《探索勾股定理》第一课时说课稿 -参考教案

合集下载

八年级数学说课稿 八年级数学说课稿(13篇)

八年级数学说课稿 八年级数学说课稿(13篇)

八年级数学说课稿八年级数学说课稿(13篇)八年级数学说课稿篇一一、教材分析:(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。

2、会初步运用勾股定理进行简单的计算和实际运用。

3、在探索勾股定理的过程中,让学生经历"观察—猜想—归纳—验证"的数学思想,并体会数形结合和特殊到一般的思想方法。

4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。

二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。

引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

三、教学过程设计:(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是"已知一直角三角形的两边,如何求第三边?" 的问题。

探索勾股定理(一)说课稿

探索勾股定理(一)说课稿

《探索勾股定理(一)》说课稿高明区东洲中学谢雪莲各位评委、老师,你们好! 我是高明区东洲中学谢雪莲。

今天我说课的内容是九年义务教育北师大版数学教材八年级上册第一章第一节《探索勾股定理(一)》,下面让我来阐述一下我是如何分析教材、如何设计教学过程的。

一、学生起点分析认识基础:在学习本节内容之前,学生已经掌握了三角形的三边关系及等腰三角形、等边三角形的相关性质,对于直角三角形内角之间的数量关系也十分熟悉。

活动经验基础:在七年级下册《三角形》一章中,学生通过测量、拼图、折纸等多种形式的活动,进行了充分的实践与探索,在活动中学会了与他人交流、合作的策略,初步获得了数学活动经验,提高了思维水平。

二、教学任务分析勾股定理揭示了直角三角形三边之间的一种美妙关系,将数与形紧密联系起来,在数学的发展和现实世界中有着广泛的作用。

本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。

三、教学目标分析●知识与技能目标用正方形面积的等量关系验证勾股定理并理解勾股定理反映的直角三角形三边之间的数量关系,初步运用勾股定理进行简单的计算和实际运用。

●解决问题经历探索勾股定理的过程,进一步发展学生的推理能力。

●情感与态度1、激励学生自主探究,从中获得成功的体验,培养学生的合作意识和团队精神。

从而让学生多角度地思考问题,发展思维。

2、通过互联网搜索相关内容进行预习与拓展勾股定理的知识,激发学生热爱祖国悠久文化的思想,激励学生发奋学习。

四、教学重点与难点:●重点:用面积法探索勾股定理,理解并掌握勾股定理。

●难点:计算以斜边为边长的大正方形R面积以及割补思想的方法理解与应用。

五、教法、学法1.教学方法:在整个准备过程中遵循学生的认知规律,分别从问题的引入、结论的得出、定理的证明与运用进行教学设计、教学实践和教学反思。

北师大版八年级上册1.1第1课时认识勾股定理说课稿

北师大版八年级上册1.1第1课时认识勾股定理说课稿
(三)学习动机
为了激发学生的学习兴趣和动机,我采取以下策略和活动:
1.创设情境:通过引入实际问题,让学生感受到勾股定理在生活中的广泛应用,从而激发他们的学习兴趣。
2.探索活动:组织学生进行小组合作,引导他们通过观察、猜想、归纳等方法,探索勾股定理的发现过程,增强学生的参与感和成就感。
3.竞赛激励:开展勾股定理知识竞赛,鼓励学生积极参与,提高他们的学习热情。
2.提出问题:提出一个与勾股定理相关的问题:“一个直角三角形的两个直角边分别为3和4,那么它的斜边是多少?”让学生尝试解答,引发学生对勾股定理的探究兴趣。
3.故事导入:讲述古希腊数学家毕达哥拉斯发现勾股定理的传说故事,让学生在轻松愉快的氛围中进入新课学习。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
-及时给予学生反馈,针对性地解答学生的疑问。
-课后评估教学效果,通过作业、测试和学生的反馈来了解教学成效。
课后,我将进行以下反思和改进:
1.分析学生的作业和测试成绩,查找教学中的不足。
2.根据学生的接受程度,调整教学节奏和难度。
3.定期与学生交流,了解他们的学习需求,不断优化教学方法。
3.课堂展示:鼓励学生将小组探究的成果进行展示,其他学生进行评价和提问,以此提高学生的表达能力和批判性思维。
4.课后交流:利用网络平台,开展线上讨论和交流,让学生在课后继续探讨勾股定理相关知识,延伸学习空间。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一张古老的直角三角形图形,引发学生思考:“为什么在古老的建筑中,直角三角形如此常见?”从而激发学生对直角三角形相关性质的好奇心。

