4芳香性
高等有机化学-4芳香性与亲电取代

Part 1 芳香性
• 1.芳香性的定义:
• 早期的定义是考虑动力学稳定性,取代反应比 加成反应更容易发生;后来的定义则依靠热力 学的稳定性,以共轭能的大小来量度;最近的 定义提倡用光谱及磁的标准,磁有向性在平面 л电子体系中能受感应,并可用质子磁共振光 谱中位移到较低的场来鉴定或借反磁性的灵敏 度上升的测定。
• 正离子这种越过一个碳原子的同芳香性叫单 同芳香体系,越过二个或三个饱和碳原子的 则分别叫双同或三同芳香体系。
• 含有两个或十个电子的同芳香性化合物为已 知的。
•
H H
H
OTs
• 三同环丙基正离子是首先由顺-双环[3,1, 0]己-3-对甲苯磺酸酯的溶剂化性质的分 析提出的假说。
(I)
H
H
(II)
HC HC
C
H
H C
CH C
H
H C
HC C
H
H C
CH C
H
芳环上离域的π电子的作用,易于发生 亲电取代反应,只有当芳环上引入了强吸电 子基团,才能发生亲核取代反应。
一. 亲电取代反应
(一) 加成-消除机理
HE
E
E+Nu-
σ-络合物 芳正离子
HNO3 H2SO4
NO2
2H2SO4 HNO3
NO2+
例如:
在硝酸与乙酸酐的体系中 甲苯的硝化速度是苯进行硝化反应的23倍. 取代产物的百分比为:
邻
对
间
63%
34%
3%
fo
(6) (2)
(23) × (1) ×
(0.63)
43.5
fm
(6) (2)
×
(23) (1)
高等有机化学-第2章-芳香性讲解

归纳起来,芳香性的表现主要有三点:
1.独特的化学反应性能; 2.独特的热力学稳定性; 3.独特光谱性质(主要表现在NMR谱)。
2.2 苯的结构和共振结构式
苯具有平面正六角形结构,每两个相邻碳原子 之间的距离是一样的,分子中每个碳原子都以sp2杂 化轨道分别与一个氢和两个碳以σ键结合,三个键 之间的夹角都是120°。每个碳还剩下一个p电子, 处于和苯环平面相垂直的p轨道上,这六个轨道相 互重叠发生离域。由于苯分子的对称性,电子云平 均分布在整个环上,形成一个连续不断的大键。
船形的环辛四烯,非芳香性
平面的环辛四烯,反芳香性
[12] 轮烯,具有反芳香性,它不稳定,自发地在环内成键而成双 环。 [16] 轮烯、 [20] 轮烯、[24] 轮烯,都是反芳香性的。
一般情况下反芳香性分子是很少存在的,因为一切分子总趋 向于使自己的能量最低,因此,具有4n 电子的分子,力图使本 身不成为平面以减少反芳香性。比如环辛四烯呈船形,足以使反 芳香性消失而成为非芳香性分子。
杯烯
或
当环外双键的电子流向五元环时,五元环形成六电子 体系,而三元环失去电子成二电子体系,符合休克尔的 4n+2规则(n=1和0)而具有芳香性。能发生亲电取代反应,如 溴化和硝化,有的偶极矩很大。
3. 环戊二烯衍生物
H H
环戊二烯
H
环戊二烯负离子
环戊二烯酸性很强,它的pKa为16.0。因环戊二烯负离 子有六个电子而具有芳香性。
扩展:少数是sp杂化碳原子参与共轭! 注意:该规则具有较好的普遍性,但针对具体化合物时还需要考虑 “角张力和非键张力大小”等因素!
第十章 芳香族化合物

芳基 (Aryl)
1、普通命名法
邻氯苯甲醚 间甲苯酚 对甲苯甲酸 连三甲苯 偏三甲苯 间三甲苯
2、系统命名法
1,2-二溴苯
3-硝基溴苯
3-硝基苯甲醛
2-氨基-5-羟基苯甲醛 3-氨基-5-溴苯酚
三、单环芳烃的物理性质
一般为无色有芳香气味的液体,不溶于水,相对密度在 0.86-0.93之间,燃烧时火焰带有较浓的黑烟。沸点随相对 分子质量升高而升高。熔点除与相对分子质量有关外,还 与结构有关,通常对位异构体由于分子对称,熔点较高。 芳烃是一种良好的溶剂,但具有一定的毒性。常见单环 芳烃的物理常数P455表11-1
代反应等。
第三阶段:将具有芳香特性的化合物称为芳香化合物。
非苯芳香烃
3、苯及苯的表达方式
• 1825年 • 1857年 • 1858年
法拉第发现了苯。 凯库勒提出碳四价。 凯库勒提出苯分子具有环状结构。
勇于开始,才能找到成 功的路
Kekule’式
问题?
