核医学知识点笔记复习整理
核医学复习重点总结

第一章总论核医学定义:是一门研究核素和核射线在医学中的应用及其理论的学科。
主要任务是用核技术进行诊断、治疗和疾病研究。
核医学三要素:研究对象放射性药物核医学设备一、核物理基础(一)基本概念:元素---凡质子数相同的一类原子称为一种元素核素---质子数、中子数、质量数及核能态均相同的原子称为一种核素。
放射性核素----能自发地发生核内结构或能级变化,同时从核内放出某种射线而转变为另一种核素,这种核素称为放射性核素。
(具有放射性和放出射线)稳定性核素----能够稳定地存在,不会自发地发生核内结构或能级的变化。
不具有放射性的核素称为稳定性核素。
(无放射性)同位素----具有相同的原子序数(质子数相同),但质量数(中子数)不同的核素互为同位素。
同质异能素----- 核内质子数、中子数相同,但处在不同核能态的一类核素互为同质异能素。
(质量数相同,能量不同,如99mTc和99Tc)(二)核衰变类型四种类型五种形式α衰变释放出α粒子的衰变过程,并伴有能量释放。
β衰变放射出β粒子或俘获轨道电子的衰变。
β衰变后,原子序数可增加或减少1,质量数不变。
•β-衰变•β+衰变•电子俘获(EC)γ衰变核素由激发态或高能态向基态或低能态跃迁时,放射出γ射线的衰变过程γ衰变后子核的质量数和原子序数均不变,只是核素的能态发生改变。
放射性核素的原子核不稳定,随时间发生衰变,衰变是按指数规律发生的。
随时间延长,放射性核素的原子核数呈指数规律递减。
N=N0e-λtN0:t=0时原子核数N:t时间后原子核数e:自然对数的底(e≈2.718)λ:衰变常数(λ=0.693/T1/2)物理半衰期(T1/2)生物半衰期(Tb)有效半衰期(Te)1/Te=1/T1/2+1/ Tb放射性活度描述放射性核素衰变强度的物理量。
用单位时间内核衰变数表示,国际制单位:贝可(Becquerel,Bq)定义为每秒1次衰变(s-1),旧制单位:居里(Ci)、毫居里(mCi)、微居里(μCi)换算关系:1Ci=3.7×1010Bq比活度单位质量物质内所含的放射性活度。
核医学复习资料

核医学27反射性核素的制备三大类:核反应堆制备,医用回旋加速器制备,放射性核素发生器制备28.物理半衰期:在单一的放射性核素衰变过程中,放射性活度减少一半,所需要的时间是放射性核素的一个重要特征参数。
29什么是生物半衰期:指进入生物体内的放射性核素,经各种途径从体内排出一半所需要的时间30.1合成代谢,细胞吞噬,循环通路,选择性摄取,选择性排泄,通透弥散,细胞拦截,离子交换和化学吸附,特异性结合14.放射性核素示踪计数:是以放射性核素或标记化合物作为示踪剂,应用射线探测器检测示踪剂分子的行踪,研究被标记物在生物体系或外界环境中分布状态或变化规律的技术9.放射性活度:单位时间内发生的核衰变次数,反映放射性强弱的物理量。
1.核医学:是一门利用开放型放射性核素对疾病进行诊断、治疗和科学研究的学3.炸面圈:骨显像时病灶中心显像剂分布减少,病灶周围显像剂增高呈环形的影像表现。
多见于股骨头缺血坏死。
是通过静脉注射的方式将放射性核素标记的亲骨性显像剂引入体内,该类显像剂可以与骨组织内的无机盐和有机质紧密结合,在体外通过核医学成像仪器显示显像剂在骨骼系统内的分布,获得骨骼系统的影像。
13.超级骨显像:某些累计全身的骨代谢性病变,呈现显像剂在全身骨骼积聚异常增高,被称为超级骨显像或过度显像,1.正常典型肾图的三段的名称及生理意义是什么?名称:a段放射性出现段;b段示踪剂聚集段c段排泄段生理意义:a段静脉注射示踪剂后10s左右肾图急剧上升段。
此段为血管段,时间短,约30s反映肾动态的血流灌注相;b段:a段之后的斜行上升段,3-5min 达到高峰,其上升斜率和高度与肾血流量、肾小球滤过功能和肾小管上皮细胞摄取、分泌功能有关。
反映肾皮质功能与肾小管功能;c段:b段之后的下降率与b段上升斜率相近,下降至峰值一半的时间小于8min。
