数列求通项、求和的几种方法

合集下载

数列求和与求通项公式方法总结

数列求和与求通项公式方法总结

数列求和与求通项公式方法总结数列是数学中的一种重要概念,它是由一列按照一定规律排列的数字所组成的序列。

在数列中,求和与求通项公式是两个重要的问题,本文将对这两个问题的方法进行总结。

首先,我们来讨论数列的求和问题。

数列的求和是指对一个给定的数列中的所有元素进行求和的操作。

数列求和的方法主要有以下几种。

1.等差数列求和公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

等差数列求和的公式为Sn=[(a1+an)n]/2,其中an为末项。

这个公式适用于等差数列的求和问题,可以更快地求得数列的和。

2.等差数列求和差法:对于一个等差数列,当项数为n时,可以通过求和的差法Sn=(a1+an)(n/2)来求得数列的和。

这个方法适用于项数较多且公差较小的等差数列。

3.等比数列求和公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。

等比数列求和的公式为Sn=a1*(1-r^n)/(1-r),其中r不等于1、这个公式适用于等比数列的求和问题,可以轻松地求得数列的和。

4.等比数列求和减法:对于一个等比数列,当公比r满足,r,<1时,可以通过求和的减法Sn=a1/(1-r)来求得数列的和。

这个方法适用于公比绝对值小于1的等比数列。

其次,我们来讨论数列的求通项公式问题。

数列的通项公式是指能够根据数列的位置n来快速计算出数列中相应位置上的数值的公式。

数列求通项公式的方法主要有以下几种。

1.等差数列通项公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。

2.等比数列通项公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。

通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。

数列求和及求通项方法总结

数列求和及求通项方法总结

数列求和及求通项一、数列求和的常用方法1、公式法:利用等差、等比数列的求和公式进行求和2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法 例:已知数列1312--=n n n a ,求前n 项和n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项①形如)(1k n n a n +=,可裂项成)11(1kn n k a n +-=,列出前n 项求和消去一些项②形如kn n a n ++=1,可裂项成)(1n k n ka n -+=,列出前n 项求和消去一些项 例:已知数列1)2()1)(1(11=≥+-=a n n n a n ,,求前n 项和n S4、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。

例:已知数列122-+=n a nn ,求前n 项和n S5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广)一、数列求通项公式的常见方法有:1、关系法2、累加法3、累乘法4、待定系数法5、逐差法6、对数变换法7、倒数变换法 8、换元法 9、数学归纳法累加法和累乘法最基本求通项公式的方法求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列,再通过累加法或累乘法求出通项公式。

二、方法剖析1、关系法:适用于)(n f s n =型求解过程:⎩⎨⎧≥-===-)2()1(111n s s n s a a n n n例:已知数列{}n a 的前n 项和为12++=n n S n ,求数列{}n a 的通项公式2、累加法:适用于)(1n f a a n n +=+——广义上的等差数列求解过程:若)(1n f a a n n +=+则)1(12f a a =- )2(23f a a =-所有等式两边分别相加得:∑-==-111)(n k n k f a a 则∑-=+=111)(n k nk f a a例:已知数列{}n a 满足递推式)2(121≥++=-n n a a n n ,{}的通项公式,求n a a 11= 3、累乘法:适用于n n a n f a )(1=+——广义上的等比数列求解过程:若n n a n f a )(1=+,则)(1n f a a nn =+ ......累加则)1()......2()1(12312-===-n f a a f a a f a a n n , 所有等式两边分别相乘得:∏-==111)(n k n k f a a 则∏-==111)(n k n k f a a 例:已知数列{}n a 满足递推式)2(21≥=-n a a n nn ,其中{}的通项公式,求n a a 31= 4、待定系数法:适用于)(1n f pa a n n +=+①形如)1,0,;,(1≠≠+=+p b p b p b pa a n n 为常数型(还可用逐差法)求解过程:构造数列)(1k a p k a n n +=++,展开得k pk pa a n n -+=+1,因为系数相等,所以解方程b k pk =-得1-=p b k ,所以有:)1(11-+=-++p ba p pb a n n ,这样就构造出了一个以11-+p b a 为首项,公比为p 的等比数列⎭⎬⎫⎩⎨⎧-+1p b a n 。

