水中铅离子检测

合集下载

原子吸收法测定水中的铅含量

原子吸收法测定水中的铅含量

原子吸收法测定水中的铅含量摘要:铅作为一种有害元素,对其在水中的含量进行测定具有必要性。

为此,本文采用了原子吸收法测定了实验室自来水、水房饮用水和矿泉水三种不同水样中的铅含量,对实验方面作了详细的介绍,并对实验结果作了深入的分析与讨论,可为相关的检测工作提供有益的参考与借鉴。

关键词:铅;原子吸收法;测定;影响引言铅是自然界分布广泛且具有毒性的一种元素,若水中含有大量此元素,不仅会对水环境造成严重的污染,更会对我们人体的健康造成很大的威胁。

因此,需要对水中的铅含量进行必要的测定。

而原子吸收法作为一种科学的试验方法,用在水中铅含量检测能够发挥有效作用,因此得到了广泛的应用。

基于此,本文就原子吸收法测定三种不同水样的铅含量进行了实验研究,实验结果令人满意,现介绍如下。

1 实验试剂与仪器1.1 实验试剂硝酸铅、硝酸、桶装矿泉水(市售)。

1.2 实验仪器原子吸收分光光度计;KH-250DE数控超声波震荡器;精密酸度计;离心沉淀器;电子天平;数显电热恒温鼓风干燥箱。

2 实验步骤2.1 实验试剂的配制(1)100mg/L标准铅溶液贮备液的配制精密称取在105℃下干燥至恒重的硝酸铅粉末0.1598g,加5ml硝酸和50ml水溶解后,转移到1000mL容量瓶中,加水稀释至刻度线,摇匀。

(2)5mg/L标准铅使用溶液的配制临用前,精密量取贮液25ml,转移到500ml容量瓶中,加水稀释至刻度,摇匀。

(3)15%的硝酸:精密移取25.00mL硝酸,转移到100mL的容量瓶中,加水稀释至刻度,摇匀。

(4)0.15mol/L氨水:移取1mL浓氨水,转移到100容量瓶中,用水稀释至刻度,摇匀。

2.2 活性炭吸附铅的最佳条件2.2.1 pH对活性炭吸附铅的影响准确移取6次5mg/L的标准铅使用液各50mL置于100mL的比色管中,用稀盐酸和氨水调节pH值,使其pH值分别为2.18、3.98、4.72、6.02、7.22和9.04。

阳极溶出伏安法测定水中微量铅和镉

阳极溶出伏安法测定水中微量铅和镉

阳极溶出伏安法测定水中微量铅和镉一、实验目的1:熟悉溶出伏安法的基本原理。

2:掌握汞膜电极的使用方法。

3:了解一些新技术在溶出伏安法中的应用。

二、方法原理溶出伏安法的测定包含两个基本过程。

即首先将工作电极控制在某一条件下,使被测定物质在电极上富集,然后施加线性变化电压于工作电极上,使被测物质溶出,同时记录电流与电极电位的关系曲线,根据溶出峰电流的大小来确定被测定物质的含量。

溶出伏安法主要分为阳极溶出伏安法,阴极溶出伏安法和吸附溶出伏安法。

本实验采用阳极溶出伏安法测定水中Cd(Ⅱ),其过程表示为:Cd 2+ + 2e- + Hg = Cd(Hg)本法使用汞膜电极为工作电极,铂电极为辅助电极,甘汞电极为参比电极。

在被测物质所加电压下富集时,汞与被测物质在工作电极的表面上形成汞齐,然后在反向电位扫描时,被测物质从汞中“溶出”,而产生“溶出”电流峰。

在酸性介质中,当电极电位控制为-1.0v(SV.SCE)时,Cd2+ (Pb2+)在工作电极上富集形成汞齐膜,然后当阳极化扫描至-0.1v时,可得到清晰的溶出电流峰。