为示踪剂经肾集合系统排入膀胱的过程,主要反映上尿路的通畅情况和尿流量多少有关1.核医学:是一门利用开放型放射性核素对疾病进行诊断、治疗和科学研究的学科2.核医学特点:①高灵敏度②方法简便、准确③合乎生理条件④定性、定量、定位研究的相结合⑤专业技术性强3.核医学显像:①功能性显像②无创性检查③图像融合④解剖分辨力低4.核素:质子数相同,中子数相同,具有相同能量状态的原子8.半衰期:放射性核素数量因衰变减少一半所需要的时间9.放射性活度:单位时间内发生的核衰变次数,反映放射性强弱的物理量。
核医学期末考试重点笔记

一、名词解释。
1.核医学:是一门研究核技术在医学的应用及其理论的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。
2.核素:是指质子数和中子数相同,并处于同一能级状态的原子,称为一种核素。
3.全身骨显像:是指给患者注射显像剂一定时间后,利用核医学显像设备(如γ相机,SPECT)的探测器沿患者体表做匀速运动,从头至足(或从足至头)依次采集全身各部位的显像剂分布信息,组成一幅完整的前位和后位的全身骨骼系统影像4.超级骨显像:是显像剂异常浓聚的特殊表现,显像剂在全身骨骼分布呈均匀,对称性异常浓聚,或广泛多发异常浓聚,软组织分布很少,骨骼影像异常清晰,肾和膀胱影像常缺失。
常见于以成骨为主的恶性肿瘤广泛性骨转移,甲旁亢等患者。
5.代谢性骨病:是指一组以骨代谢异常为主要表现的疾病,如原发性甲状旁腺功能亢进,骨质疏松症,肾性骨营养不良综合症,畸形性骨炎等。
通常弥漫性累及全身骨骼,并伴有血清甲状腺旁激素的升高以及骨转换率的增高。
6.甲状腺静态显像:口服放射性碘后,通过观察甲状腺部位放射性分布,可判别甲状腺病变,即甲状腺静态显像。
7.放射性药品:是指用于临床诊断或者治疗的放射性核素制剂或其标记药品。
8.放射性核素纯度:放射性核素纯度是指放射性药品中所要求的放射性核素其活度占样品放射性总活度的百分比。
9.肾图:静脉注射由肾小球滤过和肾小管上皮细胞分泌而不再被重吸收的放射性示踪剂,在体外应用肾图仪连续记录双肾的时间-放射性活度曲线,以反应双肾血流灌注、肾实质功能及尿液排泄的的生理过程,称为肾图10.小肾图:双侧对比,一侧肾图正常,而另一侧肾图幅度明显减低,峰值差>30%,但曲线形态保持正常,多见于一侧肾动脉狭窄或先天性一侧肾脏发育不良。
11.有效半衰期:放射性核素因生物代谢与物理衰变共同作用而致在生物体内放射性活性降低到一半所需的时间。
12放射性活度:用来描述放射性物质衰变强弱的物理量,表示单位时间内发生衰变的原子核数。
核医学知识总结

核医学知识总结一、核医学基本概念核医学是一门利用核技术来研究生物和医学问题的科学。
它涉及到核辐射、放射性核素、核素标记化合物以及相关的仪器和测量技术。
核医学在临床诊断、治疗和科研方面都有着广泛的应用。
二、核辐射与防护核辐射是指原子核在发生衰变时释放出的能量。
核辐射可以分为电离辐射和非电离辐射两类。
在核医学中,主要涉及的是电离辐射,它可以对生物体产生不同程度的损伤。
因此,在核医学实践中,必须采取有效的防护措施,确保工作人员和患者的安全。
三、放射性核素与标记化合物放射性核素是指具有不稳定原子核的元素,它们能够自发地释放出射线。
在核医学中,放射性核素可以用于显像、功能研究、体外分析和治疗等多种应用。
标记化合物是指将放射性核素标记到特定的化合物上,使其具有放射性,以便进行测量和分析。
四、核医学成像技术核医学成像技术是指利用放射性核素发出的射线,通过相应的仪器和测量技术,获得生物体内的图像。
目前常用的核医学成像技术包括SPECT、PET和PET/CT等。
这些技术可以在分子水平上对生物体进行无创、无痛、无损的检测,对于疾病的早期发现和治疗具有重要的意义。
五、核素显像与功能研究核素显像是核医学中的一种重要应用,它可以用于显示生物体内的生理和病理过程。
通过注射放射性核素标记的显像剂,利用相应的成像技术,可以获得器官或组织的图像,进而了解其功能状态。
核素显像在心血管、神经、肿瘤等多个领域都有广泛的应用。
六、体外分析技术体外分析技术是指利用放射性核素标记的化合物,通过测量其放射性强度,来分析生物体内的成分或生理过程。