(重要)高中数学数列十种求通项和七种求和方法,练习及问题详解

(重要)高中数学数列十种求通项和七种求和方法,练习及问题详解

高中数列知识点总结1. 等差数列的定义与性质定义:1n n a a d +-=〔d 为常数〕,()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+ 前n 项和:()()11122n n a a n n n S nad +-==+性质:〔1〕假如m n p q +=+,如此m n p q a a a a +=+;〔2〕{}n a 为等差数列2n S an bn ⇔=+〔a b ,为常数,是关于n 的常数项为0的二次函数〕2. 等比数列的定义与性质定义:1n na q a +=〔q 为常数,0q ≠〕,11n n a a q -=.等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩〔要注意公比q 〕性质:{}n a 是等比数列〔1〕假如m n p q +=+,如此mn p q a a a a =·· 3.求数列通项公式的常用方法一、公式法例1 数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式.解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,如此113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-.二、累加法 )(1n f a a n n =--例2 数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式.解:由121n n a a n +=++得121n n a a n +-=+如此所以数列{}n a 的通项公式为2n a n =.例3数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 如此111213333n n n n n a a +++-=+三、累乘法)(1n f a a n n=- 例4 数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,如此12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5 〔2004年全国I 第15题,原题是填空题〕数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式. 解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+②用②式-①式得1.n n n a a na +-=如此1(1)(2)n n a n a n +=+≥故11(2)n na n n a +=+≥ 四、待定系数法〔重点〕例6 数列{}n a 满足112356nn n a a a +=+⨯=,,求数列{}n a 的通项公式.解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n nn n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-例7 数列{}n a 满足1135241nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+⑥将13524nn n a a +=+⨯+代入⑥式,得整理得(52)24323n nx y x y +⨯++=⨯+.令52343x x y y +=⎧⎨+=⎩,如此52x y =⎧⎨=⎩,代入⑥式得115223(522)n nn n a a +++⨯+=+⨯+⑦例8 数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,如此等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x x x y y x y z z+=⎧⎪++=⎨⎪+++=⎩,如此31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++⑨五、对数变换法例9 数列{}n a 满足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,.在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++⑩设1lg (1)5(lg )n n a x n y a xn y ++++=++错误! 六、迭代法例10 数列{}n a 满足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.解:因为3(1)21n n n n a a ++=,所以121323(1)23212[]n n n n n n n n n a a a ---⋅-⋅⋅--== 七、数学归纳法 例11 11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.〔其他方法呢?〕 解:由1228(1)(21)(23)n n n a a n n ++=+++与189a =,得 由此可猜想22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论. 〔1〕当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. 〔2〕假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,如此当1n k =+时, 由此可知,当1n k =+时等式也成立.根据〔1〕,〔2〕可知,等式对任何*n N ∈都成立. 八、换元法例12 数列{}n a满足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =如此21(1)24n n a b =- 故2111(1)24n n a b ++=-,代入11(1416n n a a +=+得 即2214(3)n n b b +=+因为0n b =≥,故10n b +=≥ 如此123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-, 九、不动点法例13 数列{}n a 满足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,如此1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为十、倒数法11212nn n a a a a +==+,,求n a 4. 求数列前n 项和的常用方法一、公式法利用如下常用求和公式求和是数列求和的最根本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法〔等差乘等比〕[例3]求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②〔设制错位〕 ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 〔错位相减〕∴1224-+-=n n n S三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列〔反序〕,再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-〔反序〕又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-〔反序相加〕 ∴nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②〔反序〕又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 〔反序相加〕)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5 四、分组法求和有一类数列,既不是等差数列,也不是等比数列,假如将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… [例8] 求数列{n<n+1><2n+1>}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132〔分组〕五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解〔裂项〕如:〔1〕)()1(n f n f a n -+= 〔2〕n n n n tan )1tan()1cos(cos 1sin -+=+ 〔3〕111)1(1+-=+=n n n n a n 〔4〕)121121(211)12)(12()2(2+--+=+-=n n n n n a n 