《探索勾股定理》 说课稿

《探索勾股定理》 说课稿

《探索勾股定理》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是《探索勾股定理》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析“勾股定理”是初中数学中的重要定理之一,它揭示了直角三角形三边之间的数量关系。

本节课是在学生已经学习了直角三角形的相关知识的基础上进行的,通过对勾股定理的探索和证明,不仅可以加深学生对直角三角形的认识,还能为后续学习解直角三角形等内容奠定基础。

本节课的教材内容注重引导学生通过观察、猜想、验证等活动,自主探究勾股定理的形成过程,培养学生的数学思维能力和创新意识。

二、学情分析在知识方面,学生已经掌握了直角三角形的基本性质,如直角三角形的两个锐角互余等,但对于直角三角形三边之间的数量关系还没有深入的了解。

在能力方面,学生具备一定的观察、分析和归纳能力,但在逻辑推理和证明方面还需要进一步的培养和提高。

在心理特点方面,初中生具有较强的好奇心和求知欲,喜欢动手操作和探索新知识,但在学习过程中可能会出现注意力不集中、缺乏耐心等问题。

三、教学目标1、知识与技能目标(1)理解勾股定理的内容,会用勾股定理进行简单的计算。

(2)经历勾股定理的探索过程,培养学生的观察、猜想、归纳和验证能力。

2、过程与方法目标(1)通过观察、猜想、验证等活动,让学生体会从特殊到一般的数学思想方法。

(2)在探索勾股定理的过程中,培养学生的合作交流意识和创新精神。

3、情感态度与价值观目标(1)通过对勾股定理历史的了解,激发学生的学习兴趣和民族自豪感。

(2)在探究活动中,让学生体验成功的喜悦,增强学习数学的信心。

四、教学重难点勾股定理的内容及其应用。

2、教学难点勾股定理的证明。

五、教法与学法1、教法为了实现教学目标,突破教学重难点,我将采用以下教学方法:(1)情境教学法:通过创设生动有趣的问题情境,激发学生的学习兴趣和探究欲望。

(2)启发式教学法:在教学过程中,通过设置问题,引导学生思考、分析和解决问题,培养学生的思维能力。

勾股定理(1)说课稿

勾股定理(1)说课稿

2.1勾股定理(1)说课稿江西省东乡县实验中学黄树华各位专家、领导、老师,大家好!今天我说课的课题是《勾股定理(1)》。

一、教材分析(一)教材地位这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现实世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)教学目标基于以上分析和数学课程标准的要求,制定了本节课的教学目标。

1、知识目标:了解勾股定理的文化背景,掌握勾股定理的内容,体验勾股定理的探索过程及定理简单应用,了解利用拼图验证勾股定理的方法;2、能力目标:让同学们经历观察、归纳、猜想和验证的数学发现过程,在定理的证明中培养学生的拼图能力,体会“从特殊到一般”和“数形结合”的数学思想;3、情感目标:通过对勾股定理历史的了解,发展学生的探究意识和合作交流的良好学习习惯,感受数学价值,激发学生热爱祖国悠久文化的情感,培养他们的民族自豪感;(三)教学重、难点重点:探索勾股定理及定理的简单应用;难点:用拼图方法证明勾股定理;突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.二、教法与学法分析学情分析: 学生对几何图形的观察,几何图形的分析能力已初步形成,部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路;现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会,更希望教师满足他们的创造愿望。