体外分析技术具有高灵敏度、高特异性和定量准确等优点。
常用的体外分析技术包括放射免疫分析、受体结合试验等,它们在临床诊断和科研中都有着广泛的应用。
七、放射性药物与治疗放射性药物是指将放射性核素标记到特定的药物上,使其具有治疗作用。
放射性药物可以用于治疗肿瘤等疾病,通过射线的作用,破坏病变组织或抑制其生长。
核医学总结

一、平时笔记:第一章、核射线及其与物质的相互作用1.核素(P4)2.四种核衰变方式(P6-7)3.物理半衰期(P10)必考点4.放射性活度、比活度(P10)第二章、放射性测量1.实验室测量X、β射线最常用的是NaI(I131、I125)(P20 )2.道宽、微分测量、积分测量(P23)3.cpm与dpm(P28)4.漏计、液体闪烁测量(P29)5.平均测量、非平均测量(P31-32)6.淬灭(P37-39)必考点7.统计涨落按照泊松分布特点(P46-47)第三章、电离辐射生物效应与放射防护1.什么情条件下选择吸收剂量、当量剂量、有效剂量、比稀动能;吸收剂量的单位(P52-53)2.随机效应与确定性效应(P60)3.影响生物学作用的主要因素(P57-59)4.放射性废物特点及治理途径、放射危险标志物(P69-70)第四章、放射性核素标记化合物1.放射性浓度、放射化学纯度、放射性比活度(P72)2.I125适合做示踪实验的原因(P82)3.碘标记的前提、部位、原理(P83)4.几种碘化反应的优缺点比较及影响标记的因素(P84-85)5.什么情况下标记化合物要进行鉴定及纯化(P90)6.标记率、纸层析(P90)7.放射性比活度的测定(P95)8.辐射自分解的方式及控制方法(P97-98)选择题第六章、放射性核素示踪1.放射性核素示踪的特点(P128)2.放射性核素示踪实验注意问题(P130-131)3.直接稀释法(P134)4.参入实验(P137)可能考实验设计5.物质吸收、分布及排泄示踪研究(P142)可能考实验设计第七章、放射自显影术(ARG)1.放射自显影的主要类型、基本方法(P170-171)2.放射自显影的分辨力及影响因素(P177-179)必考点3.放射自显影的本底、效率,扩散性示踪剂(P179-180)第八章、放射免疫分析1.放射免疫分析法原理(P190)2.放射免疫分析的基本试剂(P192)3.RIA的基本步骤(P194)4.质量控制的简称及指标(P198)5.免疫放射分析的主要特点(P202)第九章、受体的放射性配基结合分析1.RBA与RRA(P216)必考点2.受体与配体结合的基本特征(P218)3.受体调节的增敏与失敏(P221)4.简单单位点系统受体与配体结合(P222-P228)必考点5.RRA与RIA区别(P243)二、最后一次理论课老师强调的重点(一)计算题1.放射性量的测量、计算(淬灭校正)------P26-422.受体计算------P222-P2283.血容量、体液容量-----P133-1344.放射性衰变计算----P105.标记率-----P906.比活度------P95、P11、P727.强度比值?(二)实验设计(二选一)主要应用同位素标记技术:点标记蛋白等。
核医学重点知识整理

第一章核医学:是一门研究核技术在医学中的应用及其理论的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。
我国核医学分为临床核医学和实验核医学。
核素(nuclide):具有相同的质子数、中子数和核能态的一类原子同位素(isotope):是表示核素间相互关系的名称,凡具有相同的原子序数(质子数)的核素互称为同位素,或称为该元素的同位素。
同质异能素(isomer):具有相同质子数和中子数,处于不同核能态的核素互称为同质异能素。
稳定性核素(stable nuclide):原子核极为稳定而不会自发地发生核内成分或能态的变化或者变化的几率极小放射性核素(radionuclide):原子核不稳定,会自发地发生核内成分或能态的变化,而转变为另一种核素,同时释放出一种或一种以上的射线核衰变(nuclear decay):放射性核素自发地释放出一种或一种以上的射线并转变为另一种核素的过程,核衰变实质上就是放射性核素趋于稳定的过程衰变类型:α衰变(产生α粒子);β–衰变(产生β¯粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。
