常微分方程、积分与微分的运算,答案

合集下载

常微分方程第一、二、三次作业参考答案

常微分方程第一、二、三次作业参考答案

1、给定一阶微分方程2dyx dx=: (1) 求出它的通解;解:由原式变形得:2dy xdx =.两边同时积分得2y x C =+.(2) 求通过点(2,3)的特解;解:将点(2,3)代入题(1)所求的得通解可得:1C =-即通过点(2,3)的特解为:21y x =-.(3) 求出与直线23y x =+相切的解;解:依题意联立方程组:223y x Cy x ⎧=+⎨=+⎩故有:2230x x C --+=。

由相切的条件可知:0∆=,即2(2)4(3)0C --⨯-+=解得4C =故24y x =+为所求。

(4) 求出满足条件33ydx =⎰的解。

解:将 2y x C =+代入330dy =⎰,可得2C =-故22y x =-为所求。

2、求下列方程的解。

1)3x y dydx-= 2)233331dy x y dx x y -+=--解:依题意联立方程组:23303310x y x y -+=⎧⎨-+=⎩ 解得:2x =,73y =。

则令2X x =-,73Y y =-。

故原式可变成:2333dY x ydX x y-=-. 令Yu X =,则dy Xdu udx =+,即有 233263u dxdu u u x-=-+.两边同时积分,可得122(263)||u u C X --+= .将732y u x -=-,2X x =-代入上式可得: 12227()614323|2|2(2)y y C x x x -⎛⎫- ⎪--+=- ⎪-- ⎪⎝⎭.即上式为所求。

3、求解下列方程:1)24dyxy x dx+=. 解:由原式变形得:22dyxdx y=-. 两边同时积分得:12ln |2|y x C --=+. 即上式为原方程的解。

2)()x dyx y e dx-=. 解:先求其对应的齐次方程的通解: ()0dyx y dx -=. 进一步变形得:1dy dx y=.两边同时积分得:x y ce =.利用常数变异法,令()x y c x e =是原方程的通解。

常微分方程标准答案-一二章

常微分方程标准答案-一二章

习题1.24. 给定一阶微分方程2dyx dx=, (1). 求出它的通解; (2). 求通过点()1,4的特解; (3). 求出与直线23y x =+相切的解; (4). 求出满足条件102ydx =⎰的解;(5). 绘出(2),(3),(4)中的解得图形。

解:(1). 通解显然为2,y x c c =+∈;(2). 把1,4x y ==代入2y x c =+得3c =,故通过点()1,4的特解为23y x =+;(3). 因为所求直线与直线23y x =+相切,所以223y x cy x ⎧=+⎨=+⎩只有唯一解,即223x c x +=+只有唯一实根,从而4c =,故与直线23y x =+相切的解是24y x =+;(4). 把2y x c =+代入12ydx =⎰即得5c =,故满足条件12ydx =⎰的解是253y x =+;(5). 图形如下:-1.5-1-0.500.51 1.512345675. 求下列两个微分方程的公共解:242422,2y y x x y x x x y y ''=+-=++--解:由2424222y x x x x x y y +-=++--可得()()222210y x xy -++=所以2y x =或212y x =--,2y x =代入原微分方程满足,而212y x =--代入原微分方程不满足,故所求公共解是代入原微分方程不满足。

6. 求微分方程20y xy y ''+-=的直线积分曲线。

解:设所求直线积分曲线是y kx b =+,则将其代入原微分方程可得2200010k b k xk kx b k b k b k k -=⎧+--=⇒⇒====⎨-=⎩或所以所求直线积分曲线是0y =或1y x =+。

8. 试建立分别具有下列性质的曲线所满足的微分方程:(2). 曲线上任一点的切线介于两坐标轴之间的部分等于定长l ; (5). 曲线上任一点的切线的纵截距等于切点横坐标的平方。