〔5〕])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n<6> nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+〔裂项〕 ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S 〔裂项求和〕 =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cosn n --= 〔找特殊性质项〕∴S n = 〔cos1°+ cos179°〕+〔 cos2°+ cos178°〕+〔cos3°+ cos177°〕+···+〔cos89°+ cos91°〕+ cos90° 〔合并求和〕= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得 ……∵0665646362616=+++++++++++k k k k k k a a a a a a 〔找特殊性质项〕 ∴ S 2002=2002321a a a a +⋅⋅⋅+++〔合并求和〕=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,假如103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+〔找特殊性质项〕 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=〔合并求和〕=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构与特征进展分析,找出数列的通项与其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法. [例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个〔找通项与特征〕 ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n 〔分组求和〕 =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.数列练习一、选择题}{n a 的公比为正数,且3a ·9a =225a ,2a =1,如此1a =A.21B. 22C.2 D.22.为等差数列,,如此等于{}n a 的前n 项和为n S .假如4a 是37a a 与的等比中项, 832S =,如此10S 等于A. 18B. 24C. 60D. 90 . 4设n S 是等差数列{}n a 的前n 项和,23a =,611a =,如此7S 等于A .13B .35C .49D . 63 5.{}n a 为等差数列,且7a -24a =-1,3a =0,如此公差d = 〔A 〕-2 〔B 〕-12 〔C 〕12〔D 〕2 {n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,如此数列的前10项之和 A. 90 B. 100 C. 145 D. 1907.等差数列{}n a 的前n 项和为n S ,2110m m ma a a -++-=,2138m S -=,如此m = 〔A 〕38 〔B 〕20 〔C 〕10 〔D 〕9 .{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,如此{}n a 的前n 项和n S =A .2744n n +B .2533n n +C .2324n n+D .2n n +{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,如此数列的前10项之和是 A. 90 B. 100 C. 145 D. 190 . 二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,如此44S a =.2.设等差数列{}n a 的前n 项和为n S ,如此4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,如此4T , , ,1612T T 成等比数列.}{n a 中,6,7253+==a a a ,如此____________6=a .4.等比数列{n a }的公比0q >, 2a =1,216n n n a a a +++=,如此{n a }的前4项和4S = .数列练习参考答案一、选择题1.[答案]B[解析]设公比为q ,由得()22841112a q a q a q ⋅=,即22q =,又因为等比数列}{n a 的公比为正数,所以2q =故2122a a q ===,选B 2.[解析]∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B.[答案]B3.答案:C[解析]由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,再由81568322S a d =+=得 1278a d +=如此12,3d a ==-,所以1019010602S a d =+=,.应当选C 4.解:172677()7()7(311)49.222a a a a S +++====应当选C. 或由21161315112a a d a a a d d =+==⎧⎧⇒⎨⎨=+==⎩⎩, 716213.a =+⨯=所以1777()7(113)49.22a a S ++===应当选C. 5.[解析]a 7-2a 4=a 3+4d -2<a 3+d>=2d =-1 ⇒ d =-12[答案]B 6.[答案]B[解析]设公差为d ,如此)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =1007.[答案]C[解析]因为{}n a 是等差数列,所以,112m m m a a a -++=,由2110m m m a a a -++-=,得:2m a -2m a =0,所以,m a =2,又2138m S -=,即2))(12(121-+-m a a m =38,即〔2m -1〕×2=38,解得m =10,应当选.C.8.[答案]A 解析设数列{}n a 的公差为d ,如此根据题意得(22)22(25)d d +=⋅+,解得12d =或0d =〔舍去〕,所以数列{}n a 的前n 项和2(1)1722244n n n n nS n -=+⨯=+ 9.[答案]B[解析]设公差为d ,如此)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =100二、填空题1.[命题意图]此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分表现了通项公式和前n 项和的知识联系.[解析]对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--2.答案:81248,T T T T [命题意图]此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过条件进展类比推理的方法和能力3.[解析]:设等差数列}{n a 的公差为d ,如此由得⎩⎨⎧++=+=+6472111d a d a d a 解得132a d =⎧⎨=⎩,所以61513a a d =+=.答案:13.[命题立意]:此题考查等差数列的通项公式以与根本计算.4.[答案]152[解析]由216n n n a a a +++=得:116-+=+n n n q q q ,即062=-+q q ,0q >,解得:q =2,又2a =1,所以,112a =,21)21(2144--=S =152三、大题{}n a 的各项均为正数,且212326231,9.a a a a a +==1〕.求数列{}n a 的通项公式.2〕.设31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.{an}满足a2=0,a6+a8=-10〔I 〕求数列{an}的通项公式;〔II 〕求数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和.2*.正项等差数列{}n a 的前n 项和为n S ,假如312S =,且1232,,1a a a +成等比数列. 〔Ⅰ〕求{}n a 的通项公式;〔Ⅱ〕记3nn n a b =的前n 项和为n T ,求n T . 3. 数列{a n }满足a 1=1,a 2=3,a n+2=3a n+1-2a n 〔n ∈N +〕〔1〕证明:数列{a n+1-a n }是等比数列;〔2〕求数列{a n }的通项公式{}n a 的各项满足:k a 311-=)(R k ∈,1143n n n a a --=-.<1> 判断数列}74{nn a -是否成等比数列;〔2〕求数列{}n a 的通项公式{}n a 和正项等比数列{}n b ,111==b a ,1073=+a a ,3b =4a〔1〕求数列{}n a 、{}n b 的通项公式〔2〕假如n n n b a c •=,求数列{}n c 的前n 项和n T。