α粒子的电离能力极强,故重点防护内照射。
β-粒子的射程较短,穿透力较弱,而电离能力较强,因此不能用来作显像,但可用作核素内照射治疗。
γ衰变(γdecay):核素由激发态向基态或由高能态向低能态跃迁时发射出γ射线的衰变过程,也称为γ跃迁。
γ衰变只是能量状态改变,γ射线的本质是中性的光子流。
电子俘获衰变:一个质子俘获一个核外轨道电子转变成一个中子和放出一个中微子。
电子俘获时,因核外内层轨道缺少了电子,外层电子跃迁到内层去补充,外层电子比内层电子的能量大,跃迁中将多余的能量,以光子形式放出,称其为特征x射线,若不放出特征x射线,而把多余的能量传给更外层的电子,使其成为自由电子放出,此电子称为俄歇电子内转换(internal conversation)核素由激发态向基态或由高能态向低能态跃迁时,除发射γ射线外也可将多余的能量直接传给核外电子(主要是K层电子),使轨道电子获得足够能量后脱离轨道成为自由电子,此过程称为内转换,这种自由电子叫做内转换电子衰变公式:Nt=No e衰变常数:某种放射性核素的核在单位时间内自发衰变的几率它反映该核素衰变的速度和特性;λ值大衰变快,小则衰变慢,不受任何影响不同的放射性核素有不同的λ一定量的放射性核素在一很短的时间间隔内发生核衰变数除以该时间间隔,即单位时间的核衰变次数;A=dN/dt放射性活度是指放射性元素或同位素每秒衰变的原子数,目前放射性活度的国际单位为贝克(Bq),也就是每秒有一个原子衰变,一克的镭放射性活度有3.7×1010Bq。
核医学知识点汇总
核医学知识点总结绪论+第一章核物理知识1、湮灭辐射:18F、11C、13N、15O等正电子核素在衰变过程中发射(产生)正电子,正电子与原子核周围的轨道电子(负电子)发生结合,同时释放两个能量相等方向相反的γ光子(511kev),这种现象就叫正电子湮灭辐射现象。
2、物理半衰期(T1/2):指放射性核素数目因衰变减少到原来的一半所需的时间,如131碘的半衰期是8.04天。
3、临床核医学:是将核技术应用于临床领域的学科,是用利用放射性核素诊断、治疗疾病和进行医学研究的学科。
4、核素:指具有特定的质子数、中子数及特定能态的一类原子。
5、放射性衰变的定义:放射性核素的原子由于核内结构或能级调整,自发的释放出一种或一种以上的射线并转化为另一种原子的过程。
6、放射性活度:表示单位时间内原子核的衰变数量:单位为Ci(居里),1Ci=3.7x1010Bq7、放射性核素发射器:从长半衰期的母体分离短半衰期的子体的装置,又称为“母牛”。
8、个人剂量监测仪:是从事放射性工作人员用来测量个人接受外照射剂量的仪器,射线探测器部分体积较小,可佩戴在身体的适当部位。
9、放射性核素示踪原理:是以放射性核素或其标记化合物作为示踪剂,应用射线探测仪器来检测其行踪,借此研究示踪剂在生物体内的分布代谢及其变化规律的技术。
10、阳性显像(positive imaging)是以病灶对显像剂摄取增高为异常的显像方法。
由于病灶放射性高于正常脏器、组织,故又称“热区”显像(hot spot imaging)如放射免疫显像、急性心肌梗死灶显像、肝血管瘤血池显像等。
11阴性显像(negative imaging)是以病灶对显像剂摄取减低为异常的显像方法。
正常的脏器、组织因摄取显像剂而显影,其中的病变组织因失去正常功能不能摄取显像剂或摄取减少而呈现放射性缺损或减低,故又称“冷区”显像(cold spot imaging)12放射性药物:含有放射性核素,用于临床诊断或治疗的药物。
核医学知识点笔记复习整理
核医学知识点笔记复习整理第一章中枢神经系统1.脑血流灌注显像及负荷显像的原理、方法、适应症、结果判断和临床应用。
2.脑脊液间隙显像的原理、方法、适应症、影像分析和临床应用。