常微分课后答案第一章

常微分课后答案第一章

常微分课后答案第一章yx C x C y x C x C y 2222121sin cos ,cos sin ωωωωωωωωω-=--=''+-=',所以0222=+y dxyd ω,故xCx C y ωωsin cos 21+=为方程的解.(6)yB x A y B x A y 22)sin(,)cos(ωωωωω-=+-=''+=',故0222=+y dxyd ω,因此)sin(B x A y +=ω为方程的解.3.验证下列各函数是相应微分方程的解:(1)xxy sin =,x y y x cos =+'; (2)212x Cy -+=,xxy y x2)1(2=+'-(C 是任意常数);(3)x Ce y =,02=+'-''y y y (C 是任意常数); (4)xe y =,xx xe ye y ey 2212-=-+'-;(5)x y sin =,0cos sin sin 222=-+-+'x x x y yy ;(6)xy 1-=,1222++='xy y x y x ; (7)12+=xy ,xy x yy 2)1(22++-=';(8))()(x f x g y =,)()()()(2x f x g y x g x f y '-'='.证明 (1)因为2sin cos x xx x y -=',所以xxxx x x x y y x cos sin sin cos =+-=+'.(2)由于21xCx y --=',故xx C x xCx x xy y x 2)12(1)1()1(2222=-++--⋅-=+'-.(3)由于xCe y =',xCe y ='',于是022=+-=+'-''x x x Ce Ce Ce y y y .(4)由xe y =',因此xx x x x x x x e e e e e e ye y e y 22212)(2-=⋅-+⋅=-+'--.(5)因为x y cos =',所以cos sin sin sin 2sin cos cos sin sin 22222=-+⋅-+=-+-+'x x x x x x x x x y y y . (6)从21xy =',得1111122222++=+⎪⎭⎫⎝⎛-⋅+⎪⎭⎫ ⎝⎛-⋅=='xy y x x x x x y x .(7)由x y 2=',得到xy x y x x x x x y 2)1(2)1)(1()1(2222222++-=+++-+=='.(8))()()()()()()()()()()()()()()(222x f x g y x g x f x f x g x f x g x g x f x f x g x f x g x f y '-'='-⎪⎪⎭⎫ ⎝⎛⋅'='-'='.4.给定一阶微分方程x dx dy 2=, (1)求出它的通解; (2)求通过点)4,1(的特解; (3)求出与直线32+=x y 相切的解;(4)求出满足条件210=⎰ydx 的解;(5)绘出(2),(3),(4)中的解的图形. 解 (1)通解 Cx xdx y +==⎰22.(2)由41==x y ,得到3=C ,所以过点)4,1(的特解为32+=xy .(3)这时122=⇒=x x ,切点坐标为)5,1(,由51==x y ,得到4=C ,所以与直线32+=x y 相切的解为42+=xy .(4)由231)31()(131210=+=+=+=⎰⎰C Cx x dx C x ydx ,得到35=C ,故满足条件21=⎰ydx 的解为352+=xy .(5)如图1-1所示.-3-2-1123x24681012y图1-15.求下列两个微分方程的公共解: (1)422x x yy -+=';(2)2422y y x xx y --++='.解 公共解必须满足2424222y y x x x x x y --++=-+,即 022242=-+-x y x y ,得到2x y =或212--=x y 是微分方程422x x y y -+='和2422y y x x x y --++='的公共解.6.求微分方程02=-'+'y y x y 的直线积分曲线.解 设直线积分曲线为0=++C By Ax ,两边对x 求导得,0='+y B A ,若0=B ,则0=A ,得到0=C ,不可能.故必有0≠B ,则B Ay -=',代入原方程有02=++⎪⎭⎫ ⎝⎛-+-B Cx B A B A x B A ,或)(22=-++B AB C x B A BA ,所以,⎪⎪⎩⎪⎪⎨⎧=-=+0,022BA B C B AB A ,得到⎩⎨⎧==0,0C A 或B C A -==.所求直线积分曲线为0=y 和1+=x y . 7.微分方程32224xy y y x=-',证明其积分曲线关于坐标原点)0,0(成中心对称的曲线,也是此微分方程的积分曲线.证明 设0),(=y x F 是微分方程32224xy y y x =-'的积分曲线,则与其关于坐标原点)0,0(成中心对称的曲线是),(=--y x F .由于),(=y x F 适合微分方程32224xy y y x =-',故3222),(),(4xyy y x F y x F x y x =-⎥⎥⎦⎤⎢⎢⎣⎡-⋅,分别以y x --,代yx ,,亦有3222))(()(),(),()(4y x y y x F y x F x y x --=--⎥⎥⎦⎤⎢⎢⎣⎡-----⋅-,而由0),(=--y x F ,得到),(),(y x F y x F y yx -----=',从而0),(=--y x F 也是此微分方程的积分曲线.8.物体在空气中的冷却速度与物体和空气的温差成比例,如果物体在20分钟内由100C 冷至60C ,那么,在多久的时间内,这个物体的温度达到30C ?假设空气的温度为20C . 解 设物体在时刻t 的温度为)(t u u =,20=au,微分方程为)(au u k dtdu --=,解得ktaCe u u -+= ,根据初始条件10000===u ut ,得80=-=a u uC ,因此 kta a e u u u u --+=)(0,根据60,201===uu t ,得到ka a e u u u u2001)(--+=,由此202ln ln 20110=--=a a u u u u k ,所以得到t e u 202ln 8020-+=,当30=u 时,解出60=t (分钟)1=(小时).在1小时的时间内,这个物体的温度达到30C .9.试建立分别具有下列性质的曲线所满足的微分方程:(1)曲线上任一点的切线与该点的向径夹角为α;(2)曲线上任一点的切线介于两坐标轴之间的部分等于定长l ;(3)曲线上任一点的切线与两坐标轴所围成的三角形的面积都等于常数2a ;(4)曲线上任一点的切线介于两坐标轴之间的部分被切点等分;(5)曲线上任一点的切线的纵截距等于切点横坐标的平方;(6)曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项;(7)曲线上任一点的切线的斜率与切点的横坐标成正比.(提示:过点),(y x d 的横截距和纵截距分别为'-yy x 和y x y '-).解 (1)曲线上任一点为),(y x ,则xy y x yy '+-'=1tan α,即ααtan tan y x x y y -+='. (2)曲线上任一点),(y x 处的切线方程为yy x Y X y -'=-',与两坐标轴交点为),0(y x y '-和)0,(y yy x '-',两点间距离为l y x y y y y x ='-+⎪⎪⎭⎫ ⎝⎛'-'22)(,即 222)()(l y x y y y x ='-+'-. (3)由(2),有221a y x y y yy x ='-'-',或y a y y x '=-'222)(.(4)由(2),有2y x y y '-=,或0=+'y y x .(5)由(2),2xy xy='-.(6)同样由(2),2yxy xy +='-,或xy xy='-2.(7)易得kxy='(k为常数且0>k).。

