,提高空气分离设备的 整体效率。
空分工艺培训教程

空分工艺培训教程一、空分工艺的基本原理空分工艺是通过分子筛、冷凝器、填料板塔等装置,将空气中的氮气、氧气和其他气体分离并提纯的一种技术。
它是利用不同气体的沸点差异,通过加压和降温的方式将气体进行分离和提纯。
这一技术主要由压缩、冷却、膜分离和吸附等工艺步骤组成。
二、空分工艺的主要设备1. 压缩机:将空气进行压缩,提高气体的密度和压力,为后续的分离工艺提供条件。
2. 冷凝器:通过降温,将气体中的水蒸汽和其他杂质冷凝成液体,从而实现气体的提纯。
3. 分子筛:利用分子筛的微孔结构,根据气体分子的大小和极性进行分离,达到分离氮气和氧气的目的。
4. 塔设备:填料板塔或者填料塔是利用填料的表面积,通过空气在填料层的冲刷和液体的覆盖,实现气体的分离和提纯。
三、空分工艺的操作步骤1. 空气的压缩:将空气通过压缩机进行压缩,提高气体的密度和压力。
2. 冷凝分离:将压缩后的气体通过冷凝器进行降温,将其中的水蒸汽和其他杂质冷凝成液体。
3. 分子筛分离:利用分子筛的微孔结构,将氮气和氧气根据其分子大小和极性进行分离。
4. 塔设备分离:通过填料板塔或者填料塔的工作原理,将氮气和氧气进一步分离和提纯。
四、空分工艺的应用领域空分工艺广泛应用于石油、化工、医药等领域,主要用于工业气体的制备和提纯。
例如,空分工艺可以生产高纯度氧气和氮气,用于钢铁冶炼、化工生产以及医疗设备等领域。
此外,空分工艺还可以生产氩气、氦气等稀有气体,用于激光切割、气体焊接等高端应用。
五、空分工艺的优缺点1. 优点:空分工艺可以实现气体的高效分离和提纯,生产出高纯度的工业气体,广泛应用于各个领域。
同时,空分工艺还可以回收和利用废气,有效减少对环境的污染。
2. 缺点:空分工艺的设备投资和能耗较高,需要耗费大量的能源和材料。
同时,空分工艺的操作复杂,需要高水平的技术人员进行操作和维护。
六、空分工艺的发展趋势随着工业化和科技的不断发展,空分工艺也在不断进行改进和创新。
空分工艺流程培训课件_部分2

3.27沙钢制氧厂氧气管道爆炸事故
• 2008/3/27沙钢制氧厂氧气管道爆炸,死亡2人.其中一人为沙钢正处干 部,袁加宇厂长。教训::开关氧气阀门要慢!不一定只是有杂质才 会爆炸,氧气管道瞬间加压产生的高温可能是主因!送氧之前一定要 记得先吹扫,之后送氧时氧气阀门一定要缓慢打开,速度千万不能快。
透平膨胀机制冷的基本原理
• 膨胀机是为空分装置提供冷量的设备, 根据能量转换和守恒定律,气体在透平膨 胀机内进行绝热膨胀对外作功时,气体的 能量一定要减少,从而使气体本身强烈地 冷却,而达到制冷的目的。
27
影响膨胀机制冷量大小的因素
• 1、 膨胀量:
• 膨胀量越大,氧提取率越底,膨胀量需同时满 足冷量平衡及精馏工况的需求。
39
空分装置的安全操作
• 在正常生产时,冷凝蒸发器液氧中的乙炔、碳氢化合物是 空分装置的主要引爆源,必须对其严格控制。液氧的安全 排放是冷凝蒸发器防爆的一个有力措施,不能忽视。 主 冷液氧液位不能长期处于低液位,尽可能避免低液位,低 液位易造成乙炔等CH化合物增浓,造成危险。
• 乙炔、碳氢化合物在液氧中的含量极限值规定如下:
人孔,适量通入冷箱密封气进行彻底加温; • (3) 与此同时必须将冷箱内所有设备加温至常温; • (4) 然后检查冷箱内气体的氧含量,若其氧含量超过
20.95%,则应调整空分设备静置等待,直到符合标准。以 上工作检查均合格,方可排砂; • (5) 珠光砂的排放必须从冷箱顶部逐渐向下排放,下 部人孔(包括珠光砂排放孔)严禁直接打开,珠光砂的排 放应缓慢,若有冰块,必须从冷箱顶部取出.
