勾股定理课件(共20张PPT)

合集下载

勾股定理数学优秀ppt课件

勾股定理数学优秀ppt课件
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。

北师大版八年级数学上册1.1 第1课时 勾股定理的认识 课件(共23张PPT)

北师大版八年级数学上册1.1 第1课时 勾股定理的认识  课件(共23张PPT)

探究新知
1.在纸上画若干个直角三角形,分别测量它们的
三条边,看看三边长的平方之间有怎么样的关系?
c
a
b
直角三角形的两直角边的平方和等于斜边的平方,这就是
著名的“勾股定理”。
如果直角三角形的两条直角边为a、b,斜边为c,那么有
a2+b2=c2.
数学小知识
我国古代称直角三角形的较短的直角边为勾,较长的直角
求 的长.
解:因为 ⊥ ,
所以 ∠ = ∠ = 90∘ .
在 Rt △ 中, 2 = 2 − 2 = 102 − 82 = 36 ,
所以 = 6 .
设 = = ,则 = − 6 .
在 Rt △ 中, 2 = 2 + 2 ,
所以 △ =
1

2
1
2
⋅ = × 25 × 12 = 150 .
6. 如图,直线 上有三个正方形 , , .若 , 的面积分别
为 5 和 11 ,则 的面积为( C )
A. 4
B. 6
C. 16
D. 55
7. 如图,在 △ 中, = , = 10 , ⊥ ,垂足为 , = 8 .
(2) 已知 = 12 , = 16 ,求 .
【解】在 Rt △ 中, ∠ = 90∘ , = 12 , = 16 ,
所以 2 = 2 + 2 = 122 + 162 = 400 .
所以 = 20 .
例2 如图,在 △ 中, ⊥ 于点 ,且 + = 32 ,
因为 ∠ = 90∘ ,所以 2 + 2 = 2 .

勾股定理共21页22页PPT

勾股定理共21页22页PPT

活动3
(3)如图,分别以Rt △ABC三边为边
向外作三个正方形,其面积分别用S1、
S2、S3表示,容易得出S1、S2、S3之间
有的关系式为 S1 S2S3 .
C
S3
A
S2
B
S1
活动3
(3)变式:你还能求出S1、S2、S3之间
的关系式吗?
S3
S2
S1
活动4
(1)这节课你有什么收获?
(2)作业
对 要角 求线 出AACC的 的A长 长1最 ,m大 怎, 样B因 求此呢需?
(3)有一个边长为50dm 的正方形洞口, 想用一个圆盖去盖住这个洞口,圆的直径 至少多长?(结果保留整数)
D
C 解:∵在Rt△ ABC中,∠B=90°,
AC=BC=50, ∴由勾股定理可知:
AC AB2 BC 2
40
A
90 C
160
B 40
应用知识回归生活
5.小明妈妈买了一部29英寸(74厘米)的电视 机.小明量了电视机的屏幕,发现屏幕只有58厘米 长和46厘米宽.他觉得一定是售货员搞错了,你同意 他的想法吗?你能解释这是为什么吗?
6.做一个长、宽、高分别为50厘米、40厘米、 30厘米的木箱,一根长为70厘米的木棒能否放入, 为什么?试用今天学过的知识说明.
谢谢
Thank you
勾股定理 — 2
活动1
勾股定理:直角三角形两直角边的平 方和等于斜边的平方.
如果在Rt△ ABC中,∠C=90°,
那么 a2b2 c2.
B
ac
C bA
结论变形
B
a
2 + b2
练习
(1)求出下列直角三角形中未知的边.