常微分方程第三版答案doc

常微分方程第三版答案doc

常微分方程第三版答案doc习题1.21.dyd某=2某y,并满足初始条件:某=0,y=1的特解。

解:dyy=2某d某两边积分有:ln|y|=某2+cy=e某2+ec=ce某2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y=ce某2,某=0y=1时c=1特解为y=e某2.2.y2d某+(某+1)dy=0并求满足初始条件:某=0,y=1的特解。

解:y2d某=-(某+1)dydy1y2dy=-某1d某两边积分:-1y=-ln|某+1|+ln|c|y=1ln|c(某1)|另外y=0,某=-1也是原方程的解某=0,y=1时c=e特解:y= ln|c(某1)|dy1y23.d某=某y某3y解:原方程为:dyd某=1y21y某某31y21ydy=某某3d某两边积分:某(1+某2)(1+y2)=c某24.(1+某)yd某+(1-y)某dy=0解:原方程为:1y某1ydy=-某d某两边积分:ln|某y|+某-y=c另外某=0,y=0也是原方程的解。

5.(y+某)dy+(某-y)d某=0解:原方程为:dyd某=-某y某y令ydy某=u则d某=u+某dud某代入有:-u11u21du=某d某ln(u2+1)某2=c-2arctgu即ln(y2+某2)=c-2arctgy某2.6.某dy22d某-y+某y=0解:原方程为:dyd某=y某+|某|某-(y2)则令y某=udydud某=u+某d某1du=gn某u2某d某arciny某=gn某ln|某|+c7.tgyd某-ctg某dy=0解:原方程为:dyd某tgy=ctg某两边积分:ln|iny|=-ln|co某|-ln|c|iny=1ccco某=co某另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为inyco某=c.y23某8dyed某+ydyey2解:原方程为:d某=3某ye2e3某-3ey2=c.9.某(ln某-lny)dy-yd某=0解:原方程为:dyyyd某=某ln某令y某=u,则dydud某=u+某d某u+某dud某=ulnuln(lnu-1)=-ln|c某|1+lny某=cy.10.dyd某=e某y解:原方程为:dy某d某=eeyey=ce某11dy2d某=(某+y)解:令某+y=u,则dydud某=d某-1du2d某-1=u11u2du=d某arctgu=某+carctg(某+y)=某+c12.dyd某=1(某y)2解:令某+y=u,则dyd某=dud某-1du1d某-1=u2u-arctgu=某+cy-arctg(某+y)=c.13.dy2某y1d某=某2y1解:原方程为:(某-2y+1)dy=(2某-y+1)d某某dy+yd某-(2y-1)dy-(2某+1)d某=0d某y-d(y2-y)-d某2+某=c某y-y2+y-某2-某=c14:dy某d某=y5某y2解:原方程为:(某-y-2)dy=(某-y+5)d某某dy+yd某-(y+2)dy-(某+5)d某=0d某y-d(12y2+2y)-d(122某+5某)=0y2+4y+某2+10某-2某y=c.15:dyd某=(某+1)2+(4y+1)2+8某y1解:原方程为:dyd某=(某+4y)2+3令某+4y=u则dy1dud某=4d某-141du14d某-4=u2+3dud某=4u2+13u=32tg(6某+c)-1tg(6某+c)=23(某+4y+1).16:证明方程某dyyd某=f(某y),经变换某y=u可化为变量分离方程,并由此求下列方程:1)y(1+某2y2)d某=某dy2)某dy2某2y2yd某=2-某2y2证明:令某y=u,则某dydud某+y=d某则dy1duud某=某d某-某2,有:某duud某=f(u)+1u(f(u)1)du=1某d某所以原方程可化为变量分离方程。

第3章习题答案 常微分方程教程+第二版+丁同仁+李承志+答案和练习

第3章习题答案 常微分方程教程+第二版+丁同仁+李承志+答案和练习

习 题 3-11. (1) 解: ,||),(αy y x f = 有α|||)0,(),(|y x f y x f =-,令 ,||)(αr r F =有⎰⎰--==1110010||11||)(r r r r r dr r F dr ααα, 当 01<-α, 即 1>α 时, ∞=--→αα10||11limr r , 所以 0)0(=y 的解唯一。