镉(铅)的波峰电位约为-0.6v(-0.4v)左右(SV.SCE)。

三、仪器和试剂1:电化学分析仪2:汞膜电极作工作电极,甘汞电极作参比电极及铂辅助电极组成三电极系统。

3:1.0×10-2mol\L镉离子标准溶液、1.0×10-2mol\L铅离子标准溶液4:10 ml/L HCl5:0.02%抗坏血溶液6:1mol/L KCl溶液7:容量瓶100ml若干四、实验步骤1:配制试液:取两份50.00ml水样置于2个100ml容量瓶中,分别加入10 ml/L HCl 1 ml,0.5ml抗坏血酸,在其中一个容量瓶中加入1.0×10-2mol/l的铅、镉离子标准溶液各0.5ml,再加入10 ml1mol/L KCl溶液作为背景,均用蒸馏水稀释至刻度,摇匀。

2:将未添加Cd2+ ((Pb2+))标准溶液的水样置电解池中,放入清洁的搅拌磁子,插入电极系统。

铅离子吸附实验报告

铅离子吸附实验报告

一、实验目的1. 了解铅离子吸附的基本原理和方法;2. 掌握不同吸附材料对铅离子的吸附效果;3. 分析影响铅离子吸附的因素。

二、实验原理铅是一种重金属元素,对环境和人体健康都有很大的危害。

本实验采用吸附法去除水中的铅离子,主要原理是利用吸附剂对铅离子进行选择性吸附,从而达到净化水质的目的。

三、实验材料与仪器1. 实验材料:- 铅离子标准溶液;- 吸附剂:活性炭、氢氧化铝、沸石等;- 铅离子吸附剂;- 水样。

2. 实验仪器:- pH计;- 电子天平;- 恒温水浴锅;- 分光光度计;- 烧杯、漏斗、滤纸等。

四、实验步骤1. 准备实验溶液- 配制一定浓度的铅离子标准溶液;- 配制不同pH值的实验溶液。

2. 吸附实验- 将一定量的吸附剂加入实验溶液中;- 在恒温水浴锅中搅拌一定时间;- 滤除吸附剂,测定滤液中铅离子的浓度。

3. 结果分析- 计算不同吸附剂对铅离子的吸附率;- 分析不同pH值、吸附时间、吸附剂用量等因素对铅离子吸附的影响。

五、实验结果与分析1. 不同吸附剂对铅离子的吸附效果- 活性炭对铅离子的吸附效果较好,吸附率为85.3%;- 氢氧化铝对铅离子的吸附效果次之,吸附率为73.6%;- 沸石对铅离子的吸附效果较差,吸附率为59.2%。

2. pH值对铅离子吸附的影响- 当pH值为6时,活性炭对铅离子的吸附效果最佳;- 当pH值为8时,氢氧化铝对铅离子的吸附效果最佳;- 当pH值为7时,沸石对铅离子的吸附效果最佳。

3. 吸附时间对铅离子吸附的影响- 在吸附时间为30分钟时,活性炭对铅离子的吸附效果最佳;- 在吸附时间为20分钟时,氢氧化铝对铅离子的吸附效果最佳;- 在吸附时间为15分钟时,沸石对铅离子的吸附效果最佳。

4. 吸附剂用量对铅离子吸附的影响- 随着吸附剂用量的增加,铅离子的吸附率逐渐提高;- 当吸附剂用量达到一定值后,铅离子的吸附率趋于稳定。

六、结论1. 活性炭、氢氧化铝、沸石等吸附剂对铅离子具有一定的吸附能力,其中活性炭的吸附效果最佳;2. pH值、吸附时间、吸附剂用量等因素对铅离子的吸附效果有显著影响;3. 本实验为铅离子吸附净化水质提供了一定的理论依据和实验数据。

石墨炉原子吸收分光光度法测定水中的铅

石墨炉原子吸收分光光度法测定水中的铅

石墨炉原子吸收分光光度法测定水中的铅摘要:采用石墨炉原子吸收分光光度法测定水中铅,用电加热方式使石墨炉升温,样品蒸发离解形成原子蒸气,对来自光源的特征电磁辐射产生吸收,实验结果表明,精密度较好,准确度、灵敏度较高,是测定水中铅的好方法。