《勾股定理》PPT精品课件(第1课时)

《勾股定理》PPT精品课件(第1课时)

解:本题斜边不确定,需分类讨论: B 4
当AB为斜边时,如图
BC2 AB2 AC2 16 9 7,
3 C 图
B
4 AA 3 C

BC 7.
方法点拨:已知直角三角形的两边求
当BC为斜边时,如图
第三边,关键是先明确所求的边是直
BC2 AB2 AC2 16 9 25, 角边还是斜边,再应用勾股定理. BC 5.
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
c2 4 1 ab b a 2 a2 b2.
2
cb a b-a
赵爽弦图
知识讲解
右图是四个全等的直角三角形拼成的.请你根据此图, 利用它们之间的面积关系推导出: a2 b2 c2
∵S大正方形=(a+b)2=a2+b2+2ab,
知识讲解
猜想直角三角形的三边关系
B
C A
图中每个小方格子都是 边长为1的小正方形.
问题1
1、 BC=_3__, AC=_4__, AB=__5_ 2、 S黄 =_9__, S蓝 =1_6__, S红 =2_5__
3、S黄、S蓝与S红的关系是S_黄__+_S_蓝_=__S_红_.
4、能不能用直角三角形ABC的三边表 示S黄、S蓝、S红的等量关系?
S大正方形=4S直角三角形+ S小正方形 =4× 1 ab+c2
2
=c2+2ab, ∴a2+b2+2ab=c2+2ab,
∴a2 +b2 =c2.
a b
ac b
b ca
cb a
知识讲解
勾股定理

1勾股定理(第1课时)(教学PPT课件(华师大版))28张

1勾股定理(第1课时)(教学PPT课件(华师大版))28张
正方形中小方格的个数,你有什么猜想?
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理

(精选幻灯片)勾股定理ppt课件

(精选幻灯片)勾股定理ppt课件
2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576



17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边

勾股定理ppt课件


B 图2-1
C A
B
正方形B的面积是 9 个单位面积。 正方形C的面积是
图2-2
18 个单位面积。
(图中每个小方格代表一个单位面积) 你是怎样得到上面的结
果的?与同伴交流交流。
C A
S正方形c
B C
图2-1
A
413318 2
B
(单位面积)
图2-2
(图中每个小方格代表一个单位面积)
分“割”成若干个直 角边为整数的三角形
(1)若a=3, b=4,求c的长(2)若a=5, c =12,求b的长
(3)若a:b=3:4,c=15,求a,b的长
练习 (1)在直角△ABC中,∠A=90° a=5,b=4,则求c的值?
(2) 在直角△ABC中,∠B=90°, ①a=3, b=4,则求c的值? ②c =24,b=25,则求a的值?
x622232 42
2.求下列直角三角形中未知边的长:

5

比8
17

x
16
x 12

x

20


快 方法小结: 可用勾股定理建立方程.

1、如图,一个高3 米,宽4 米的大门,需在相
对角的顶点间加一个加固木条,则木条的长

( C)
A.3 米 B.4 米 C.5米 D.6米
3 4
2、湖的两端有A、B两点,从与BA方向成直
≈4.96(米)
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576



做一做:
A
625
P

浙教版数学八上2.7探索勾股定理(1) 课件(共23张PPT)


C
A
A
a
图1
a
C
B
图2
合作学习
大正方形的面积:c²
小正方形面积:(b-a)²


阴影部分面积:4× ab
1
2
它们之间的关系是: c 4 ab (b a )
2
2
化简得: a2+b2=c2
直角三角形三边有下面的关系:
直角三角形两条直角边的平方和等于斜边的平方
讲解新知
勾股定理: 直角形三角形两条直角边的平方和等于斜边的平方.
2.勾股定理
3.勾股定理的应用
等,则E站应建在距A站______km处.
10
即时演练
解:∵C、D两村到E站距离相等,∴CE=DE,
在Rt△DAE和Rt△CBE中,DE2=AD2+AE2,CE2=BE2+BC2,
∴AD2+AE2=BE2+BC2.
设AE为x,则BE=25-x,
将BC=10,DA=15代入关系式为x2+152=(25-x)2+102,
A
∴AB=130(mm)
答:两孔中心A,B之间的距离
90
B
C
40
为130mm
160
即时演练
m
铁路上A、B两站(视为直线上两点)相距25km,C、D为
两村庄(视为两个点),DA⊥AB于A,CB⊥AB于B(如
图),已知DA=15km,CB=10km,现在要在铁路AB上建
设一个土特产品收购站E,使得C、D两村到E站的距离相