当 01=-α 时,1100|||ln )(r r r r F dr =⎰,而 ∞=→||ln lim 0r r ,所以 0)0(=y 的解唯一。

当 10<<α 时, 可解方程知其解不唯一。

所以当10<<α, 其解不唯一; 1≥α, 其解唯一。

(2). 解: 因为0|l n |l i m 0=→y y y ,所以dxdy在 ),(+∞-∞ 连续. 设 |||ln |)(r r r F =, 有∞=⎰1)(r r F dr(01>r 为常数),所以方程的解唯一.2. 解: 构造毕卡序列, 令 1),(++=y x y x f , dx x y x f x y xn n ⎰=+01))(,()(,因为 0)0(=y ,所以 x x dx x f x y x +==⎰20121)0,()(,x x x dx x x x f x y x ++=+=⎰2302261)21,()(, x x x x dx y x f x y x +++==⎰23402331!41),()(,…………………………………………… x x x n x n dx y x f x y n n xn n +++++==+-⎰!22!2)!1(1),()(211 ,22)!22!2)!1(1(lim )(lim 21--=+++++=+∞→∞→x e x x x n x n x y x n n n n n , 所以 22--=x e y x为方程的解. 3. 证明: 反证法设初始问题(E)有两个解, )(x y 和)(1x y , 且 0010)()(y x y x y ==,01x x >∃, 使 )()(111x y x y >, 令 )()(,sup{110x y x y x x x =<≤=μ根据μ 的定义与y 的连续性可知,对),(1x x μ∈∀,)()(1x y x y >, 令 )()()(1x y x y x r -=, 令 )()()(1x y x y x r -=, 有 0)(=μr , 有))(,())(,(1x y x f x y x f dxdr-=, 因为 ),(y x f 对 y 是递减的, 所以0<dxdr, 对 ),(1x x μ∈∀, 所以 0)()(=<μr x r , 对 ),(1x x μ∈∀, 又由y 的连续性, 可得 )()(111x y x y <,矛盾!习 题 3-31.证明:令)()(),(x b y x a y x f +=, 显然),(y x f+∞<<∞-∈y I x S ,:内连续, 且满足不等式|)(||||)(||),(|x b y x a y x f +≤,其中令 0|)(|)(≥=x a x A , 0|)(|)(≥=x b x B , 由已知有 )(x A ,)(x B 在I x ∈上是连续的, 则由定理5, 知 )(x y y = 的最大存在区间为I2. (1) 解:令 221),(yx y x f +=,则 ),(y x f 在区域 }0,{1≠+∞<<-∞=y x G 上连续,或 },00{2+∞<<-∞+∞<<<<-∞=y x x G 上连续。