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法数列专题1:根据递推关系求数列的通项公式根据递推关系求数列的通项公式主要有如下几种类型一、nS是数列{}n a的前n项的和11(1)(2)nn nS naS S n-=⎧=⎨-≥⎩【方法】:“1n nS S--”代入消元消na。

【注意】漏检验n的值 (如1n=的情况【例1】.(1)已知正数数列{}na的前n项的和为nS,且对任意的正整数n满足1na=+,求数列{}na的通项公式。

(2)数列{}na中,11a=对所有的正整数n都有2123na a a a n⋅⋅⋅⋅=,求数列{}n a的通项公式【作业一】1-1.数列{}na满足21*123333()3nnna a a a n N-++++=∈,求数列{}n a的通项公式.(二).累加、累乘 型如1()n n a a f n --=,1()nn a f n a -=1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法)【方法】1()n n a a f n --=, 12(1)n n a a f n ---=-, ……,21(2)a a f -=2n ≥,从而1()(1)(2)n a a f n f n f -=+-++,检验1n=的情况()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,12121()(1)(2)n n n n a a a f n f n f a a a ---⋅⋅⋅=⋅-⋅⋅即1()(1)(2)na f n f n f a =⋅-⋅⋅,检验1n =的情况【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘).【例2】. (1) 已知211=a ,)2(1121≥-+=-n n a a n n,求n a . (2)已知数列{}n a 满足12n n n aa n +=+,且321=a ,求n a .【例3】.(2009广东高考文数)在数列{}n a 中,11111,(1)2n n n n a a a n ++==++.设n na b n =,求数列{}n b 的通项公式(三).待定系数法1n n a ca p +=+ (,1,1c,p c p ≠≠为非零常数)【方法】构造1()n n a x c a x ++=+,即1(1)n n a ca c x +=+-,故(1)c x p -=, 即{}1n pa c +-为等比数列【例4】. 11a =,123n n a a +=+,求数列{}n a 的通项公式。