∴S△ABC= ×BC×AC=6,

∴AC=4(cm).
∵BC2+AC2=AB2,

人教版九年级数学中考总复习《直角三角形与勾股定理》课件20张 (共20张PPT)

考点精讲
【例】(2016广东)如图1-4-5-1,
Rt△ABC中,∠B=30°,∠ACB=90°, CD⊥AB交AB于点D,以CD为较短的直角 边向△CDB的同侧作Rt△DEC,满足∠E= 30°,∠DCE=90°,再用同样的方法作 Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC, ∠HCI=90°. 若AC=a,求CI的长.
课堂巩固训练
1. 将一副直角三角板按如图1-4-5-11放置,若∠AOD=20°,
则∠BOC的大小为
(B)
A. 140°
B. 160°
C. 170° D. 150°
2. 如图1-4-5-12,在Rt△ABC中,∠B=90°,∠A=30°,DE垂
思路点拨:在Rt△ACD中,利用30°角的性质和勾股定理求出 CD的长;同理在Rt△ECD中求出FC的长,在Rt△FCG中求出CH 的长;最后在Rt△HCI中,利用30°角的性质和勾股定理求出 CI的长. 解:在Rt△ACB中,∠B=30°,∠ACB=90°, ∴∠A=90°-30°=60°. ∵CD⊥AB, ∴∠ADC=90°. ∴ቤተ መጻሕፍቲ ባይዱACD=30°.
•1、多少白发翁,蹉跎悔歧路。寄语少年人,莫将少年误。 •2、三人行,必有我师焉;择其善者而从之,其不善者而改之。2021/10/312021/10/312021/10/3110/31/2021 8:14:06 PM •3、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人4、智力教育就是要扩大人的求知范围 •5、教育是一个逐步发现自己无知的过程。 •6、要经常培养开阔的胸襟,要经常培养知识上诚实的习惯,而且要经常学习向自己的思想负责任。2021年10月 2021/10/312021/10/312021/10/3110/31/2021

《勾股定理》PPT

综合题:3.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求 △ABC的周长.
小贴士
为什么叫勾股定理这个名称呢? 在中国古代,人们把弯曲成直角的手臂的上半部分称 为“勾”,下半部分称为“股”.我国古代学者把直角三 角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.由于命题1反映的正好是直 角三角形三边的关系,所以叫做勾股定理.


勾2+股2=弦2 国外又叫毕达哥拉斯定理
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3

C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜 边,这种情况下一定要进行分类讨论,否则容易丢解.
当堂练习
1.下列说法中,正确的是
( C)
A.已知a,b,c是三角形的三边,则a2+b2=c2
新知应用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;
B
(2)若a=1,c=2,求b.
a
解:(1)在Rt△ABC中, ∠C=90°
C
c a2 b2 52 52 50 5 2;
c
A
b
(2)在Rt△ABC中, ∠C=90°
b c2 a2 22 12 3.
注意:1.看好哪个角是直角,选择正确的公式来求边长
C
问题2 图中正方形A、B、C所围成的等腰直角三角 形三边之间有什么数量关系?
AB C
S正方形A S正方形B S正方形C
一直角边2 +
另一直角边2 =
斜边2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. S1 = 9 个单位面积. S2 = 9 个单位面积. S3 = 18 个单位面积.
S b2
A c C a S1
S3
B
结论:图1中三个正方
形的面积S1,S2,S3之间 的数量关系是:
图 1
S1+S2=S3
(图中每个小方格是1个单位面积)
S1+S2=S3 在图2中还成立吗?
1. S1 = 9 个单位面积.
5
“路”
3m
需要,需使梯子底端离建筑物距离AB为6米,问至少 需要多长的梯子? 解:∵AB⊥BC ∴∠ABC = 90° 根据勾股定理得: AC2 = AB2 +BC 2 = 62 + 82 = 36+64 = 100 即:AC = 10 答:梯子至少长10米。
C
例4、如图,要登上8米高的建筑物BC,为了安全
a c a ∴a2+b2=c2