关键词:铅;硝酸;石墨炉在所有已知毒性物质中,书上记载最多的是铅。

铅是一种积累性毒物,易被肠胃吸收,通过血液影响酶和细胞的新陈代谢。

过量铅的摄人将严重影响人体健康,主要毒性为引起贫血、神经机能失调和肾损伤。

因此,铅在环境中的含量,特别是环境水样中的含量,是环境监测控制的一个重要指标。

近年来,随着科学技术的发展,出现了很多水样中铅含量的测定方法,如分光光度法、示波极谱法、电位溶出法等。

但当水中铅含量较低,有些方法仍不能满足环境水样中痕量铅的测定要求。

而石墨炉原子吸收分光光度法的使用浓度范围在1~5μg/L,是测定环境水样中痕量铅的可行方法之一。

石墨炉原子吸收分光光度法对仪器要求较高,与火焰原子吸收分光光度法相比,具有较高的灵敏度,但是由于石墨管内部空间小,因而同时共存的基体物质在空间的密度大大增加,这就增加了它与被测元素之间的相互作用机会,产生的气相干扰要比火焰法严重得多。

而且环境水样基体复杂,在水样中存在NaCI、CaCI2等碱金属、碱土金属卤化物,基体干扰特别严重。

另外,有机污染物等对痕量待测金属测定也产生基体干扰。

为了消除基体干扰,可在石墨炉或试液中加入基体改进剂,通过化学反应使基体的温度特性发生变化,避免与待测元素的共挥发从而消除基体干扰。

近年来,快速程序升温原子化技术已广泛应用于各种样品分析,大大缩短了分析周期,提高了分析效率。

一、测定1、仪器TAS-990AFG原子吸收分光光度计、石墨炉装置及其他有关附件。

2、试剂实验用水:去离子水。

硝酸:优级纯。

硝酸:0.2%。

过氧化氢溶液。

硝酸钯溶液:称取硝酸钯0.108g溶于10ml 0.2%硝酸,用水定容至500ml。

近年来水中铅离子的检测方法及研究进展

近年来水中铅离子的检测方法及研究进展

近年来水中铅离子的检测方法及研究进展作者:邬智高来源:《沿海企业与科技》2011年第04期[摘要]文章简要介绍铅及其化合物的毒害性,着重介绍铅离子的常规检验方法及近年来的应用研究进展。

[关键词]铅离子;检测方法;进展[作者简介]邬智高,广西工业职业技术学院石油与化学工程系讲师,研究生,研究方向:化学与分析,广西南宁,530003[中图分类号] TQ028 [文献标识码] A [文章编号] 1007-7723(2011)04-0024-0003铅及其化合物是中国环境优先污染物名单中有毒化学品之一,在汽车尾气、塑料燃烧的烟气、油漆、劣质儿童玩具、铅酸蓄电池、工业电镀、冶炼产生的废水中也有大量的铅,食品中的爆米花、皮蛋、锡箔纸包装的食物中也含有铅,这些铅最终富积在水中并无法降解,对环境生命体对人特别是对儿童的危害极大,其主要毒性效应是导致贫血、神经机能失调和肾损伤、生殖系统损伤等。

由于人们对铅污染的高度关注,对铅离子的痕量检测技术要求也越来越高,铅离子含量指标成为被关注的热点之一。

研究铅离子的检验方法及其应用研究进展有重要的意义。

铅离子的检验方法主要有双硫腙分光光度法GB7470-87;原子吸收分光光度法GB7470-87;原子荧光光度法SL327.4-2005。

与其他元素相比,铅测定方法的发展较慢。

但在近年来,铅离子的检验方法还是有一定的发展,主要有:原子吸收分光光度法、原子荧光光谱法、电感耦合等离子体发射光谱法、阳极溶出伏安法、示波极谱法、生物染色剂试纸法等。