求数列通项公式与数列求和的几种方法

求数列通项公式与数列求和的几种方法

求数列通项公式与数列求和的几种方法数列是由一定规律形成的数的序列,通常可以用数学公式表示。

数列的通项公式是指能够表示数列中任意一项的公式。

数列的求和是指将数列中所有项相加的过程。

在数学中,有多种方法可以求解数列的通项公式和数列的求和问题。

下面将介绍一些常见的方法。

一、通过递推关系求解通项公式与求和递推关系是指数列中相邻项之间的数学关系。

通过观察数列中的规律,可以找到数列的递推关系,从而求解通项公式和数列的求和。

1.1等差数列等差数列是指数列中相邻项之间的差是一个常数。

设数列的第一项为a1,公差为d,则等差数列的递推关系可以表示为:an = a1 + (n-1)d。

通过该递推关系,可以求解等差数列的通项公式和求和。

1.2等比数列等比数列是指数列中相邻项之间的比是一个常数。

设数列的第一项为a1,公比为r,则等比数列的递推关系可以表示为:an = a1 * r^(n-1)。

通过该递推关系,可以求解等比数列的通项公式和求和。

1.3斐波那契数列斐波那契数列是指数列中的每一项都是前两项的和。

设数列的第一项为a1,第二项为a2,则斐波那契数列的递推关系可以表示为:an = an-1 + an-2、通过该递推关系,可以求解斐波那契数列的通项公式和求和。

二、通过数学工具求解通项公式与求和2.1代数方法对于一些特定的数列,可以使用代数方法求解通项公式和求和。

例如,对于等差数列和等比数列,可以使用代数方法推导出通项公式和求和公式。

2.2比较系数法比较系数法是一种常用的方法,适用于具体的数列。

通过对比数列中的系数和常数,可以列方程组求解通项公式和求和。

2.3拆分合并法对于一些数列,可以通过拆分合并法求解通项公式和求和。

该方法将数列分为不同的部分进行拆分和合并,从而得到整个数列的通项公式和求和。

三、通过数学工具和技巧求解通项公式与求和3.1差分法差分法是一种常见的求解通项公式和求和的方法。

对于一些特殊的数列,可以通过数列和数列之间的差值来推导出数列的特征,进而求解通项公式和求和。

数列求通项公式及求和的方法

数列求通项公式及求和的方法

数列求通项公式及求和的方法数列是指按照一定规律排列的一组数。

解决数列问题,首先需要找到数列的通项公式,然后可以利用通项公式求出数列的各项,再利用求和公式求出数列的和。

找到数列的通项公式的方法有多种,常见的方法包括等差数列的通项公式和等比数列的通项公式。

一、等差数列的通项公式及求和方法等差数列是指数列中的每一项与它前一项的差值相等的数列。

我们可以通过数列中的两项之间的关系来求出等差数列的通项公式。

设等差数列的第一项为a₁,公差为d,第n项为aₙ,则等差数列的通项公式为:aₙ=a₁+(n-1)d。

求等差数列的和,我们可以利用求和公式。

设等差数列的第一项为a₁,公差为d,共有n项,其中首项为a₁,末项为aₙ,求和公式为:Sn=n/2*(a₁+aₙ)。

二、等比数列的通项公式及求和方法等比数列是指数列中的每一项与它前一项的比值相等的数列。

我们可以通过数列中的两项之间的关系来求出等比数列的通项公式。

设等比数列的第一项为a₁,公比为q,第n项为aₙ,则等比数列的通项公式为:aₙ=a₁*q^(n-1)。

求等比数列的和,我们可以利用求和公式。

设等比数列的第一项为a₁,公比为q,共有n项,其中首项为a₁,末项为aₙ,求和公式为:Sn=a₁(q^n-1)/(q-1)。

除了等差数列和等比数列之外,还有其他种类的数列,如等差数列与等比数列交替出现的数列、斐波那契数列等。

这些数列有着特定的规律,可以通过观察数列中的数字之间的关系来确定其通项公式和求和公式。

在实际应用中,数列的求通项公式和求和公式可以帮助我们计算数列的任意项和总和,进而解决与数列相关的问题。

在数学、物理、经济等领域中,数列经常被运用到,掌握数列的通项公式和求和公式对于解决实际问题非常重要。

总结起来,数列问题的解决方法主要包括找到数列的通项公式和求和公式。

通过运用这些公式,我们可以计算数列的任意项和总和,进而解决与数列相关的问题。

而在确定通项公式和求和公式时,我们可以通过观察数列中的数字之间的关系来推导,常见的数列类型包括等差数列、等比数列等。

数列通项公式的求法13种和求和的七种方法

最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。

而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。

本文给出了求数列通项公式的常用方法。

一、直接法根据数列的特征,使用作差法等直接写出通项公式。

例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) ,17164,1093,542,211 (3) ,52,21,32,1 (4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,…… ∴通项公式为:110-=nn a(2);122++=n n n a n (3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:关键是找出各项与项数n 的关系例10:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解:设1)1(-+-+=n n bqd n a c 132211121237242-+=⇒⎪⎪⎩⎪⎪⎨⎧=====⎪⎪⎩⎪⎪⎨⎧=++=++=++=+∴n n n c a b d q bq d a bq d a bq d a b a 例11. 已知数列{}n c 中,b b c +=11,bb c b c n n ++⋅=-11, 其中b 是与n 无关的常数,且1±≠b 。

求出用n 和b 表示的a n 的关系式。

解析:递推公式一定可表示为)(1λλ-=--n n c b c 的形式。

由待定系数法知:bbb ++=1λλ )1(1,1,12122b bc b b b c b b b n n --=--∴-=∴≠-λ 故数列⎭⎬⎫⎩⎨⎧--21b b c n 是首项为112221-=--b b b b c ,公比为b 的等比数列,故111121211222--=∴-=-=--++-b b b c b b b b b b b c n n n n n 点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b 、c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n 。

(完整版)数列通项公式及其求和公式

一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。

求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。

一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。

例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。

1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。

二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。

例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。

2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。

例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。

3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。

4.1公式和差公式是指通过首项、末项和项数计算公差的公式。

已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。

数列求和与求通项公式方法总结(已打)