实际得到三种化合物
1865年 提出摆动双键学说
2°当引入的烷基为三个碳以上时,引入的烷基会发 生碳链异构现象。
3°烷基化反应不易停留在一元阶段,通常在反应中 有多烷基苯生成。
4°苯环上已有–NO2、-SO3H、-COOH、-COR等取 代基时,烷基化反应不在发生。因这些取代基都是 强吸电子基,降低了苯环上的电子云密度,使亲电 取代不易发生。例如,硝基苯就不能起付—克反应 ,且可用硝基苯作溶剂来进行烷基化反应。 5°烷基化试剂也可是烯烃或醇。
TNT十分稳定。与硝酸甘油不同,它对于摩擦、震动等 都不敏感。需要雷管引爆。每公斤TNT炸药可产生4200 千焦的能量。虽然,它的燃烧热低于脂肪和糖,但由于 能够迅速地释放能量,同时不需要消耗额外的氧气。从 而引发爆炸。现在常用吨TNT的爆炸当量来衡量核爆炸 、地震、行星撞击等大型反应时的能量。
有机化学基础知识点整理芳香性和芳香化合物的性质

有机化学基础知识点整理芳香性和芳香化合物的性质芳香性和芳香化合物的性质有机化学是化学领域中的一个重要分支,研究有机物的结构、性质和合成方法等。
芳香性和芳香化合物是有机化学中的重要概念和研究内容之一。
本文将对芳香性和芳香化合物的基础知识点进行整理。
一、芳香性的概念芳香性是指含有芳香环结构的化合物所特有的性质或现象。
它是由芳香环中的π电子云形成的高度共轭体系所决定的。
具备芳香环结构的化合物表现出一系列独特的性质,包括稳定性高、反应活性低、呈现特殊的气味等。
二、芳香性的规则和条件1. 符合Hückel规则Hückel规则是判断一个化合物是否具备芳香性的一个重要准则。
根据Hückel规则,一个环状分子具备芳香性必须满足:- 分子是平面的;- 分子中含有 4n+2 个π电子,其中 n 是非负整数。
2. 产生高度共轭体系芳香性是由共轭体系中的π电子云形成的,因此产生芳香性的分子通常具有大范围的共轭结构。
对于苯环来说,由于其电子云在整个环上共轭,因此苯是最简单的芳香化合物。
3. 具备极性芳香化合物中的芳香环带有电负性较大的原子团,如氧、氮等,因此具备一定的极性。
然而,芳香化合物整体上常表现出较弱的极性,主要由于π电子在环上的扩散。
三、芳香化合物的性质1. 化学稳定性芳香化合物的共轭结构使其更加稳定。
对于具有芳香性的化合物,由于能量更低,其化学稳定性也相对较高。
这也是为什么芳香化合物常用作药物、染料和香料等方面的原料。
2. 同位素标记由于芳香化合物的稳定性,可以通过同位素标记来追踪其在化学反应中的转化过程。
同位素标记技术在有机化学的研究和应用中扮演着重要的角色,有助于揭示化学反应的机理和动力学。
3. 气味和香味芳香化合物常常具有独特的气味和香味,广泛应用于香水、香料和食品添加剂等方面。
因为芳香化合物形成的芳香环结构能够与嗅觉受体结合,产生特殊的感官效应。
4. 光谱特性芳香化合物在红外光谱、紫外光谱和核磁共振光谱等光谱中表现出特殊的峰值和吸收特性,这对于准确鉴定和表征芳香化合物具有重要意义。
有机化学-芳香烃

CH3
HNO3
HOAc
CH3
CH3 CH3
NO2 +
+
NO2
NO2
63% 34% 3%
Cl
Cl
Cl
Cl
HNO3
H2SO4
NO2 +
+ NO2
30%
NO2
69% 1%
(2) 第二类定位基─间位定位基
使新进入苯环的取代基主要进入它的 间位,并使苯环致钝。
例如: −CF3, −N(CH3)3+, −NO2, −CN, −SO3H, −CHO, −COCH3, −COOH, −COOCH3, −CONH2, −NH3+。
NO2
NO2
CH3 C CH3 CH3 无 α-H
KMnO4 H+
COOH
氧化剂: KMnO4 铬酸等
4.2.4 苯环上亲电取代反应的定位规则