一、原子吸收分光光度法兰丽咏采用火焰原子吸收光谱法测定电镀废水中铅,取100ml水样放入250ml三角烧瓶中,加入硝酸5ml,在电热板上加热消解(不要沸腾)蒸至10ml左右,加入5ml硝酸和2ml高氯酸,继续消解,直至1ml左右。

如果消解不完全,再加入硝酸5ml和2ml高氯酸,再次蒸至lml左右。

取下冷却,加水溶解残渣,用水定容至100ml。

水中铅测定方法详解

水中铅测定方法详解

水中铅测定方法详解导语:铅是一种广泛存在于环境中的有毒重金属,对人体健康有严重危害。

因此,准确测定水中铅的含量对于保护水环境和人体健康至关重要。

下面将详细介绍几种常用的水中铅测定方法。

一、原子吸收光谱法(AAS)原子吸收光谱法是一种常用的测定水中铅含量的方法。

该方法基于原子吸收光谱学原理,通过测定水样中铅原子对特定波长光的吸收来测定铅的含量。

1.提取样品:取一定量的水样,在酸性条件下加入络合剂(如硫代二氮根)进行络合提取。

经过一系列的操作(如振荡、离心、过滤等),将铅离子转移到有机溶剂中。

2.原子化:将有机溶剂中的铅离子转化为原子态。

这可以通过火焰、石墨炉或电感耦合等原子化方法实现。

3.吸收测定:使用特定波长的光源照射样品,并测量样品吸收的光信号。

通过与标准曲线进行比较,可以确定样品中铅的含量。

原子吸收光谱法具有灵敏度高、准确度高、测定范围广的优点,但仪器价格昂贵,操作较为复杂,需要专业技术人员进行操作和维护。

二、原子荧光法(AFS)原子荧光法是一种测定水中铅含量的高灵敏度和选择性的方法。

该方法基于样品中的铅原子在特定的激发条件下发射荧光信号,通过测量荧光强度来测定铅的含量。

1.提取样品:取一定量的水样,在酸性条件下加入络合剂提取铅。

然后进行离心、过滤等操作,得到含有铅的溶液。

2.增强荧光:将提取的溶液中的铅转化为易发射荧光的化合物。

这可以通过添加荧光增强剂(如硫代二氮根)来实现。

3.荧光测定:使用特定波长的激发光照射样品,测量荧光信号的强度。

通过与标准曲线进行比较,可以确定样品中铅的含量。

原子荧光法具有高灵敏度、选择性好和准确度高的优点,但仪器价格较贵,操作较为复杂,需要严格控制各种干扰因素。

三、电化学法电化学法是一种常用的测定水中铅含量的方法,具有灵敏度高、简单、成本低的特点。

下面以阳极溶出伏安法和阳极敏化阳极溶出伏安法为例进行详细介绍。

1.阳极溶出伏安法:将水样置于电化学池中,使用铅电极作为阳极,在特定电位下施加电压,并进行溶出和析出反应。

水体中的铅污染

水体中的铅污染
重金属能够抑制水生动物的酶活性“ 妨碍 机体的代谢作用” ,还会造成生理生化指 标的改变“ 对水生动物的下丘脑-脑垂体- 性 腺轴生殖内分泌调控系统产生毒害作用。
对水生动物的影响
• 对水生动物基因水平的影响 • 水生动物对重金属产生的回避反应
产卵场水环境污染导致鱼类的回避反应, 会影响到产卵洄游( 生殖洄游,最终导致其种 群数量的变化
铅对人体的影响
• 血液系统 • 神经系统 • 泌尿系统 • 免疫系统 • 致癌性
血液系统
• 铅主要通过影响血红素合成及红细胞功能、 形态的改变而引起贫血…
• 血红素合成的影响主要是与锌竞抑制了α-
氨基-γ-酮戊酸脱氢酶(ALAD)和铁络合酶活 性,最终导致血红蛋白合成障碍。许多
神经系统
• 铅通过损害星形胶质细胞和血管内皮细胞, 使血脑脊液障受到破坏;额叶前部的大脑 皮质、海马回、小脑是铅损伤主要部位
环境矿物材料治理铅Pb(Ⅱ)污染
环境矿物材料其最大特点:
• 来源广泛 • 对资源和能源消耗少 • 对生态环境影响小 • 成本低廉 • 无二次污染、污染小
环境矿物材料治理铅Pb(Ⅱ)污染
矿物材料 沸石 方解石
高岭石和伊利石
特点 最早使用 普遍存在
吸附能力 155.4mg/g
高岭石略低于 伊利石
吸附机制 离子交换 沉淀控制
(CH3)4Pb
铅污染的生态效应
• 对水生植物的影响 • 对水生动物的影响 • 对人体的影响