第二章骨骼系统1.骨显像原理,骨显像的放射性药物,骨显像的方法以及适应证。
2.影像分析要点正常影像,异常影像。
3.骨显像的临床应用第三章泌尿系统1.肾图的原理、适应症、检查方法、正常肾图及其分析指标、异常肾图及临床意义。
2.肾动态显像的原理、适应症、正常影像、异常影像及临床意义。
3.介入试验巯甲丙脯酸试验的原理、适应症、方法及结果分析;利尿剂介入试验的原理、适应症、方法、及曲线结果分析与临床意义。
4.肾有效血浆流量与肾小球滤过率测定的原理、适应症、显像剂、方法、影像分析与临床价值。
5.肾静态显像的原理、适应症、显像方法、正常影像、异常影像及临床意义。
6.膀胱输尿管返流测定的原理、适应症、显像方法及结果分析。
7.生殖器官显像阴囊及睾丸显像的原理;放射性核素子宫输尿管造影术的方法及影像解释第四章消化系统1.胃肠道出血的原理、方法、影像分析和临床应用。
2.异位胃粘膜显像的原理、影像分析和临床应用。
3.唾液腺显像的原理、方法、影像分析和临床应用。
4.放射性核素肝胆动态显像的原理、显像剂、方法、适应症、影像分析和临床应用。
5.肝血流灌注和肝血池显像的概述、原理、显像技术、适应证、影像分析和临床应用。
6.胃幽门螺杆菌检测的原理、方法、适应证、结果分析和临床应用第五章内分泌系统1.甲状腺摄131碘试验的原理、方法、结果判定、影响因素和临床意义;血清甲状腺激素水平测定的原理、正常值、影响因素和临床应用;甲状腺功能测定的综合评价。
2.甲状腺显像的原理、方法、正常影像和临床应用;甲状腺结节的功能判断。
3.甲状旁腺显像的原理、方法、正常影像和临床应用;肾上腺髓质显像的原理、方法、正常影像和临床应用。
第六章血液、淋巴系统1.血液和淋巴显像的原理。
2.血液和淋巴显像的显像剂。
核医学复习重点.doc
核医学复习重点名词解释:1.超级骨显像:显像剂在中轴骨和附肢骨近端呈均匀、对称性异常浓聚,或广泛多发异常浓聚。
骨骼影像异常清晰,肾和膀胱影像常缺失。
常见于恶性肿瘤和广泛性骨转移、甲旁亢。
2.核医学:利用放射性核素诊断、治疗疾病和进行医学研究的学科。
3.阳性显像:病灶部位的显像剂分布高于正常组织的异常影像(稀疏或缺损)“热区”显像,如急性心梗病灶、骨骼病灶。
4.有效半衰期:指生物体内的放射性核素由于机体代谢从体内排出和物理衰变两个因素作用,减少至原有放射性活动度的一半所需的时间。
5.同位素:同一元素中,具有相同的质子数而中子数不同。
6.同质异能素:质子数和中子数都相同,处于不同核能状态的原子。
7.填空题:1.甲状腺结节类型分为温结节,热结节,凉结节,冷结节。
2.脑血流灌注显像(rCBF)的显像剂特点:99mTC-ECD相对分子质量小,不带电荷,脂溶性高,通过血脑屏障。
3.心肌灌注显像剂分为:静息显像,负荷显像。
4.肾静态显像显像剂:99mTC-DMSA;肾动态显像显像剂:肾小球滤过型-99mTC-DTPA (首选),肾小管分泌型--131I-OIH (经典)。
5.肝脏主要显像方法有:肝胶体显像、肝血池显像、血流灌注显像。
6.正电子发射型计算机断层显像(PET)适用于肿瘤病人,a 经系统疾病和精神病患者,心血管疾病患者。
7.核医学中国际制单位:Bq (贝克)惯用单位:Ci (居里)8.脑血流灌注显像适用于癫痼,TIA等疾病的诊断。
9.癫痫发作期显像表现:稀疏。
发作间期:增强。
简答题:1.肺通气灌注显像在诊断肺栓塞时影像特点:肺栓塞早期即可出现肺灌注显像和通气显像结果不匹配,即出现局部灌注缺损而通气正常。
2.骨显像的原理:显像剂:99mTC-MDP;原理:把亲骨性放射性核素或放射性核素标记的化合物引入体内与骨的主要无机盐成分-羟基磷灰石晶体发生化学吸附、离子交换以及与骨组织中有机成分相结合沉积在骨骼内。
核医学知识点总结笔记复习整理
核医学知识点总结笔记复习整理核医学是一门利用放射性核素诊断、治疗疾病和进行医学研究的学科。
它涉及到物理学、化学、生物学、医学等多个领域的知识,对于疾病的诊断和治疗具有重要意义。
以下是对核医学知识点的总结复习整理。
一、放射性核素的基本概念放射性核素是指不稳定的原子核,会自发地发生衰变,放出射线。