c
b b
b
c
“赵爽弦图”表现了我国古人对数学的钻研 精神和聪明才智,是我国古代数学的骄傲。 因此,当 2002年第24届国际数学家大会在 北京召开时, “赵爽弦图”被选作大会会徽。
证明2:
2 (a+b) 大正方形的面积可以表示为 ;
也可以表示为 b a a c
ab 2 4 C 2
8m
A
6m
B
1、本节课我们学到了什么?
通过学习,我们知道了著名的勾股定 理,掌握了从特殊到一般的探索方法, 还学会到了拼图证明的方法。
2、学了本节课后我们有什么感想? 我们发现有些数学结论就存在于平常的生活中,需 要我们用数学的眼光去观察、思考、发现。
毕达哥拉斯(公元前572----前492年),古希腊著名的哲学家、数学 家、天文学家。相传有一次他在朋友家做客时,发现朋友 家用砖铺成的地面中反映了A、B、C三者面积之间的数量 关系,进而发现直角三角形三边的某种数量关系.
证明1:
该图2002年8月在北京召开的国际数学家大会的会标示意 图,取材于我国古代数学著作《勾股圆方图》。
大正方形的面积可以表示为
2
c2
a
a
1 也可以表示为 (b a ) 4 ab 2 c 1 2 ∵ c2= (b a ) 4 ab 2 2 2 =b -2ab+a + 2ab b =a2+b2
18.1 勾股定理
在准备好的方格纸上,分别画三个顶点都在格 点上且两直角边分别为3和4,6和8的直角三角形,并 测量出这三个直角三角形的斜边长, 完成下表,你 有什么发现吗?
a b c 5
c2
a2 b2
25 100
① ②
3 6
4 8 10 100
你能发现图1中三个正方形的面积S1,S2,S3之间有什么数量关系吗?
我们也来观察右图的地面, 你能发现A、B、C面积之间 有什么数量关系吗?
A
B
C
SA+SB=SC
每块砖都是等腰直角三角形哦
1
1
美丽的勾股树
1.必做题:课本第57页,习题18.1 第1、2、3、 4题. 2.选做题: (1)查阅相关资料,了解勾股定理历史
(2)做一棵奇妙的勾股树(选做)
只要我们细心观察、认真思考,就可以在 生活中发现数学的奇妙,让我们在奇妙的数学 世界里,不懈探索、自由翱翔,享受数学带给 我们的乐趣吧!
为什么叫勾股定理这个名称呢?原来在中国


例1:图中已知数据表示面积,求表示边的 未知数x、y的值.
9
144
16

169 ②
例2:已知S1=1,S2=3, S3=2,S4=4 ,
求S5 、S6 、S7的值.
s3
S4
S2 S1 S5
S6
S7
例 3 、如图,学校有一块长方形花园,有 极少数人为了避开拐角走“捷径”,在花园内 4 走出了一条“路”,仅仅少走了 ____ 步路 , 却 踩伤了花草。 (假设1米为2步) 4m 4
∵ (a+b)2 =
ab 2 4 C 2
c
b
a
b
a
c
b
c
a2+2ab+b2 = 2ab +直角
边长分别为a、b,斜边长为c,那么
a2 + b2 = c2
即:直角三角形两直角边的平方和等于斜 边的平方。
古代,人们把弯曲成直角的手臂的上半部分称为“勾”, 下半部分称为“股”。于是我国古代学者就把直角三角 形中较短直角边称为“勾”,较长直角边称为“股”, 斜边称为“弦”.由于命题1反映的正好是直角三角形三 边的关系,所以叫做勾股定理。
A
S2 = 16 个单位面积. S S3 = 25 个单位面积. 你是怎样得到大 正方形的面积的? 与同伴交流交流.
2
S3 c
b
S
1
C 2 a 图
B
(图中每个小方格是1个单位面积)
思考:对任意的直角三角形,两直 角边分别为a、b,斜边为c,a、b、c 满足怎样的关系?
1、拿出准备好的四个全等的直角三角形 (设直角三角形的两条直角边分别为a,b, 斜边c); 2、你能用这四个直角三角形拼成一个正方 形 吗?拼一拼试试看 a b c
相关文档
最新文档