对水生植物的影响
破坏 减少
叶绿素、线粒体和细胞核结构
叶绿素和抗坏血酸含量 降低
硝酸还原酶和脱氢还原酶活性
阻碍
呼吸代谢、光合作用、 清素还原、细胞分裂等
影响

水中铅和镉的含量测定及处理方法

水中铅和镉的含量测定及处理方法

水中铅和镉的含量测定及处理方法引言:水作为人类生活和生产的重要资源,其质量直接关系到人类的健康和环境的保护。

铅和镉是水污染中常见的有害重金属,具有高度的毒性和累积性。

本文将介绍水中铅和镉的含量测定方法,以及对水中铅和镉进行处理的方法。

一、水中铅和镉的含量测定方法1.原子吸收分光光度法(AAS)原子吸收分光光度法是一种常见的用于金属元素测定的方法。

该方法基于金属元素对特定波长的电磁辐射的吸收特性。

具体操作步骤如下:(1)取水样品,使用合适的方法去除悬浮物和浮游物。

(2)将水样与相应的溶剂(如酸)酸化处理,以溶解金属元素。

(3)使用原子吸收分光光度计,选择合适的波长和光源,对处理后的样品进行测定。

(4)根据吸收光谱的强度,通过与标准品对比,确定水样中铅和镉的含量。

2.电感耦合等离子体质谱法(ICP-MS)电感耦合等离子体质谱法是一种高灵敏度、高分析能力的测定金属元素的方法。

其操作步骤与AAS类似,但采用的仪器是ICP-MS。

该方法的优点是能同时测定多种金属元素,且灵敏度和准确度高。

3.化学计量法化学计量法是一种基于化学反应,将样品中的金属离子与特定试剂发生定量反应,经计量后确定金属离子含量的方法。

常用的化学计量法包括硫化氢沉淀法、试剂法和络合滴定法等。

二、水中铅和镉的处理方法以下是常用的处理方法:1.沉淀法适用于水中铅和镉的高浓度,通过添加沉淀剂,如硫化钠或氢化钠等,将金属离子转化为相对稳定的沉淀物,然后通过过滤或沉淀分离处理。

2.离子交换法离子交换法是利用特定固体材料的交换作用,将水中的金属离子吸附在固体表面,然后再用适当的溶剂将金属离子洗脱出来的方法。

常用的离子交换材料有活性炭、树脂等。

3.膜处理法膜处理法是利用特殊的膜材料,通过逆渗透、超滤等机理将水中的金属离子分离和去除的方法。

逆渗透是指利用高压将水分子逆向推移,从而将溶质从水中分离出来。

4.生物吸附法生物吸附法是利用一些具有吸附金属离子能力的生物材料,如微生物、藻类等,将水中的金属离子吸附在生物体表面,从而实现金属离子的去除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氨基凹土修饰电极示差脉冲阳极溶出法测定铅离子1前言1.1 重金属污染若金属元素的原子密度超过每立方厘米五克,即可认为其是重金属。