常微分方程第二版答案第一章

常微分方程第二版答案第一章

常微分方程第二版答案第一章【篇一:常微分方程第一章】程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,dy2dyd2ydy()?t?y?0. ?b?cy?f(t)例如 , dtdtdtdt2(2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏?2t?t?2t?2t?2t?4微分方程. 例如 , . ???02222?t?x?x?y?z本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程.3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数.例如,d2ydy?b?cy?f(t) 是二阶常微分方程; 2dtdt?2t?t?2t?2t?2t?4与是二阶偏微分方程. ???02222?t?x?x?y?z4. n阶常微分方程的一般形式:dydnyf(t,y,,...,n)?0,dtdtdydnydydnydnyn)是t,y,,...,n的已知函数,而且一定含有n的这里f(t,y,dtdtdtdtdt 项;y是未知函数,t是自变量. 5. 线性与非线性:dydnydydny,...,n)?0的左端是y及,...,n的一次有理式,(1)如果方程f(t,y,dtdtdtdtdydny,...,n)?0为n阶线性微分方程. 则称f(t,y,dtdt(2)一般n阶线性微分方程具有形式:dnydn?1ydy?a(t)?...?a(t)?an(t)y?f(t)1n?1nn?1dtdtdt这里a1(t),…, an(t),f(t)是t的已知函数.(3)不是线性方程的方程称为非线性方程. (4)举例:d2ydy?cy?f(t)是二阶线性微分方程;方程2?bdtdtd2?g方程2?sin??0是二阶非线性微分方程;ldt方程(dy2dy)?t?y?0是一阶非线性微分方程. dtdt6. 解和隐式解:dydny,...,n)?0后,能使它变为恒等式,则如果将函数y??(t)代入方程f(t,y,dtdt)?0决定的隐函数y??(t)是称函数y??(t)为方程的解. 如果关系式?(t,y方程的解,则称?(t,y)?0为方程的隐式解. 7. 通解与特解:把含有n个独立的任意常数c1,c2,...,cn的解 y??(t,c1,c2,...,cn)称为n阶方程dydnyf(t,y,,...,n)?0的通解. 其中解对常数的独立性是指,对?及其 n?1阶导数dtdtd?dn?1?,...,n?1关于n个常数 c1,c2,...,cn的雅可比行列式不为0, 即 dtdt ???c1????c1???(n?1)?c1???c2????c2???(n?1)?c2??????cn????cn??0.??(n?1)??cn为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.dydny,...,n)?0的初始条件是常见的定解条件是初始条件, n阶微分方程f(t,y,dtdtdydn?1y(1)(n?1)?y0,...,n?1?y0指如下的n个条件:t?t0,y?y0,,这里dtdt(1)(n?1)是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓t0,y0,y0,...,y0定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程形如dy?f(t)?(y)的方程为变量分离方程,其中f(t),?(y)分别为t,y的连续函数.dt方程解法如下:若?(y)?0,则dy?f(t)dt?(y)dy??(y)??f(t)dt?c上式确定方程的隐式通解. 如果存在y0,使得??y0??0,则y?y0也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程dyy?g()的方程为齐次方程,g?u?为u的连续函数. dttydydu?t?u,从而原方程变为解法如下:做变量替换u?,即y?ut,有tdtdtdudug(u)?ut?u?g(u),整理有?,此为变量分离方程,可求解. dtdtt形如 (2) 形如dya1t?b1y?c1的方程, 其中a1??a2,?b1,?b2,?c1,?c2为常数. ?dta2t?b2y?c2?a1b1c1???k的情形. a2b2c2此时方程化为dy?k,可解得y?kt?c. dt?a1a2b1b2?0,即a1b1??k的情形: a2b2ku?c1dudy?a2?b2?a2?b2dtdtu?c2令 u?a2t?b2y, 则有此为变量分离方程. ?a1b1a2b2?0的情形y. t对c1?c2?0的情况, 直接做变量替换u?当c1,c2不全为零, 求 ? ?a1t?b1y?c1?0的解为?a2t?b2y?c2?0?t??. ??y???t?t??令 ? , 则方程组化为y?y???原方程化为3.一阶线性微分方程?a1t?by1?0. ?at?by?0?22dya1t?byy??g()的齐次方程可求解. dta2t?byt(1) 一般形式:a(t)dy?b(t)y?c(t)?0,若a(t)?0,则可写成 dtdy?p(t)y?qt(的形式). dtp(t)dtdy,?c为任意常数. ?p(t)y,通解为ce?(2) 一阶齐次线性微分方程:dtdy?p(t)y?q(t),q(t)?0. (3) 一阶非齐次线性微分方程:dt性质1 必有零解 y?0;性质2 通解等于任意常数c与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 p(t) 为常数, 此时方程为(4) 齐次线性微分方程的性质dy?ay?q(t), a为常数. dt对应齐次方程的通解为ce, 只需再求一个特解, 这时根据q(t)为特定的函数,bt可猜测不同的形式特解. 事实上, 当q(t)?ae, a,b为给定常数, 且b?a 时at可设待定特解为ce, 而当b?a时, 可设特解形式为cte, 后代入方程可确定待定常数c. 当q(t)为cosat,??sinat或它们的线性组合时, 其中a为给定常数. 这时可设待定特解为bcosat?csinat代入方程后确定b,?c的值. 当btbtq(t)具有多项式形式a0tn?a1tn?1???an?1t?an, 其中a0,?a1,??an 为给定常数且a0?0, 这时可设待定特解为b0t?bt1nn?1???bn?1t?bn代入方程可求得bi,?i?0,1?,??,n的值. 对于q(t)有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令y?c(t)e?p(t)dt,代入方程,求出c(t)后可求得通解为【篇二:常微分课后答案2.1】>1.dy?2xy,并求满足初始条件:x=0,y=1的特解. dx解:对原式进行变量分离得1dy?2xdx,两边同时积分得:lny?yc?1,故它的特解为y?ex。

常微分方程课后答案

习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

周义仓编常微分方程习题答案

1.(1) (x, y) y' = y + xtgα x − ytgα
答案 1.1
(2) (x

y y'
2
)
+(y

xy' )2
=
l2
(3) xy' + y = 0
(4) ( y − xy' )(x − y ) = 2a2 (5) y − xy' = x2 y'
提示:过点 (x,
y) 的切线的横截距和纵截距分别为
不 妨 假 设 x1 是 使 得 h(x) = 0 的 最 靠 近 的 点 , 则 φ (x1 ) = ψ (x1 ) , 且
h' (x1 ) ≤ 0 h' (x1 ) = F (x1,ψ (x1 )) − f (x1,φ (x1 )) > 0 ,矛盾,所以当 x > x0 时 h(x) 必
然大于零。
2
2
因此 对任意常数 c y = c 2 + cx + 2c + 1是方程的解,在 C ≤ − 1 时满足 2
把 y = − x(x + 4) 带入方程中易得: y = − x(x + 4) 也是方程的解。
4
4
3.
1) y= x 2 ,2)y= e5x ,3)y=x2/2,4)y=2,5)y=ex,6) y = x
返回目录
1 我们还是在以原点为中心的矩形 R={(x,y)| x ≤ 1, y ≤ 1 }内画方程的向量场和积分曲线:
程序如下:DEtools[phaseportrait] ([diff(y(x),x)=x/y],y(x),x= -1..1, [[y(-1)=1],[y(-1)=0],[y(-1)= -1]], dirgrid=[33,33], Arrows=LINE, Axes=NORMAL);#其余三个只需把初值和函数还一下即可