Y
一取代苯:
芳环上的取代基既影响亲电 取代反应的速率又决定着亲电试 剂进入芳环的位置。
1. 两类定位基
芳环上的取代基分为两类:
(1)第一类定位基 ─ 邻、对位定位基 使得新进入苯环的取代基主要进入它的
均化,闭合共轭
苯
苯的分子结构 体系(环状大π键)
6 个C–C σ键: sp2–sp2相互交盖,6 个C –H σ键: sp2–1s 相互交盖。 6 个2p 轨道的对称轴垂直于环所在平面, 彼此相互平行,两侧进行侧面交盖,形成闭合的π轨道。 6个π电子离域在六个C原子上。由此形成一个闭合的
共轭体系。
2. 苯的构性相关分析
CH3
CH3
CH3
CH3
1,2-二甲苯 邻二甲苯 o-二甲苯
芳香性具体表现

苯的溴化反应机理:
第一步:Br2分子的极化
Br Br + FeBr3
Br
Br
FeBr3
Br2 与FeBr3 的络合
第二步: 极化了的溴进攻苯环
+ Br
Br
FeBr3
慢
Br H + Br FeBr3
生成苯碳正离子中间体。此步骤是 决定反应速率的一步。
33
烯丙基型正离子: p - π 共轭 π - 电子的离域产生共振杂化体:
浓50H~620S。OC4
NO2
例: NO2
+
浓 HNO 3
浓100H~12S10O。C4
CH3
混酸
30℃
CH3
NO2 混酸
60℃
CH3
混酸
60℃
NO2
NO2 NO2 +
NO2 +
NO2
6%
1%
NO2 NO2
93%
CH3
NO2 混酸 NO2
CH3 NO2
110℃
NO2
NO2
2,4,6-三硝基甲苯
(TNT) 38 2,4,6-Trinitrotoluene
轨道内,每个轨道都含有一对电子.最低的轨道1,环绕 全部六个碳,轨道2和轨道3具有不同的形状但有相 等的能量,它们两个在一起,使六个碳具有同样的电子 云密度. (4) 总的结果造成一个高度对称的分子,其 电子具有相当大的离域作用,从而使它们 能量比在三个孤立的 轨道中要低得多.
20
§5-2 单环芳烃及其衍生物的命名
供电体: 苯环 吸电体: E+, Lewis 酸
28
苯环上亲电取代反应机理
有机化学基础知识点芳香性与芳香烃的性质

有机化学基础知识点芳香性与芳香烃的性质有机化学基础知识点——芳香性与芳香烃的性质有机化学是研究有机物质及其反应机理的一门学科,其中芳香性与芳香烃是其中重要的知识点之一。
本文将着重介绍芳香性以及芳香烃的性质,帮助读者更好地理解有机化学中的这一概念。
一、芳香性的定义与特点芳香性是指具有特殊结构和性质的有机化合物所表现出的香味和稳定的π电子结构。
根据芳香性的定义,芳香性化合物需要满足以下几个条件:1. 分子结构中含有一个或多个芳环(由6个共轭π电子组成的环状结构);2. 芳环中每个原子都以杂化sp2形式存在,磁性势能相对稳定;3. 芳环中的每个杂化的p轨道上都有一个未被配对的π电子。
值得注意的是,非芳香性化合物虽然可能具有香味,但其分子结构不符合芳香性的定义。
二、芳香烃的分类与性质芳香烃是一类基础的有机化合物,其分子中至少含有一个芳环。
根据芳香烃分子中芳环的个数及其它官能团,芳香烃可以分为以下几类:1. 单核芳香烃:只含有一个芳环的芳香烃。
例如,苯(C6H6)是最简单的芳香烃,其分子结构中含有一个六元环。
2. 多核芳香烃:含有两个或多个连接在一起的芳环的芳香烃。
最常见的多核芳香烃是萘(C10H8),它由一个苯环和一个呈共轭连结的五元环组成。
3. 取代芳香烃:分子中的芳环上存在取代基的芳香烃。
通过对芳环中的氢原子进行取代,可以获得各种不同性质和用途的化合物。
芳香烃的一些重要性质包括:1. 稳定性:芳香烃具有相对较高的稳定性,这是因为芳香烃分子中的共轭π电子系统能够稳定结构和分子。