11、已知等比数列 中,各项都是正数,且 , 成等差数列,则
12、已知 为等比数列, , ,则 。
13、已知 得三边长成公比为 的等比数列,则其最大角的余弦值为_________.
14、已知等比数列 为递增数列,且 ,则数列的通项公式 _____.
15、等比数列{ }的前n项和为Sn,若S3+3S2=0,则公比 =_______
(Ⅰ)求 的值;(Ⅱ)求数列 的通项公式.
(1)求数列 的通项公式;
(2)记 ,求数列 的前n项和 。
数列练习题(近三年各地高考题选编)
一、填空题
1、在等差数列 中, ,则 的前5项和 =。
2、等差数列 中, ,则数列 的公差为。
3、在等差数列 中,已知 =16,则 。
4、如果等差数列 中, + + =12,那么 + +•••…+ =。
5、 为等差数列, 为其前 项和.若 , ,则 ________.
(1)求数列 、 的通项公式;
(2)设 ,数列 的前 项和为 ,问 > 的最小正整数 是多少
2、(2012广州一模)已知等差数列 的公差 ,它的前 项和为 ,若 ,且 , , 成等比数列.
(1)求数列 的通项公式;
(2)设数列 的前 项和为 ,求证: .
3、(2012惠州三模)已知函数 ,且数列 是首项为 ,公差为2的等差数列.
6、{an}的前n项和为Sn,且Sn= ,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡.
(1)求an,bn;
(2)求数列{an·bn}的前n项和Tn.
7、已知 是等差数列,其前 项和为 , 是等比数列,且 .
(I)求数列 与 的通项公式;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求数列通项公式的几种方法
数列知识是高考中的重要考察内容,而数列的通项公式又是数列的核心内容之一,它如同函数中的解析式一样,有了解析式便可研究起性质等;而有了数列的通项公式便可求出任一项以及前N项和等.因此,求数列的通项公式往往是解题的突破口,关键点.故将求数列通项公式的方法做一总结,希望能对广大考生的复习有所帮助.下面我就谈谈求数列通项公式的几种方法:
一、累差法
递推式为:a n+1=a n+f(n)(f(n)可求和)
思路::令n=1,2,…,n-1可得
a2-a1=f(1)
a3-a2=f(2)
a4-a3=f(3)
……
a n-a n-1=f(n-1)
将这个式子累加起来可得
a n-a1=f(1)+f(2)+…+f(n-1)
∵f(n)可求和
∴a n=a1+f(1)+f(2)+…+f(n-1)
当然我们还要验证当n=1时,a1是否满足上式
例1、已知数列{a}中,a1=1,a n+1=a n+2,求a n
解:令n=1,2,…,n-1可得
a2-a1=2
a3-a2=22
a4-a3=23
……
a n-a n-1=2n-1
将这个式子累加起来可得
a n-a1=f(1)+f(2)+…+f(n-1)
∵f(n)可求和
∴a n=a1+f(1)+f(2)+…+f(n-1)
当n=1时,a1适合上式
故a n=2n-1
二、累商法
递推式为:a n+1=f(n)a n(f(n)要可求积)
思路:令n=1,2,…,n-1可得
a2/a1=f(1)
a3/a2=f(2)
a4/a3=f(3)
……
a n/a n-1=f(n-1)
将这个式子相乘可得a n/a1=f(1)f(2)…f(n-1)
∵f(n)可求积
∴a n=a1f(1)f(2) …f(n-1)
当然我们还要验证当n=1时,a1是否适合上式
例2、在数列{a n}中,a1=2,a n+1=(n+1)a n/n,求a n
解:令n=1,2,…,n-1可得
a2/a1=f(1)
a3/a2=f(2)
a4/a3=f(3)
……
a n/a n-1=f(n-1)
将这个式子相乘后可得a n/a1=2/1×3/24×/3×…×n/(n-1)
即a n=2n
当n=1时,a n也适合上式
∴a n=2n
三,构造法
1、递推关系式为a n+1=pa n+q (p,q为常数)
思路:设递推式可化为a n+1+x=p(a n+x),得a n+1=pa n+(p-1)x,解得x=q/(p-1) 故可将递推式化为a n+1+x=p(a n+x)
构造数列{b n},b n=a n+q/(p-1)
b n+1=pb n即b n+1/b n=p,{b n}为等比数列.
故可求出b n=f(n)再将b n=a n+q/(p-1)代入即可得a n