放射性衰变的类型主要有α衰变、β衰变和γ衰变。
α衰变是指原子核放出一个α粒子(由两个质子和两个中子组成),导致原子核的质量数减少 4,原子序数减少 2。
β衰变分为β⁻衰变和β⁺衰变。
β⁻衰变是原子核中的一个中子转变为一个质子,同时放出一个电子和一个反中微子;β⁺衰变则是一个质子转变为一个中子,放出一个正电子和一个中微子。
γ衰变是指在原子核从激发态向基态或从高能态向低能态跃迁时,放出γ光子。
γ射线的穿透力较强,但电离作用较弱。
放射性核素的半衰期是指放射性核素衰变一半所需要的时间,它是衡量放射性核素稳定性的重要指标。
不同的放射性核素半衰期差异很大,从几秒到数十亿年不等。
二、放射性核素的制备放射性核素可以通过核反应堆、加速器和放射性核素发生器等方式制备。
核反应堆通过控制中子的通量和能量,使靶物质发生核反应,产生放射性核素。
加速器利用带电粒子在电场和磁场中的加速和偏转,使粒子与靶物质发生核反应,生成所需的放射性核素。
放射性核素发生器是一种可以从长半衰期的母体核素中分离出短半衰期子体核素的装置。
例如,⁹⁹Mo ⁹⁹mTc 发生器,通过定期洗脱可以获得⁹⁹mTc 用于临床诊断。
三、放射性核素示踪技术放射性核素示踪技术是核医学的核心技术之一。
其基本原理是将放射性核素标记到化合物上,引入体内后,通过探测放射性核素的分布和变化,来研究被标记物质在体内的代谢、分布、排泄等过程。
示踪剂的选择需要考虑放射性核素的物理半衰期、射线类型和能量、标记化合物的稳定性和生物活性等因素。
在应用中,放射性核素示踪技术可以用于研究物质的吸收、分布和排泄,了解器官的功能状态,诊断疾病等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、心血管系统心肌灌注显像显像剂:99m Tc-MIBI心肌葡萄糖代显像显像剂:18F-FDG极坐标靶心图:影像的中心为心尖,周边为基底,上部为前壁,下部为下壁和后壁,左侧为前、后间壁,右侧为前、后侧壁。
心肌灌注显像和心肌葡萄糖代显像临床应用:1、冠心病心肌缺血的评价⑴冠心病心肌缺血的早期诊断。
①心肌缺血的典型表现是负荷试验心肌灌注影像出现显像分布稀疏或缺损,而静息或再分布影像呈正常或明显充填,提示为可逆性心肌缺血。
②可以准确评价心肌缺血的部位、围、程度和冠脉的储备功能。
③可检出无症状的心肌缺血。
⑵冠心病危险度分级。
Ⅰ高危的影像有以下特征:①在两支以上冠状动脉供血区出现多发性可逆性缺损或出现较大围的不可逆性灌注。
②定量或半定量分析有较大围的可逆性灌注缺损。
③运动负荷后心肌显像剂肺摄取增加。
④运动后左心室立即呈暂时性扩大或右心室暂时性显影。
⑤左主干冠状动脉分布区的可逆性灌注缺损。
⑥休息时LVEF降低。
Ⅱ若低危表现或SPECT负荷心肌灌注显像正常,提示心脏事件年发生率低于1%,预后良好。
⑶负荷心肌灌注显像对冠心病的预测价值。
在冠心病概率较低的人群中阳性结果预测价值为36%,而在冠心病概率较高的人群中阳性结果预测价值为99%。
⑷缺血性心脏病治疗后的疗效评估。
冠心病患者在治疗前表现为病变部位可逆性缺损,治疗后择期进行心肌灌注显像,如出现可逆性损伤,则高度提示再狭窄或治疗无效。
如出现正常,则提示血管通畅,治疗有效。
2、心肌梗死的评价⑴急性心梗的诊断。
①负荷/静息心肌灌注图像表现为病变部位不可逆损伤。
②可较准确地判断心肌梗死的部位、大小和并发症的缺血面积。
③急性心梗是负荷试验的禁忌症,只能做静息显像。
心梗6h后即可表现为病变部位的灌注异常。
⑵急性胸痛的评估。
①在急性心梗的患者,一般静息心肌显像时都会发现有灌注缺损。
②临床上急诊心肌显像为正常的患者中,几乎没有急性心梗或不稳定性心绞痛发生,而心肌显像为异常的患者,80%以上的病人后来证实为急性心梗可不稳定性心绞痛。
⑶指导溶栓治疗。
治疗前的病变部位存在放射性缺损区。
治疗后显像,如果显示缺损区缩小或消失,治疗有效;如果显示缺损区无缩小,治疗无效。
⑷急性心梗预后的早期估计。
①所谓高危患者的指征主要包括梗死周围有明显的残留缺血灶〔危险心肌〕,急性梗死的远处出现缺血〔多支血管病变〕和心肌显像剂摄取增高等。