如铜、铅、锌、镉、铁、锰等,均属于重金属,共有四十五种。

若水体内排入的重金属物质,无法结合自净能力将其净化,而最终导致水体的性质、组成等发生改变,影响水体内生物生长,并对人的健康、生活产生不良影响的,即属于水环境重金属污染。

在工业、农业快速发展的同时,许多污染物被排入河流内,其中也包含重金属,最终导致水质恶化,也由此产生了一系列严重后果。

不论是在何种环境中,重金属污染物的降解都极为困难,并且能够积累在植物、动物体内,并结合食物链不断富集,最终进入人体,对人体健康产生危害,这类污染物也是对人体产生最大危害的一种污染物。

1.2水环境中重金属的检测技术方法研究与发展重金属污染能够不断富集,并最终对动植物、人体以及环境产生一定负面影响,具备潜在的危险性,因此这也是一个不容忽视的问题。

工业污染是重金属污染的主要来源,企业的排放要达标,管理要严格,最为关键的是当前国家的管理机制尚未健全,仍需继续完善。

在水环境监测工作方面,重金属检测工作能够为此提供一定依据。

近年来,伴随着多种分析仪器的开发,重金属检测也逐步体现出准确性、灵敏度高等优势。

当前,对重金属进行检测的电化学方法主要有:伏安法、极谱法、电位分析法和电导分析法。

1.3 对铅离子的研究铅可通过皮肤、消化道、呼吸道进入体内与多种器官亲和,对神经、血液、消化、心脑血管、泌尿等多个系统造成损害,严重影响体内新陈代谢,堵塞金属离子代谢通道,造成低钙、低锌、低铁,且导致补充困难。

因此研究一种简单、准确和灵敏度高的铅测定方法具有重要意义。

目前铅的主要检测方法有:原子吸收光谱法,电感耦合等离子体原子发射光谱法,电感耦合等离子体质谱法,X射线荧光光谱法,分光光度法等。

化学修饰电极测定重金属离子的方法也有报道,如植酸钠或石墨烯修饰玻碳电极测定铅,多壁碳纳米管修饰电极测定镉等,但这些方法的线性范围较窄,检出限较高。

凹土即凹凸棒粘土的简称,是一种稀有非金属矿产资源,它是一种层链状结构的含水富镁铝硅酸盐粘土矿物。

凹土的化学式为Mg5Si8O20(HO)2(OH2)4·4H2O,它的表面有可交换阳离子和活性羟基,同时拥有较大的表面积和较好的机械强度。

因此,原始的凹土可作为重金属离子的吸附剂,有研究表明用有机试剂(例如:氨丙基三乙氧基硅烷、3-巯基丙基三甲氧基硅烷)修饰凹土表面可以提高凹土的吸附能力和吸附选择性。

因此本文选取3-氨丙基三乙氧基硅烷(简称AEPTMS)来修饰电极。

2 实验部分2.1 粘土矿物、化学试剂和化学仪器精制凹凸棒粘土(粒径小于2 微米,)——简称凹土,是一种稀有非金属矿产资源,它是一种层链状结构的含水富镁铝硅酸盐粘土矿物。

化学试剂:Pb(NO3)2(99%,分析纯),H2SO4(98%),Pb(NO3)2 (99%,分析纯),H2SO4(98%),HCl(36%),NaCl(99.5%),HNO3(63%),K3[Fe(CN)6],Ru(NH3)6Cl3,In(NO3)3.H2O(99.99%),Cd(NO3)2·4H2O(98%),Cu(NO3)2·xH2O(99.99%),T l NO3(99.9%),Hg(NO3)2·H2O(≥99.99%),乙醇,Al2O3,有机结合剂3-氨丙基三乙氧基硅烷(简称AEPTMS,用来修饰黏土表面),蒸馏水化学仪器:烘箱、磁力搅拌器、过滤装置、超声清洗仪2.2 用AEPTMS对精制的坡缕石粘土矿物进行表面修饰把2.0g的凹土溶解于15mL的甲苯,然后在氮气氛围下搅拌10分钟。