第四章常微分方程参考答案(1)

爱启航在线考研第四章常微分方程4.1答案:应选(C )解析:原方程写成23e 0+'+=yxyy ,分离变量有23e d =e d y x y y x --,积分得232e 3e --=x y C ,其中C 为任意常数.4.2答案:应填sin e=C xy ,其中C 为任意常数.解析:原方程分离变量,有d cos d ln sin =y xx y y x,积分得1ln |ln |ln |sin |ln =+y x C ,通解为ln sin =y C x 或sin e=C x y ,其中C 为任意常数.4.3答案:应填()2112e-=x y x 解析:原方程化为d 1d ⎛⎫=- ⎪⎝⎭y x x y x .积分得通解211ln ||ln ||2y C x x =-,即122ex y Cx -=.由初值(1)1=y 解出12e C =得特解.故答案为:()2112e-=x y x .4.4答案:应选(B )解析:原方程求导得()2()'=f x f x ,即()2()'=f x f x ,积分得2()e =x f x C ,又(0)ln 2=f ,故ln 2=C ,从而2()e ln 2=x f x .故应选(B ).4.5解:曲线()=y f x 在点(,)x y 处的切线方程为()'-=-Y y y X x ,令0=X ,得到切线在y 轴截距为'=-xy y xy ,即(1)'=-xy y x .此为一阶可分离变量的方程,于是d 11d ⎛⎫=- ⎪⎝⎭y x y x ,两边积分有1ln ||ln =-y C x x ,得爱启航线考研到e =x Cx y .又()11e y -=,故1=C ,于是曲线方程为e =xx y .4.6解:22d d 11+y y y x x x x =∆=+,得2d d 1=+y y x x ,变量分离2d 1d 1=+y x y x.两边积分得1ln arctan y x C =+.可得arctan exy C =又()0y =π,则C =π.所以arctan πexy =,()πarctan141πeπe y ==.4.7解:令=yu x,即=y ux ,则y u x u ''=+,又由题给表达式可得2y u u '=,即有u x u '+2u u =-d 1d 22=-x xu u ,两边积分得1ln 1ln ln u x C -=+,即ln(1ln ln 1=-+⇒-=⇒-=y Cu x C x xy C x x.4.8答案:应填2(ln ||)=+x y y C 解析:将x 看成未知函数,原方程改写为2d 1d 222+==+x x y x y xy y x这是一个伯努利方程,令2=z x ,有d 1d -=z z y y ,得11d d 2e ed (ln ||)-⎛⎫⎰⎰==+=+ ⎪ ⎪⎝⎭⎰y y y y x z y C y y C .故答案为:2(ln ||)=+x y y C ,其中C 为任意常数.4.9答案:应填()cos +x C x解析:属于一阶非齐次线性方程,直接根据一阶非齐次线性微分方程的通解公式即可得出答案.故答案为:()cos +x C x ,其中C 为任意常数.4.10答案:应填1爱启航在线考研解析:()2d 2d 22e 4e d e4ed x x xxy x x C x x C--⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰222e (21)e (21)e x x xx C x C --⎡⎤=-+=-+⎣⎦.当0=x 时,1=-y ,则0=C .可得21=-y x ,则()11=y .故答案为1.4.11答案:应填1解析:由11()()'+=y P x y Q x 及22()()'+=y P x y Q x 得()()1212()()()αββαβ'+++=+y y P x ay y Q x .又因12αβ+y y 满足原方程,故应有()()()β+=a Q x Q x ,即1αβ+=.故答案为1.4.12解:()sin d sin d e cos e d -⎛⎫⎰⎰=+ ⎪⎝⎭⎰x xx x gx x x C ()cos cos e cos ed -=+⎰xxx x C又()00g =,故()()cos cos cos 0e cos ed cos ed limlime lim xxxx x x x x Cx x Cg x xxx--→→→++==⋅=⎰⎰cos 0e lim cos e 1x x x -→⋅=.4.13解:2d 1d 2y x x y =-,则2d 2d x x y y =-,即2d 2d x x yy-=-()()2d 2d 222222111e e d e e d e 224yy y y y x y y C y y C y y C --⎛⎫⎰⎰⎡⎤=-+=-+=+++ ⎪⎣⎦⎝⎭⎰⎰.4.14解:令=tx u ,则u t x d d =,则代入到题给表达式101()d ()d xf tx t f u u x =⎰⎰,可得20()d 2()xf u u xf x x =+⎰.两边求导得()2()2()2f x f x xf x x '=++,则()2()2f x xf x x '+=-.