例3、(06重庆)数列{a n}中,对于n>1(n€N)有a n=2a n-1+3,求a n
解:设递推式可化为a n+x=2(a n-1+x),得a n=2a n-1+x,解得x=3
故可将递推式化为a n+3=2(a n-1+3)
构造数列{b n},b n=a n+3
b n=2b n-1即b n/b n-1=2,{b n}为等比数列且公比为3
b n=b n-1·3,b n=a n+3
b n=4×3n-1
a n+3=4×3n-1,a n=4×3n-1-1
2、递推式为a n+1=pa n+q n(p,q为常数)
思路:在a n+1=pa n+q n两边同时除以q n+1得
a n+1/q n+1=p/qa n/q n+i/q
构造数列{b n},b n=a n/q n可得b n+1=p/qb n+1/q
故可利用上类型的解法得到b n=f(n)
再将代入上式即可得a n
例4、数列{a n}中,a1+5/6,a n+1=(1/3)a n+(1/2)n,求a n
解:在a n+1=(1/3)a n+(1/2)n两边同时除以(1/2)n+1得
2n+1a n+1=(2/3)×2n a n+1
构造数列{b n},b n=2n a n可得b n+1=(2/3)b n+1
故可利用上类型解法解得b n=3-2×(2/3)n
2n a n=3-2×(2/3)n
a n=3×(1/2)n-2×(1/3)n
3、递推式为:a n+2=pa n+1+qa n(p,q为常数)
思路:设a n+2=pa n+1+qa n变形为a n+2-xa n+1=y(a n+1-xa n)
也就是a n+2=(x+y)a n+1-(xy)a n,则可得到x+y=p,xy= -q
解得x,y,于是{b n}就是公比为y的等比数列(其中b n=a n+1-xa n)
这样就转化为前面讲过的类型了.
例5、已知数列{a n}中,a1=1,a2=2,a n+2=(2/3)·a n+1+(1/3)·a n,求a n
解:设a n+2=(2/3)a n+1+(1/3)a n可以变形为a n+2-xa n+1=y(a n+1-xa n)
也就是a n+2=(x+y)a n+1-(xy)a n,则可得到x+y=2/3,xy= -1/3
可取x=1,y= -1/3
构造数列{b n},b n=a n+1-a n
故数列{b n}是公比为-1/3的等比数列
即b n=b1(-1/3)n-1
b1=a2-a1=2-1=1
b n=(-1/3)n-1
a n+1-a n=(-1/3)n-1
故我们可以利用上一类型的解法求得a n=1+3/4×[1-(-1/3)n-1](n€N*)
四、利用s n和n、a n的关系求a n
1、利用s n和n的关系求a n
思路:当n=1 时,a n=s n
当n≥2 时, a n=s n-s n-1
例6、已知数列前项和s=n2+1,求{a n}的通项公式.
解:当n=1 时,a n=s n=2
当n≥2 时, a n=s n-s n-1=n+1-[(n-1)2+1]=2n-1
而n=1时,a1=2不适合上式
∴当n=1 时,a n=2
当n≥2 时, a n=2n-1
2、利用s n和a n的关系求a n
思路:利用a n=s n-s n-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解
例7、在数列{a n}中,已知s n=3+2a n,求a n
解:即a n=s n-s n-1=3+2a n-(3+2a n-1)
a n=2a n-1
∴{a n}是以2为公比的等比数列
∴a n=a1·2n-1= -3×2n-1
五、用不完全归纳法猜想,用数学归纳法证明.
思路:由已知条件先求出数列前几项,由此归纳猜想出a n,再用数学归纳法证明
例8、(2002全国高考)已知数列{a n}中,a n+1=a2n-na n+1,a1=2,求a n
解:由已知可得a1=2,a2=3,a3=4,a4=5,a5=6
由此猜想a n=n+1,下用数学归纳法证明:
当n=1时,左边=2,右边=2,左边=右边
即当n=1时命题成立
假设当n=k时,命题成立,即a k=k+1
则 a k+1=a2k-ka k+1
=(k+1)2-k(k+1)+1
=k2+2k+1-k2-2k+1
=k+2
=(k+1)+1
∴当n=k+1时,命题也成立.
综合(1),(2),对于任意正整数有a n=n+1成立
即a n=n+1。

相关文档
最新文档