教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式, 选择引导探索法。

把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

北师大版数学八年级上册1《探索勾股定理》说课稿1

北师大版数学八年级上册1《探索勾股定理》说课稿1

北师大版数学八年级上册1《探索勾股定理》说课稿1一. 教材分析《探索勾股定理》是北师大版数学八年级上册第一单元的一节重要内容。

本节课的主要任务是让学生通过探究、验证勾股定理,培养学生的逻辑思维能力和创新能力。

教材通过引入古希腊数学家毕达哥拉斯的故事,激发学生的学习兴趣,接着引导学生通过实际操作,探索勾股定理的证明方法。

教材内容丰富,既有理论探究,又有实践操作,使学生在学习过程中充分体验到数学的趣味性和实用性。

二. 学情分析八年级的学生已经具备了一定的数学基础,对几何图形的认识和逻辑推理能力有一定的掌握。

但学生在学习过程中,往往对理论性的知识感到枯燥乏味,缺乏学习的积极性。

因此,在教学过程中,教师需要注重激发学生的学习兴趣,引导学生主动参与课堂讨论,提高学生的学习积极性。

三. 说教学目标1.知识与技能:让学生掌握勾股定理的内容,了解勾股定理的证明方法,能够运用勾股定理解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的逻辑思维能力和创新能力。

3.情感态度与价值观:让学生感受数学的趣味性和实用性,激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 说教学重难点1.教学重点:让学生掌握勾股定理及其证明方法。

2.教学难点:引导学生探索勾股定理的证明方法,培养学生的创新能力。

五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、分组讨论法、情境教学法等教学方法,结合多媒体课件、几何画板等教学手段,引导学生主动参与课堂讨论,提高学生的学习积极性。

六. 说教学过程1.导入新课:通过讲述毕达哥拉斯的故事,激发学生的学习兴趣,引出本节课的主题。

2.探究勾股定理:让学生分组进行实际操作,观察直角三角形的三条边之间的关系,引导学生猜想勾股定理。

3.验证勾股定理:引导学生运用几何画板等工具,验证猜想的正确性。

4.讲解勾股定理:教师对勾股定理进行详细讲解,让学生掌握定理的内容。

5.应用勾股定理:让学生运用所学知识解决实际问题,巩固所学内容。

《2.7探索勾股定理(1)》说课稿

《2.7探索勾股定理(1)》说课稿

《2.7探索勾股定理(1)》说课稿一、教材分析:本课是浙教版初中数学八年级上册第二章第七课内容,共分为两个课时,本堂课是本课的第一课时。

众所周知,勾股定理是初中数学乃至几何中十分重要的一个定理,本课是在学生已经掌握了直角三角形的相关基本性质和判定的基础上进行学习的。

它揭示的是直角三角形中三边之间的等量关系。

学生通过对勾股定理的认识可进一步加深对直角三角形的认识及理解,也为学生接下来的学习打下必要基础。

二、教学目标:1、知识目标:探索勾股定理的得出并掌握勾股定理,能应用勾股定理解决简单的数学问题2、能力目标:能通过观察三边之间的关系从而得出22c2+这一关系,得出ba=勾股定理。

3、情感目标让学生在探索勾股定理的过程中体会数学乐趣,增加学习兴趣。

同时增加学生的成就感,增加学习自信心。

三、教学重难点:1、教学重点:探索并掌握勾股定理2、教学难点:运用勾股定理解决简单的问题四:教法与学法:1、教法:通过直观归纳的方法,以多媒体为辅助教学手段,引导学生发现勾股定理,培养学生的思维与归纳能力。