从而11131d d 2222222()e (1)ed 33x x x x f x x C x x C x Cx ---⎛⎫⎛⎫⎰⎰=-+-+=-+ ⎪⎝ ⎝⎭=⎪⎭⎰.爱启航在线考研4.15解:将原方程改写成211cos sin y x x yy '+=-,并令1z y =,则21z y y ''=-,且原方程化为sin cos z z x x '-=-.d de (sin cos )e d x x z x x x C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰e (sin cos )e d x x x x x C -⎡⎤=-+⎣⎦⎰()e sin ed cose d xxx x x x x C --=-+⎰⎰,其中()sin e d sin d e sin e e cos d x x x x x x x x x x ----=-=-+⎰⎰⎰,故()e sin e e sin x x x z x C C x -=-+=-,即1e sin x C x y=-为所求通解.4.16答案:应选(C )解析:因原方程阶数为2,通解中应包含两个任意常数(可求出通解为3126++x C C x );特解中不含有任意常数(3*6=x y 为特解);36+x Cx 满足原方程,为原方程的解,故选项(A ),(B ),(C )都不对,应选(C ).4.17解:(1)令y p '=,则d d p y x ''=,从而2d 1d pp x=+,则2d d 1p x p =+积分得p arctan 1arctan p x C =+,故()1d tan d yp x C x=+=,则两边对x 积分1d tan()d y x C x =+⎰⎰,得()1121sin()d ln cos cos()x C y x x C C x C +==-+++⎰.(2)()10xy xy C '''=⇒=,即1y xC '=,故12ln y C x C =+.4.18解:由21e x y =,得212e x y x '=,()22124e x y x ''=+;由22e x y x =,得222(12)e x y x '=+,()22364e x y x x ''=+.因爱启航在线考研()()()22222211144224e 42e 42e 0x x x y xy x y x x x x '''-+-=+-⋅+-=.()()()()222232222244264e 412e 42e 0x x x y xy x y x x x x x x '''-+-=+-++-=.故1y 与2y 都是方程的解.又因21y x y =不等于常数,故1y 与2y 线性无关.于是方程的通解为()2112212e x y C y C y C C x =+=+.4.19答案:应选(A )解析:根据高阶线性微分方程根的形式可知,选(A ).4.20答案:应选(B )解析:由题意可知,-1是特征方程二重特征根,1是特征方程的特征根,故特征方程为()()2110+-=r r ,即3210+--=r r r .故三阶常系数齐次线性方程为0y y y y ''''''+--=.故选(B ).4.21答案:应选(C )解析::特征方程为2220++=r r 即2(1)1+=-r ,解得特征根为1,21i r =-±.而()e sin x f x x -=,i 1i w ±=-±λ是特征根,故特解的形式为*e (cos sin )x y x a x b x -=+.4.22答案:应填()*22e xy x ax bx c dx =+++解析:特征方程为220-=r r ,特征根10r =,22r =.对21()1=+f x x ,10λ=是特征根,所以()*21y x ax bx c =++.对22()exf x =,22λ=也是特征根,故有*22e =x y dx .从而***12=+y y y 就是特解.故答案为()*22e x y x ax bx c dx =+++.4.23解:所给微分方程的特征方程为256(2)(3)0++=++=r r r r ,特征根为12=-r ,23=-r .于是,对应齐次微分方程的通解为2312)e e xx y x C C --=+.爱启航在线考研设所给非齐次方程的特解为*e xy A -=.将*()y x 代入原方程,可得1A =.由此得所给非齐次方程得特解*e xy -=.从而,所给微分方程得通解为2312()e e e xx x y x C C ---=++,其中1C ,2C 为任意常数.4.24答案:应选(C )解析:将()()000y y '==代入3e xy py qy '''++=,得()01''=y .()()()()()22000ln 122limlimlimlim 2x x x x x x x y x y x y x y x →→→→+===='''.故选C.4.25答案:应填12e(cos sin )e xxC x C x ++解析:所给微分方程的特征方程为22201i -+=⇒=±r r r ,从而齐次通解为12e (cos sin )x C x C x +,设特解为e x A ,代入方程得e 2e 2e e 1x x x x A A A A -+=⇒=,即得特解为e x .非齐次通解为12e(cos sin )e xx C x C x ++.。