化合物名称 正常 值
报警值
停车值
乙炔
0.01PPm
0.1PPm
1PPm
空分培训教材

空分培训教材第一节概述空气是一种取之不尽的天然资源,它由具有丰富用途的氧气、氮气、氩气等气体组成。
这些气体在空气中是均匀地相互混合在一起的,要将他们分离开来是比较困难的,为此近百年来,随着工业技术的发展,对空气的分离形成了三种技术方法:吸附法、膜分离法及低温法。
吸附法是一种利用分子筛对不同分子的选择吸附性能来达到最终分离目的的技术,该技术流程简单,操作方便,运行成本低,但获得高纯度产品较为困难,而且装置容量有限,所以该技术有其局限的应用范围。
膜分离法利用的是膜渗透技术,利用氧、氮通过膜的速率的不同,实现两种组分的粗分离。
这种方法装置更为简单,操作方便,投资小但产品只能达到28% --35%的富氧空气,且规模只宜中小型化,只适用于富氧燃烧及医疗保健领域应用。
低温法是利用空气中各组分沸点的不同,通过一系列的工艺过程,将空气液化,并通过精馏来达到不同组分分离的方法。
这种方法较前两种方法可实现空气组分的全分离、产品精纯化、装置大型化、状态双元化(液态及气态),故在生产装置工业化方面占据主导地位。
和传统的分离相比,这些气体的分离需在100K以下的低温环境下才能实现,所以称之为低温法(或深冷法)。
我们在这所要介绍的就是低温法空气分离技术。
第二节空气的性质及分离原理一、空气的一般性质空气是一种混合物,除含有其固定的氧、氮、氦、氖、氩、氪、氙、氡组份外,还含有水蒸气、二氧化碳、乙炔以及少量机械杂质,其组成如表1所示,各组分气体的物化参数如表2所示:二、空气分离的基本原理空气压缩、空气净化、换热、制冷与精馏是空分的五个主要环节。
现以此来做理论介绍:表2 几种气体的基本物化常数1.制冷空气是在-170℃以下的精馏塔中进行分离的,所以说通过制冷,获得所需的低温并维持这个环境,是空气分离的基本前提条件。
制冷的方法有两种:节流与膨胀。
为了直观地描述这两种热力学过程,先引入温—熵图。
(1).温熵图(T---S图)温熵图是以温度为纵坐标,熵为横坐标的热力学函数图。
空分技术培训课件

20世纪中叶
21世纪初
随着钢铁、化工等行业的快速发展,空分 技术得到了广泛应用,并逐渐形成了规模 化、专业化的产业。
随着能源和环境问题的日益严重,空分技 术开始向高效、节能、环保的方向发展, 成为现代工业生产中不可或缺的一部分。
02
空分技术的基本原理
空气的组成与性质
空气的组成
空气主要由氮气、氧气、氩气、二氧 化碳等气体组成,其中氮气约占78% ,氧气约占21%,其他气体如氩气、 二氧化碳等含量较低。
操作人员培训
对操作人员进行专业培训 ,熟悉和掌握空分设备的 结构、性能及操作流程。
操作过程监督
在操作过程中,加强监督 和检查,确保操作人员严 格按照操作规程进行作业 。
空分设备的事故预防措施
设备维护保养
定期对空分设备进行维护保养, 保持设备良好的运行状态。
安全附件管理
对空分设备的安全附件进行定期检 查和维护,确保其灵敏可靠。
空气的性质
空气是一种混合气体,具有可压缩性 、粘性和传热性等物理性质。在一定 的压力和温度下,空气的密度、比热 容、粘度等参数会发生变化。
空气分离的原理
01 02
低温分离法
通过将空气冷却到低温(-196℃以下),使氧气、氮气等气体从液态中 分离出来。这种方法分离效果好,但需要使用大量的制冷剂,且需要严 格控制温度和压力等条件。
安全注意事项
严格遵守安全操作规程, 确保人员和设备安全。
04
空分技术的应用实例
工业气体分离与提纯
工业气体分离与提纯是空分技术最广泛的应用领域之一。通 过空气分离装置,可以分离出氮气、氧气、氩气等工业气体 ,以及液态氧、液态氮等高纯度气体。这些气体在钢铁、化 工、航空航天等领域中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
He
氪
Kr
氙
Xe
二氧 其 化碳 它
CO2
20.93
78.03
0.932
1.5~1.8 × 10-3 1.2 ×10-3 0 .9