②心肌显像为正常以及表现为单支血管病变的小而固定的缺损都提示为低危患者。
③静息时或溶栓后心肌灌注缺损围较大的患者比灌注缺损较小者的预后明显差。
3、心肌灌注显像用于术前心脏事件的预测①如负荷心肌显像为正常或仅为固定缺损则提示为心脏事件的低危患者。
②对于有明显的负荷诱发的可逆性缺血患者,应做冠状动脉造影进一步认识,如果问题不大可以考虑继续手术,以降低手术和麻醉风险。
4、心肌活力评价⑴负荷/静息心肌灌注显像。
①负荷/静息心肌灌注显像表现为病变部位呈可逆性缺损,则该部位心肌存活。
②若表现为病变部位不可逆性损伤,则支持心肌梗死诊断,进一步行MIBI硝酸甘油负荷试验或41TICL延迟显像,如表现为原固定缺损区的放射性填充,则该部位心肌存活;若仍为放射性缺损,则该部位心肌坏死。
⑵心肌灌注显像与心肌葡萄糖代显像联合。
①当心肌灌注缺损区18F-FDG摄取正常或增高时,提示心肌细胞存活;而血液灌注缺损区FDG代显像无显像剂摄取,则提示心肌坏死。
②血液与代显像心肌的显像分布均匀提示为正常。
血流-代不匹配模型在心肌功能障碍的患者,是心肌存活的有力证据。
③局部心肌血液与葡萄糖代呈一致性减低,呈匹配图像,为心肌疤痕和不可逆损伤的标志。
⑶心肌葡萄糖代显像与心肌脂肪酸代显像联合。
①脂肪酸代显像缺损区,葡萄糖代显像示18F-FDG摄取正常,表明局部心肌存活。
②脂肪酸代显像与葡萄糖代显像呈一致性缺损,表明局部心肌不存活。
5、其他心肌疾病⑴扩性心肌病多表现为心肌显像剂分布呈不规则稀疏,或呈"花斑"样改变,心室腔明显扩大,形态失常。
⑵肥厚型心肌病表现为心肌壁呈不同程度的肥厚,非对称性肥厚者尤以间壁增厚更明显,间壁:下壁之比大于1.3,心室腔相对缩小。
⑶心肌炎辅助诊断,多表现为左心室心肌呈不规则的显像剂分布稀疏,严重者出现分布缺损。
五、骨骼系统骨显像的原理:骨组织类似于离子交换柱,能与体液中可交换的离子或化合物发生离子交换或化学吸附作用。
骨显像剂经注射随血液到达全身骨骼,通过离子交换或化学吸附作用而分布于骨骼组织。
骨显像的显像剂:99m Tc-HMDP正常静态骨显像表现:①在正常人骨显像图上,全身各部位骨骼结构显示清晰,放射性分布左右对称。
②通常密质骨或长骨骨干放射性较低,而松质骨或扁骨如颅骨、肋骨、椎骨、盆骨及长骨的骨骺端等显影较浓。
③显像质量好的图像应能分辨肋骨和椎骨,软组织不显影,但因显像剂从肾脏排泄,双肾和膀胱显影。
④儿童及青少年骨骺普遍较浓,尤以骨骺部位显示为放射性浓聚灶。
⑤在正常成人的骨显像图像上,还常可见一些正常的放射性摄取增高的表现。
超级骨显像:超级骨显像指全身骨骼对放射性显像剂呈普遍、均匀的摄取增加,表现为全身骨骼显影异常增强和清晰,双肾常不显影,软组织放射性很低,其产生机制可能弥漫的反应性骨形成有关。
超级骨显像见于原发性或继发性甲状旁腺机能亢进、恶性肿瘤骨骼广泛转移。
骨显像的临床应用:1、转移性骨肿瘤①骨显像可较X线早3~6个月发现骨转移灶,可进行全身骨检查,因此临床上全身骨显像被作为恶性肿瘤患者诊断骨转移灶时首选的筛选检查。
②骨转移性肿瘤病灶在骨显像上的特征性表现是多发性放射性浓聚灶,其分布以中轴骨及四肢骨近端受累较多,少数病例表现为单发病灶。
断层图像椎弓根浓聚可作为骨转移的诊断。
③个别转移灶也可能以溶骨病变为主,呈放射性缺损区或"冷""热"混合型改变。
④弥漫性骨转移可呈超级骨显像。
2、原发性骨肿瘤①比X线早3~6个月,可以及早检出病变,且可进行全身骨检查。
②可准确显示原发肿瘤浸润的实际围,骨显像显示的肿瘤浸润围往往较X线检查的围大。
③有助于检出远离部位的转移灶。
④有助于术后复发与转移的复查。
⑤恶性肿瘤可表现为病变部位的放射性高度浓聚,骨轮廓常变形,三相骨显像表现为病变部位的放射性浓聚。
⑥如骨样骨瘤:多见于少年儿童,好发于股、胫骨,常为单发。
典型表现为病变部位放射性异常浓聚,可有"双密度"表现。
3、骨髓炎①骨显像较X线早1~2周发现病变部位,最常见的征象是在病变部位出现局限性放射性异常浓聚。