然后继续在氮气氛围下逐滴加入4mL的AEPTMS。

在磁力搅拌的条件下,让刚才的混合溶液回流3小时。

将混合物经过过滤,洗涤获得的产物,放在100℃下,干燥一晚上,即得到修饰后的凹土(称为Amino-AT,氨基凹土)2.3 工作电极的制备和电化学过程2.3.1 工作电极的制备电极抛光:依次用粒子大小为5μm、1μm、0.5μm的氧化铝对玻碳电极(GCE)进行抛光,把经过抛光的玻碳电极放在含有乙醇和水为1:1的溶液中进行超声处理10分钟,以除去电极上残留的氧化铝。

制备薄膜:将6μL的氨基凹土或者凹土溶液滴到玻碳电极表面上使其在电极表面集运散落,然后把电极放到50℃的烘箱里,10分钟后取出。

制得具有氨基凹土薄膜的电极(GCE/Amino-AT)和具有凹土薄膜的电极(GCE/A T)。

在电化学检测中作为工作电极。

2.3.2 电化学过程本实验采用示差脉冲阳极溶出法(ASDPV)的电化学检测方法,并以三电极系统来进行检测。

其中Ag/AgCl为参比电极(饱和KCl溶液),Pt为辅助电极,GCE/Amino-AT为工作电极。

实验在室温下进行,扫描速率为100mV/s。

3.3 应用凹土修饰电极检测Pb2+3.3.1 Pb2+在修饰电极上的电化学行为实验步骤:示差脉冲阳极溶出法(ASDPV)富集:把工作电极放于10-5mol/L的Pb2+溶液中富集3min,搅拌,pH=7,富集电位-0.9V到-1.1V。

溶出:溶出电位为-0.8V,溶出时间t=30s,pH=2的HCl溶液。

再分别以GCE/AT和GCE/Amino-AT为工作电极,Ag/AgCl 为参比电极(饱和KCl溶液),Pt为辅助电极,并且实验在室温下进行,扫描速率为100mV/s,按上述条件测得如下的溶出伏安图。

实验结果:上图中的曲线a是以GCE/Amino-AT为工作电极的溶出伏安曲线,b是以GCE/AT为工作电极的溶出伏安曲线。

从上图可以清晰地看到在相同条件下,被氨基修饰过的凹土电极GCE/Amino-AT的阳极峰电流大约是没被氨基修饰的普通凹土电极GCE/AT的两倍。

因为被氨基修饰过的凹土中的氨基具有螯合的性能,它能够作为P b2+的载体,进而有效地促进电极反应的电子转移,所以GCE/Amino-AT在分析检测P b2+时具有更高的灵敏度。

3.3.2 溶出酸的种类的影响在电化学检测分析中,酸通常作为支持电解质。

但是它会影响生成的配合物的种类。

实验步骤:在pH=7,P b2+浓度为10-5mol/L条件下进行预电解3min,然后在相同的条件和pH下,再分别在HCl,H2SO4,HNO3,HClO4溶液中用示差脉冲阳极溶出法(ASDPV)进行电解。

实验结果:从图可以看出HCl的峰电流最强,这是因为Cl-与Pb2+形成的配合物比氨基与Pb2+形成的配合物更稳定,导致电信号明显增强,所以选择HCl为支持电解质。

3.3.3 富集酸度的影响实验步骤:用示差脉冲阳极溶出法(ASDPV ),以和GCE/Amino-AT 为工作电极,Ag/AgCl 为参比电极(饱和KCl 溶液),Pt 为辅助电极,并且实验在室温下进行,扫描速率为100mV/s 。

把工作电极放于10-5mol/L 的Pb 2+溶液中富集2min ,不断搅拌,富集电位-0.9V 到-1.1V ,改变盐酸的pH 值(pH=1~9)进行酸度的选择实验。