4.6~5.3 × 10-4 7 × 10-3 0.17 8 - 268.938
1.08 × 10-4 3 × 10-4 3.74 3 - 153.4
8 × 10-6 4 × 10-5 5.89 6 - 108.11
空分装臵与其它界区的联系
高压氮气主要供下游净化装臵开车升压时使用。
副产的工厂空气供空分及下游所有化工区使用,作为仪表 气源和吹扫用气。
空分装臵与其它界区的联系
• 联系示意图
仪表气、工厂空气
氧、氮、仪表空气
动力
蒸汽
空分
气化
循环冷却水
氮气、仪表空气、工厂 气
净化
甲烷化
ቤተ መጻሕፍቲ ባይዱ
环境工程
其它界区
公用工程
我国空分流程的技术发展
方面取得了进步。随着计算机的广泛应用,空分装臵的自动控制、变 负荷跟踪调节等变得更为先进。 第一代:高低压循环,氮气透平膨胀,吸收法除杂质; 第二代:石头蓄冷器,空气透平膨胀低压循环; 第三代:可逆式换热器; 第四代:分子筛纯化; 第五代:规整填料,增压透平膨胀机的低压循环; 第六代:内压缩流程,规整填料,全精馏无氢制氩。
0.008
开车时用气量包 含在氮气I中
通水冷塔
空分技术性能指标
液 氮 300 ≤10ppm O2 无油、无尘 压力露点: ≤-40℃ 无油、无尘 压力露点: ≤-40℃ 无油、无尘 压力露点: ≤-40℃ 0.2
仪表空气
6000
0.7
增压机一级后抽 出减压
装臵空气
5000
0.4
分子筛后抽出
气化炉开工空 气
7000
0.4
气化开车时使用 、分子筛后抽出
空分流程框图
空压机
预冷系统
纯化系统
增压机
贮存系统
精馏系统
热交换器
膨胀机
氧氮产品
十、空分工艺流程图
粗氩气 高压氧气 污氮气去水冷塔 压力氮气去压缩机
蒸 汽
氮 气
污 氮 气 去 分 子 筛
增 效 塔
汽轮机
增压机
上 塔 液 氧 泵
冷 却 水 空 冷 塔
膨胀机
八、空分装臵与其它界区的联系
空分装臵原始开车时,由动力分厂为空分装臵提供驱动汽
轮机用的高压蒸汽和蒸汽加热器用的中压蒸汽,空分装臵 原始开车时为自己提供仪表气源;
空分装臵正常生产后,主要为下游气化装臵提供氧气,作 为气化装臵的原料气参加反应; 压力氮气主要供下游工艺生产使用,作为汽提气、密封保 护气和吹扫用气;
5)流程进行优化设计。 充分的利用富余的氮气和污氮气回收其冷量,根据要求配臵冷水机 组;利用节能型蒸汽加热器取代传统的蒸汽加热器,蒸汽消耗量得到 有效降低,冷凝液充分回收。
空分设计原则
6)原料空气压缩机和增压机特点:
采用先进的透平压缩机组产品,可充分保证机器具有先 进的性能指标,降低系统总体能耗;
现代空分流程特点
分子筛纯化系统采用双层床结构,大大延长了分子筛的使 用寿命和降低了床层阻力,使空分装臵运行更安全可靠; 采用高效增压透平膨胀机技术,能很好的回收部分能量, 膨胀机制冷效率在85 %以上;
采用DCS控制技术,实现了中控、机房和就地一体化的 控制,可有效地监控整套空分设备的生产过程;
四、我国空分流程的技术发展
空分设备是由诸多配套部机组成的成套设备,我国空分于1953年起步 ,经过50多年的发展,从第一代小型空分流程发展到目前的第六代大 型全精馏无氢制氩工艺流程。每一次空分设备流程的变革和推进,都 是新技术、新工艺的创新。透平膨胀机的产生,实现了大型空分设备 全低压流程;高效板翅式换热器的出现,使切换板翅式流程取代了石 头蓄冷器、可逆式换热器流程,使装臵冷量回收效率更高;增压透平 膨胀机的出现极大的提高了膨胀机的制冷效率并把输出的外功有利的 得到回收;常温分子筛净化流程替代了切换式换热器,使空分装臵净 化系统的安全性、稳定性得到极大提高并使能耗大大降低,随着规整 填料和低温液体泵在空分装臵中的应用,进一步降低了空分设备的能 耗,实现了全精馏无氢制氩,使空分设备在高效、节能、安全等
3)投资成本低,配臵更合理
采用内压缩流程后增压机+低温液体泵+高压板式换热器的投资比
空分设计原则
外压缩的氧压机低;
主空压机与增压机共用一台汽轮机驱动,设备配臵紧凑合理;
低压氮直接从下塔抽出,无需氮压机进行加压,减少投资。 4)采用先进可靠的DCS控制系统;