2. 可溶性:大多数芳香烃在非极性溶剂中具有较好的溶解性,但在水中溶解度较低。
3. 反应性:芳香烃在化学反应中常常表现出亲电取代反应、脱氢反应等特性。
三、应用与实际意义芳香烃是有机化学中重要的化合物类别之一,其应用领域非常广泛。
以下是一些芳香烃的应用和实际意义:1. 燃料:芳香烃类化合物广泛应用于燃料行业,用作汽车燃料和燃气等能源。
04芳香性

4.1 芳香性和休克尔规则
6
3.随着科学技术的发展,人们又借助核磁共振来判断化 合物是否具有芳香性。若环状共轭烃在外加磁场的作用 下,产生高抗磁性此种特征的磁屏蔽效应可以从质子核 磁共振谱中看出,则这种化合物具有芳香性。 4.对芳香性作深入和系统研究,奠定芳香性理论基础的 是Hü ckel 4n+2 规则。即在闭合共轭多烯体系中,构 成环的原子在同一平面或接近同一平面上,同时其π 电 子数符合4n+2 (n=0,1,2……),则该化合物具有芳香性。
22
六. Y 芳香性
胍是较强的碱,因为它的共轭酸是具有 芳香性结构的物质。
NH2 HN C NH2 NH2 + H 2N C NH2 H2N + NH2 C NH2 H 2N NH2 C + NH2
H+
4.6 Y芳香性
23
七. 方克酸类
方克酸是一类较强的酸(pKa1=1.5, pKa2=3.5), 因为其共轭碱是非常稳定的芳香结构。
4.1 芳香性和休克尔规则
8
1. 单环共轭多烯(轮烯) [4]轮烯 成环原子共平面,π 电子数4n.
[8]轮烯
H H
成环原子不共平面: π 电子数4n.
[10]轮烯 由于有环内氢,相互干扰, 成环原 子不共 平面 . π 电子数4n+2. [18]轮烯 成环原子共平面, π 电子数4n+2. [22]轮烯 成环原子共平面, π 电子数4n+2.
作业答案
34
第四章测试
1.根据 Hü 规则判断下列各化合物是否具有 ckel (反)芳香性, (反)同芳香性,非芳香性。
H H
本章测试
35
2. 用芳香性的知识解释苯环易进行亲电取代反应, 而不是亲电加成反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
芳香性
Chapter four Aromaticity
第一节 芳香性、非芳香性、反芳香性的概念
1、定义 【芳香性】是指苯型的化合物由于π电子离域具有特殊的热稳 定性。环上易发生取代反应,不易发生加成反应,在结构上 C-C键长介于单双键之间,在核磁共振谱上表现出较大的化学 位移的性质。 反芳香性是指苯型的化合物,由于π电子离域它的稳定性 比相应的非环共轭烯烃稳定性小的现象。 非芳香性是指环形的化合物,由于没有π电子离域现象, 它的稳定性和相应的非环共轭烯烃稳定性相当的现象。
CH2
例如:下列化合物是否具有芳香性 ⑴ ⑵
化学与生命科学学院
⑶
判断的方法;先写出其偶极结构,得到两个电荷相反的 共轭环,然后看着两个环是否都满足休克尔规则,如果满足 则有芳香性,则反之。 ⑴无芳香性。 ⑵有芳香性。
⑶有芳香性。
化学与生命科学学院
完
化学与生命科学学院
3、芳香化合物的结构特征
见教材101~102页。
化学与生命科学学院
化学与生命科学学院
第二节 芳香性的判据
目前,判断一个有机化合物,有两种方法:
一种是:休克尔(E.Hückel)的4n+2规则; 另一种是:芳香环上氢质子的化学位移最大差值。 下面我们主要学习休克尔(E.Hückel)的4n+2规则。 1、单环体系芳香性的判断 单环体系芳香性的判断,注意四点: ①、体系的平面性 ②、具有4n+2个π电子 ③、 4n+2个π电子的取值极限(0≤n≤5)
化学与生命科学学院