以富集的酸度为横坐标,峰电流为纵坐标,作出富集酸度与峰电流的关系图。

实验结果:当pH=1~3时,铅主要以Pb 2+的形式存在,电极反应很弱,说明富集在电极上的Pb 2+很少所以峰电流很小。

原因有二:一方面H +与Pb 2+在电极反应上存在竞争,另一方面,修饰电极上的氨基质子化阻碍Pb 2+在电极上的富集。

当pH=3~7时,随着pH 的增加,峰电流也从1μA 增加到5μA ,当pH=7时,峰电流达到最大值5μA 。

当pH=7~9时,随着pH 的增-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2HClO 4HNO 3H 2SO 4HCl1 µA E / V vs Ag/AgCl加,峰电流不断减小。

这是因为已经富集在电极上的在pH比较大的时候发生水解作用,生成[Pb 4 (OH) 4 ] 4+ , [Pb 3 (OH) 4 ] 2+ ,[Pb 3 (OH) 4 ] 2+ 和[Pb 6 (OH) 8 ] 4+。

因此,富集的最佳酸度为pH=7。

3.3.4 溶出酸度的影响实验步骤:用示差脉冲阳极溶出法(ASDPV),以GCE/Amino-AT为工作电极,Ag/AgCl 为参比电极(饱和KCl溶液),Pt为辅助电极,并且实验在室温下进行,扫描速率为100mV/s。

把工作电极放于10-5mol/L的Pb2+溶液中富集30s,富集电位-0.8V,改变盐酸的pH值(pH=1~5,避免在碱性条件下,富集的Pb2+水解)进行酸度的选择实验。

以溶出的酸度为横坐标,峰电流为纵坐标,作出溶出酸度与峰电流的关系图。

实验结果:在pH=1时,峰电流最大,随着pH的增大,峰电流不断地减小;当pH=3~5时,峰电流几乎为0,这是因为H+的浓度越大,氨基与Pb2+形成的配合物的稳定性就越差,这样Pb2+越容易溶出。

因此,我们选择的最佳溶出条件是pH=1的HCl溶液。

3.3.5 富集电位与电解时间的影响溶出电位开始为-0.6V,最大变化范围为-0.9V~-1.1V,溶出时间为40s,富集电位为-1V 3.3.6 富集时间的影响在富集时间为1到5min内,电极反应是逐渐增加的,但是在5min后电极反应趋向稳定,因为这时在电极上富集和溶出达到动态平衡状态。

3.3.7 校准曲线和检出限实验步骤:在最佳实验条件下,采用示差脉冲阳极溶出法(ASDPV),以和GCE/Amino-AT 为工作电极,Ag/AgCl为参比电极(饱和KCl溶液),Pt为辅助电极,并且实验在室温下进行,扫描速率为100mV/s。

分别在一系列不同浓度的Pb2+标准溶液(浓度范围为4×10-12M 到4×10-11M)中进行预电解5min,然后在pH=1的盐酸溶液中溶出,得到溶出伏安曲线和校准曲线。

实验结果:峰电流随着Pb2+浓度的增加而增加,且峰电流与Pb2+浓度呈良好的线性关系。

当Pb2+浓度范围为4×10-12M~4×10-11M时,其线性回归方程为Ip(A)=13902.55[Pb2+](M)-3.4×10-10,相关系数r=0.998,检出限为0.88×10-12M。

3.3.8干扰试验实验步骤:固定Pb2+浓度为10-11M,分别加入不同离子,控制相对误差±5%。

0.5倍(相对Pb2+浓度)的Cd2+、Hg2+、Cu2+、Co2+、Tl+、In3+;2倍的Cd2+、Hg2+、Cu2+、Co2+、Tl+、In3+;5倍的Cd2+、Hg2+、Cu2+、Co2+、Tl+、In3+;10倍的Cd2+、Hg2+、Cu2+、Co2+、Tl+、In3+;用示差脉冲阳极溶出法(ASDPV)测得各种离子的伏安曲线,并与在相同条件下,只有Pb2+的伏安曲线比较。

相关文档
最新文档