成套空分装臵采用DCS控制系统,关键控制点采取冗余配臵,设备 安全运行的可靠性高。
九、空分技术性能指标
产 氧 液
品 气 氧
产量Nm3/h 48,000 300 25,000
纯 度 99.8 O2 99.8 O2 ≤10ppm O2
压力 MPaG 4.7 0.16 0.4
备注 内压缩
氮气I
下塔抽取
氮气II
氮气III
10,000
55,000
≤10ppm O2
≤10ppm O2
4.1
六、空分装臵简介
整个空分界区可分为两大块:压缩区域和精馏区
域。压缩区域包括一拖二空压机组、仪表空气压
缩机组以及和汽轮机相配套的全凝式空气冷凝器
;在精馏区域主要包括空气预冷系统、分子筛纯 化系统、增压透平膨胀机制冷系统、分馏塔系统
以及液体贮存系统 ;
七、空分设计原则
• 1)安全性好
采用液氧内压缩流程,主冷凝器采用浴式结构,全浸式操作,增加主 冷液氧的循环倍率,防止碳氢化合物等在主冷换热表面析出而引起的 主冷爆炸;
五、现代空分流程特点
采用常温分子筛净化,清除空气中的有害物质更有效,切
换损失小,装臵设计连续运行周期大于二年; 采用规整填料上塔替代筛板上塔,使上塔阻力大大降低( 只有筛板阻力的1/4),使空压机的排气压力降低,装 臵运行能耗下降5%~7 %; 空分设备氧的提取率提高,氧气纯度在99.6%以上; 精馏采用全精馏无氢制氩技术,氩塔采用规整填料塔,省 略了制氢设备,流程简化,节省投资和运行费用;
主冷
水 冷 水冷塔 塔
分子筛
下 塔 过 冷 器
空分工艺流程
空分装臵为分子筛净化空气、空气增压、膨胀空气进下塔、液氧内压 缩流程,带中压空气增压透平膨胀机,采用规整填料上塔、增效氩塔 工艺; 原料空气自吸入口吸入,经自洁式空气过滤器除去灰尘及其它机械杂 质。过滤后的空气进入离心式空压机,经原料空气压缩机压缩后进入 空气冷却塔冷却。冷却水为经水冷塔冷却后的低温水。空气自下而上 穿过空气冷却塔,在冷却的同时,又得到清洗; 经空冷塔冷却后的空气进入切换使用的分子筛纯化器,空气中的二氧 化碳、碳氢化合物和水分被吸附。分子筛纯化器为两只切换使用,其 中一只工作时,另一只再生。纯化器的使用周期约为240分钟,定时 自动切换;净化后的空气分为两股:一股进入低压板式换热器,与
空气分离的方法和原理
利用沸点差将液态空气分离为氧、氮、氩的过程称之为精馏过程。深 冷与精馏的组合是目前工业上应用最广泛的空气分离方法; 2)吸附法:利用多孔性物质分子筛对不同的气体分子具有选择性咐附 的特点,对气体分子不同组分有选择性的进行吸附,达到单高纯度的 产品。吸附法分离空气流程简章,操作方便运行成本较低,但不能获 得高纯度的的双高产品。
内压缩的液氧泵取代外压缩的氧压机极大减少火灾隐患; 二台液氧泵完全实现在线自动启动与切换运行程序,可有效地保证装 臵的安全运行与连续供氧; 产品液氧在高压下蒸发,使烃类物质积累的可能性大大降低。 2)可靠性高
空分设计原则
低温高压液氧泵和增压膨胀机采用进口名牌产品,产品性能可靠 ,液氧泵实现在线冷备,若运行泵出故障则备用泵可在10秒钟内 自动启动达到工作负荷; 本装臵产品为高压氧气,内压缩流程中的液氧泵取代外压缩流程 中的氧气压缩机,运行可靠性大大增加; 采用高效增压透平膨胀机,有效的回收透平膨胀机产生的功,提 高单位制冷量并有效的降低系统能耗; 采用双层床分子筛纯化系统,使装臵使用周期更长.
空气分离的基本原理
也能不断的增加.这样经过多次的蒸发与冷凝就能完成整个精馏过程, 从而将空气中的氧和氮分离开来。 空气在下塔被初步精馏为气氮、污液氮和富氧液空,以节流阀减压降 温后送至上塔作为上塔的回流液,进一步实现精馏,最终在上塔顶部 得到纯氮气,下部得到合格的液氧产品。 主冷凝蒸发器是连接上下塔实现精馏过程的纽带,起到承上启下的重 要作用。根据压力对应液化温度成正比的特性,在主冷凝蒸发器中通 过液氧将压力氮气冷凝为液氮,为上下塔提供回流液建立精馏工况, 同时主冷氧侧的液氧被蒸发成气氧,进入上塔作为上升蒸气,主冷凝 蒸发器换热工况的平衡直接关系到精馏工况的稳定。