2、芳香化合物的特点 ⑴、C/H高 ⑵、键长趋于平均化 芳香性分子具有比正常的碳碳双键的键长(1.35Å)稍长双键 和相比正常的碳碳单键的键长(1.54Å)稍短的单键。无芳香性的 多烯分子中单键和双键的键长特征很明显,分别为1.44-1.48Å和 1.34-1.36Å,芳香性分子的碳碳键长处于1. 38Å和1.40Å之间。 苯环中六个碳碳键长彼此相等,约为1.395Å。 ⑶、分子的共平面性 具有芳香性的分子一个显著特征是环上原子的平面性或 几乎平面性。有平面结构的化合物并不都是有芳香性的。但 芳香性总是伴随着一定程度的平面性。 [18]-轮烯是近乎乎面的, [16]-轮烯是非平而的,前者是芳香性分子,后者并无劳香性。
1.共平面或接近于共平面;
2.轮内氢原子间没有或很少有空间排斥作用; 3.π电子数符合4n+2规则。
化学与生命科学学院
2、稠环化合物芳香性的判断
例1:下列化合物的芳香性的判断
⑴ ⑵
戊搭烯
⑶ ⑷
庚搭烯
这些体系接近或在一个平面,用休克尔的4n+2规则来判断。 对于这一类体系多环体系,可忽略中心桥键,用休克尔 的4n+2规则来判断。 ⑴有8个π 电子, ⑵、 ⑶有12个π电子,无芳香性。
化学与生命科学学院
例4:环辛四烯及其正离子芳香性的判断
H H H H
H
H
H
H
结论:环辛四烯体系不是平面的,无芳香性。 环辛四烯正离子体系是平面,具有6个π电子, 有芳香性。
化学与生命科学学院
例5:轮烯芳香性的判断 轮烯(annulene)是一类单键与双键交替的环状多烯烃类。 命名或书写时通常是把成环碳原子数写在方括弧内置于“轮烯” 词前,例如苯可以看作是[6]轮烯,环辛四烯是[8]轮烯,但一般 是把较大的环称作轮烯。 [10]轮烯:这是没有角张力结构
H H
此结构中,两个轮内氢原子彼此干扰。整个分子不可能在 一个平面,没有芳香性。 [14]轮烯:这是没有角张力结构 环内的氢原子彼此干扰很小,具有芳香性。
化学与生命科学学院
H H H H
[18]轮烯: 具有芳香性
H H
H H
H H
[22]轮烯:
具有芳香性 结论:这类化合物是否显示芳香性,主要决定于下列条件:
化学与生命科学学院
⑷、反应活性:易取代,难加成; ⑸、特殊的稳定性 苯的氢化热是208kJ/mol,而环已烯的氢化热是119kJ/mol。 (6)、特征光谱 如苯环的紫外光谱上有184nm,202nm(K带)和254nm(B带)三 个特征峰:红外光谱上分别在3000一3100,1600,1570。1500, 1000-1100cm-1等区域及指纹区有特征峰。H-NMR谱上则是芳 香性分子表现出特殊现象的最明显标志.
化学与生命科学学院
⑷有10个π电子,具有芳香性。
例2:对于有三个环共用一个原子的化合物
对于此类化合物不能简单套用上一方法,有芳香性。 3、离子化合物芳香性的判断 例如:环丙烯酮类化合物
O
化学与生命科学学院
对于此类化合物,写出它的偶极离子形式,然后用休克尔 规则来判断。 O O 从它的偶极离子形式,符合用休克尔规则,具有芳香性。 4、富瓦烯型化合物芳香性的判断 富烯很不稳定,无芳香性。
④、对于轮烯,轮内氢的空间排斥作用
化学与生命科学的判断 没有形成离域的π32的大π键,不具有芳香性 形成离域的π32大π键,具有2 π电子,有芳 香性 形成离域的π34大π键,具有4 π电子,无芳 香性
化学与生命科学学院
例2:环丁二烯芳香性及其正离子的芳香性判断 形成离域的π44大π键,具有4 个π电子,无 芳香性 形成离域的π42大π键,具有2个 π电子,有 芳香性 例3:环戊二烯芳香性及其正、负离子的芳香性判断 没有形成离域的π54大π键,无芳香性 形成离域的π56大π键,具有6个π电子,有 芳香性 形成离域的π54大π键,具有4个π电子,无 芳香性