②用三相骨显像可鉴别骨髓炎与软组织蜂窝强炎,因骨髓炎病变部位在骨骼,故三相骨显像时血流相、血池相和延迟相均可见病灶有放射性浓聚,而蜂窝织炎病变在软组织,血流相和血池相病灶呈放射性浓聚,而延迟相则病变部位放射性浓聚不明显。
4、骨创伤⑴创作性骨折。
①对于某些部位如胸骨、骶骨、肩胛骨、手、足等处的隐匿性骨折,表现为异常放射性浓聚。
②监测和评价骨折的修复和愈合过程。
正常的骨折愈合过程在骨显像上表现为由早期放射性浓聚随着骨折愈合而放射性浓聚逐渐养活,延迟愈合可表现为骨折处持续放射性异常浓聚。
⑵应力性骨折。
①可比X线早数周发现病变,常发生于胫、腓骨干。
②其特征性变化是在三相骨显像的血池相显示局部血流增加,延迟相骨折部位出现卵圆形或梭形的放射性浓聚影。
⑶骨移植。
①一般骨移植后2周至3个月,在三相骨显像上移植骨处放射性不低于周围正常骨组织,与骨床连接处放射性浓聚,提示血供良好,移植骨存活。
②相反,如果呈放射性缺损区则移植骨无成骨活性。
5、缺血性骨坏死⑴股骨头坏死。
①比X线早数月发现病变,可预测股骨头存活情况。
②坏死早期表现为坏死区放射性缺损,周边放射性浓聚,呈典型的"炸面圈"样改变。
⑵儿童股骨头骨软骨病。
①比X线早数月发现病变,单侧最为常见。
②特征表现为股骨头骨骺部位放射性摄取减低或呈放射性缺损。
6、代性骨病⑴甲状旁腺功能亢进症。
①骨显像上呈广泛弥漫性显像剂摄取增加,以颅骨、长骨干骺端、肋软骨连接处和胸骨等更明显。
形成肋骨连接处的"串珠征"和胸骨处的"领带症"。
②肾脏不显影或显影差。
⑵Pager’s病〔骨炎〕。
骨显像特点是受损骨呈高度放射性浓聚,浓聚区均匀且边缘整齐,常波及整个长骨,骨外形变粗弯曲,亦可表现为整个颅骨和一侧骨盆受累。
7、关节性疾病⑴类风湿关节炎。
显像特点为双侧腕关节、掌指及指间关节的放射性浓聚。
⑵HPO〔肥大性肺性骨关节病〕。
骨显像见四肢骨干和干骺端的骨皮质呈对称性、弥漫性放射性增高,四肢长骨骨干皮质显影增强所形成所谓"轨道征"或"双条征"较具特征性。
关节周围由于继发性骨膜炎亦呈放射性增高,上述改变下肢比上肢明显。
六、呼吸系统肺灌注显像原理:经静脉注射大于肺毛细血管直径的放射性颗粒后,这些颗粒与肺动脉血混合均匀并随血流随机地一过性嵌顿在肺毛细血管或肺小动脉,其在肺的分布与局部肺血流量成正比,通过体外测定肺放射性分布并进行肺显像即可反映局部肺血流灌注情况,肺动脉狭窄或时,其供血区放射性颗粒减少或缺如。
肺灌注显像的显像剂:99m Tc标记的MAA肺通气显像原理:经呼吸道吸入一定量的放射性微粒之后,由于微粒直径的不同,将使之分别沉降在喉头、气管、支气管、细支气管以及肺泡壁上,使气道及肺显影。
当呼吸道某部位被阻塞,雾化颗粒不能通过阻塞部位,则阻塞部位以下呼吸道至肺泡出现放射性缺损区。
以此探测放射性气溶胶在呼吸道的沉降情况,来判断气道通畅情况及病变状态,以达到诊断目的。
肺通气显像的显像剂:99m Tc-DTPA肺灌注、通气显像诊断肺血栓栓塞症〔PTE〕:灌注显像显示节段性缺乏而通气显像正常的,表示有肺栓塞。
⑴高度可能性。
①大于或等于2个肺段的灌注稀疏、缺损区,同一部位的肺通气显像与X线胸片未见异常,或灌注缺损大于异常的肺通气或X线胸片。
②一个较大的和2个以上中等的肺灌注稀疏、缺损区,同一部位的肺通气显像与X线胸片检查正常。
③4个以上中等灌注稀疏、缺损区,同一部位的肺通气显像和X线胸片检查正常。
⑵中度可能性。
①1个中等的和2个以下较大的肺灌注稀疏、缺损区,同一部位的肺通气显像和X线胸片检查正常。
②出现在肺下野的灌注、通气缺损区,同一部位的X线胸片检查正常。
③一个中等大小的灌注、通气缺损区,现一部位的X线胸片检查正常。
④灌注、通气显像均为放射性分布减低、缺损区,伴少量胸水。
⑶正常。
肺形态与X线胸片检查一致,无灌注稀疏、缺损。
七、胃肠道显像异位胃粘膜显像的原理:正常胃粘膜具有快速摄取99m TcO4-的特性,异位的胃粘膜同样具有这种特性。
异位胃粘膜显像检查Meckel憩室:在腹部脐周,通常在右下腹出现位置相对固定的灶状浓聚影,与胃同步显影,随着时间延长,影像渐浓。