积分和微分运算


04
复杂函数积分与微分技巧
有理函数积分方法
部分分式分解法
将有理函数分解为简单分式的和,再对每个简单分式进行积分。
长除法
当有理函数的分子次数高于分母时,使用长除法降低分子的次数。
特殊技巧
对于某些特殊形式的有理函数,如含有根号或高次项的函数,可能 需要运用换元法、三角代换等特殊技巧进行积分。
三角函数积分方法
设函数$y = f(x)$在某区间内有定义, $x_0$及$x_0 + Delta x$在这区间内, 如果函数的增量$Delta y = f(x_0 + Delta x) - f(x_0)$可表示为$Delta y = ADelta x + o(Delta x)$(其中A是不 依赖于$Delta x$的常数),而 $o(Delta x)$是比$Delta x$高阶的无 穷小,那么称函数$f(x)$在点$x_0$是 可微的,且ADelta x称作函数在点 $x_0$相应于自变量增量$Delta x$的 微分,记作$dy$,即$dy = ADelta x$。
对于复合的指数函数和对数函数,使用链式法 则进行微分。
指数法则
根据指数函数的性质,对底数和指数分别求导。
对数法则
利用对数的性质,将对数函数转换为指数函数进行微分,或者直接应用对数求 导法则。
复合函数和隐函数处理方法
复合函数求导法则
使用链式法则对复合函数进行求导,注意识别内层和 外层函数。
隐函数求导
龙格-库塔法具有精度高、稳定性好等优点,但也存在计算量较大、对步长选择敏感等问题。在实际应用 中,需要根据具体问题选择合适的步长和算法参数以获得满意的数值解。
06
积分和微分在现实生中的应用举 例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4 常微分方程、积分与微分的运算,答案
1、用solve 函数求下列非线性方程组的解
⎪⎩⎪⎨⎧=-+=-+0
2)sin(0
2)cos(y x xe y ye x [x,y]=solve('cos(x)+y*exp(x)-2=0','sin(y)+x*exp(y)-2=0')
x =
.80871239676291248869235921095744
y =
.58332318056058057050322825668096
2、对于二阶微分方程)sin(22t y y y =+'+''
(1)利用ode45方法,求当1)0(=y ,1)0(-='y 在300≤≤t 时y 的数值图解。

(2)利用dsolve 函数求当1)0(=y ,1)0(-='y 时的特解y ,画出300≤≤t 时y 的曲线,并与(1)中y 的数值图解作比较。

(1)
建立ff.m 函数
function dx=ff(t,x)
dx=[x(2);-2*x(2)-x(1)+2*sin(t)];
建立调用函数
x0=[0 1];
[t,x]=ode45('ff',[0,30],x0)
plot(t,x(:,1))
(2)
求y 的解:
>> y=dsolve('D2y+2*Dy+y=2*sin(t)','y(0)=0','Dy(0)=1','t')
y =
exp(-t)+2*exp(-t)*t-cos(t)
作曲线:
>> t=0:0.1:30;
>> y=exp(-t)+2*exp(-t).*t-cos(t);
>> plot(t,y)
3、分别用Simpson 法、 Newton-Cotes 法、梯形法trapz 以及符号积分函数int 计算定积分⎰π
0sin dx x 。

先建立ff.m 函数
function f=ff(x)
f=sin(x);
Simpson 法:
在主窗口调用:
[S,n]=quad('ff',0,pi)
S =
2.0000
n =
33
Newton-Cotes 法:
[S,n]=quad8('ff',0,pi)
S =
2.0000
n =
18
trapz 方法:
>> x=0:pi/100:pi;
>> y=sin(x);
>> z=trapz(x,y)
z =
1.9998
符号积分int 法:
>> syms x
>> int(sin(x),0,pi)
ans =
2
4、用符号积分int 法求下列积分:
(1)dx x 32)3(⎰-
(2)⎰+dt x
xt
215 (3)⎰-21
|1|dx x (4)dt t x x ⎰sin 24
(1)
>> syms x
>> int((3-x^2)^3)
ans =
27*x-1/7*x^7+9/5*x^5-9*x^3
(2)
>> syms x t
>> int(5*x*t/(1+x^2),t)
ans =
5/2*x*t^2/(1+x^2)
(3)
>> syms x
>> int(abs(1-x),1,2)
ans =
1/2
(4)
>> syms x t
>> int(4*x/t,t,2,sin(x))
ans =
4*log(sin(x))*x-4*log(2)*x
5、求下列函数的导数。

(1)⎩⎨⎧==t a y t a x sin cos ,求''',x x y y
(2)t t t f +-
=11)(,求)4('f
(1)由于),(),(t x diff t y diff y x =',),(),(t x diff t y diff y x
x '=''
>> syms t a
>> d=diff(a*sin(t))/diff(a*cos(t))
d =
-cos(t)/sin(t)
>> diff(d)/diff(a*cos(t))
ans =
-(1+cos(t)^2/sin(t)^2)/a/sin(t)
(2)>> syms t
>> f=diff((1-sqrt(t))/(1+sqrt(t)))
f =
-1/2/t^(1/2)/(1+t^(1/2))-1/2*(1-t^(1/2))/(1+t^(1/2))^2/t^(1/2) >> t=4;
>> f=-1/2/t^(1/2)/(1+t^(1/2))-1/2*(1-t^(1/2))/(1+t^(1/2))^2/t^(1/2) f =
-0.0556。

相关文档
最新文档