在答题时,逐步增加习题难度,引导学生积极思考讨论,使学生在解完题后具有成就感,提高学生学习的兴趣与积极性。

2、学法:通过教师引导,一步步得出勾股定理,在得出定理后通过不断的运用勾股定理从而加强对该定理的理解与掌握。

在练习过程中,不断讨论思考攻克难题,从而使自身得以成就感。

五:教学用具:多媒体、三角板六、教学过程:1、合作学习:通过对表格的补充后进行观察,从而得到222c+这一关系式,a=b再通过对这一关系式的解读,从而得出勾股定理。

通过合作学习这一环节使学生自行得出勾股定理增强了继续学习的兴趣。

2、新课讲解:例1的提出与解答是为了使学生能简单的代入使用勾股定理解答问题,同时了解勾股定理解答问题时的一般书写格式。

例1的第四小题对于初学勾股定理的学生来说具备了一定的难度,可通过教师的提醒和引导使学生接触方程思想,认识数学思想。

《探索勾股定理》说课稿(第一课时)

《探索勾股定理》说课稿(第一课时)
例 : Rt ABC 中 , C= , 在 △ Rt
3 教学方法
新课 改及 新课标 明确 提倡构 建 充满生 命 () 1已知 a , 8, c; 6 b 求 活力的课堂教学运行 体系。因此 , 本节课我采 () 2 已知 a 0 c 1 求 b; 4 , 4 , 用 “ 引导探究法” 让学生通过 动手、 脑、 , 动 动 因为教材中的 例 1 计算学牛 易出错 , 为了 口 自主 探索 , 经历知识 的形成 与应用 的过程 , 能够让 学生 熟练的运 用 勾股定理 解决 已知直 感受到 “ 无处不在的数学 ”与数学 的美 , 提高 角三 角形 的 两边 , 求第三边 的 问题 , 我改编教 学 习 兴 趣 , 一 步 体 会 数 学 的地 位 和 作 用 。 进 材了 P . 练习 1作为例 1。这道题的 解决 方法 是先 采用独立完 成形式 , 有困难的学生 可以求 4 学 过程 教 助老 师或 同学 , 生互 助完成 , 学 派学 生代表板 信息展示 与 归纳 一 集体 合作与 合作 探究 书讲解 。 师生巩 固与练 习 小结 要点与拓 展 。 练 习在 Rt ABC 中 △ 4 1信息展示 与归纳 () 1 已知 A=3 。, =2 求 b c 0 a , 、 ; 学生 展示 的信息 主要 介绍 勾股定 理的 历 ( A=4 。, =4, a、b。 2) 5 C 求 史, 列举 了东 西文化 中对勾股 定理 的发现 , 介 在 此基础上 , 我设 计了练 习 1 是将例 l 中 C 0 的条件去掉 , 9 。 就是 已知 R △ A C的 t B 两边 去 求第 三边 , 此题 就变 为一 道 开放 性试 题, 学生很容 易模仿例 1 只考虑 C 0 9 。这一 种情 况 , 教师要 引导学 生发现 条件的 变化 , 探 究其 它情 况的存在 , 即这里 的 A为9 。的可 0 能, 得出此题 应分为 两种情 况解 决 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《探索勾股定理》第一课时说课稿 |参
考教案
《探索勾股定理》第一课时说课稿
课题:“勾股定理”第一课时
内容:教材分析、教学过程设计、设计说明
一、教材分析
(一)教材所处的地位
这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)根据课程标准,本课的教学目标是:
1、能说出勾股定理的内容。

2、会初步运用勾股定理进行简单的计算和实际运用。

3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱
祖国悠久文化的思想,激励学生发奋学习。

(三)本课的教学重点:探索勾股定理
本课的教学难点:以直角三角形为边的正方形面积的计算。

二、教法与学法分析:
教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。

引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

三、教学过程设计
(一)提出问题:
首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何
求第三边?”的问题。

学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。

这种以实际问题为切入点引入新课,不仅自然,而且反映了数学于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。

(二)实验操作:
1、投影课本图1—1,图1—2的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。

这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

相关文档
最新文档