数学期望
数学期望和均值的关系

数学期望和均值是相关的概念,但并不完全相同。
数学期望是指在统计意义下某个随机变量的期望值。它是指在大量重复试验中,每次随机变量的取值 所占的比重,乘以对应的取值,再加起来的总和。数学期望的计算公式为:E(X)=∑xP(x),其中 E(X) 表 示数学期望,x 表示随机变量的取值,P(x) 表示取值 x 的概率。
赌资: 1 1 1 1 1 1 1 1 1 1
输赢: -1 3 -1 3 -1 3 -1 3 -1 3
那么,在这 10 次游戏中,你的数学期望收益为 E(X)=∑xP(x)=10.5+30.5=2 元,也就是说,如果你 连续玩很多次,那么你的平均收益将会是 2 元。
然而,在这 10 次游戏中,你的实际收益为 ∑x÷n=8 元,也就是说,在这 10 次游戏中,你的均值 收益是 8 元。
均值是指一组数据的平均数。它的计算公式为:均值=∑x÷n,其中 x 表示数据的取值,n 表示数据 的个数。均值是一个定值,并不随机。
总的来说,数学期望是一个概率概念,表示的是随机变玩一种博弈游戏,每次赌资为 1 元,赢得 3 元,输掉 1 元。假设你连续玩了 10 次, 你的输赢情况如下:
第三章 数学期望

r ( x ) f ( x)(离散变量)
r
r ( x ) r f ( x)dx(连续变量)
X关于原点的r阶矩也称为r阶原点矩,定义为 ‘r = E(Xr)
矩母函数
X的矩母函数定义为: MX(t)=E(etX) 在假设收敛的条件下,它是
M X (t ) e tX f ( x)(离散的变量) M X (t )
数学期望
数学期望的定义
数学期望就是一个随机变量的期望值或简称期望。 离散随机变量的期望定义: E(X)=x1P(X=x1)+x2P(X=x2)+…+xnP(X=xn) =xjP(X=xj) = xjf(xj) 如果随机变量取值概率都是相等的,那么我们就可 以得到一个特殊的期望,算术平均: E(X)=(x1+x2+…+xn)/n
对联合分布的方差和协方差
若X和Y是有联合密度函数f(x,y)的两个连续随机变 量,则X和Y的均值或期望是
X E( X ) Y E (Y )
xf ( x, y)dxdy
yf ( x, y)dxdy
方差是
2 X E[( X X ) 2 ]
标准化随机变量
令X是带均值和标准差的随机变量,则我 们用下式定义标准化的随机变量 X*=(X-)/ X*的一个重要性质是均值为0且方差为1,标 准化的变量对比较不同分布是有好处的。
矩
随机变量X关于均值的r阶中心矩,定义为: r=E((X-)r) 这里r=0,1,2,…。由此得到0=1 1=0 2=2
相关系数
若X和Y是独立的,则Cov(X,Y)=0。另一方面,若X 和Y是完全相关的。例如,当X=Y,则 Cov(X,Y)=XY=XY。由此我们引入变量X和Y相互 依赖的测度: = XY/XY 根据定理四,我们知道-1<=<=1。在=0时,我 们称X和Y是不相关的。然而在这些情况下,变量可 以是独立的,也可以是不独立的。我们将在后面的 章节中会进一步讨论相关性。
数学期望——精选推荐

数学期望⽬录数学期望定义离散型随机变量ξ有分布列x1x2⋯x k⋯p1p2⋯p k⋯如果级数 ∑k x k p k绝对收敛,则记Eξ=∑k x k p k称为ξ的数学期望.定义连续型随机变量ξ有密度函数p(x) ,若∫+∞−∞|x|p(x)dx<∞ ,则称Eξ=∫+∞−∞xp(x)dx为ξ的数学期望.定义随机变量ξ有分布函数F(x) ,若∫+∞−∞|x|dF(x)<∞ ,则称Eξ=∫+∞−∞xdF(x)为ξ的数学期望.设ξ为随机变量,η=f(ξ) ,则Eη=∫+∞−∞f(y)dFξ(y)当ξ连续时有密度函数p(x) ,则Eη=∫+∞−∞f(y)p(y)dy随机变量ξ,η独⽴同分布当且仅当对任意有界连续函数f有Ef(ξ)=Ef(η) .条件期望定义设ξ=x时,η的条件分布函数为Fη|ξ(y|x) ,则条件期望为E(η|ξ=x)=∫+∞−∞ydFη|ξ(y|x)若有条件分布列pη|ξ(y j|x) ,则E(η|ξ=x)=∑j y j pη|ξ(y j|x)若有条件密度函数pη|ξ(y|x) ,则E(η|ξ=x)=∫+∞−∞ypη|ξ(y|x)dy显然,若ξ,η相互独⽴,则E(η|ξ=x)=Eη .定理条件期望E(η|ξ=x) 可看作是x的函数,记为m(x) ,则m(ξ) 是随机变量,称m(ξ) 为已知ξ时η的条件期望,记为E(η|ξ) ,从⽽条件期望的数学期望有E[E(η|ξ)]=EηProof.利⽤期望定义m(x)=E(η|ξ=x)=∫+∞−∞ypη|ξ(y|x)dy=∫+∞−∞y p(x,y) pξ(x)dy则有E[E(η|ξ)]=E(m(ξ))=∫+∞−∞m(x)pξ(x)dx代⼊即证;直观上,E(η|ξ) 为在给定的ξ下的η的期望,它是ξ的函数,再求期望时,实际上是对所有的ξ求η的期望.全期望公式当ξ为离散型随机变量,记p i=P(ξ=x i) ,则Eη=∑i p i E(η|ξ=x i)[] Loading [MathJax]/jax/element/mml/optable/BasicLatin.js它是上⾯等式的直接推导.性质加法性质:Eξ1,⋯,Eξn存在,则∀c1,⋯,c n及b,有En∑i=1c iξi+b=n∑i=1c i Eξi+b乘法性质:若ξ1,⋯,ξn相互独⽴,Eξ1,⋯,Eξn存在,则E(ξ1⋯ξn)=Eξ1⋯Eξn有界收敛定理:设∀ω∈Ω有lim,且\forall n\ge 1,\ |\xi_n|\le M,则\lim_{n\to\infty}E\xi_n = E\xiE(h(\xi)\eta|\xi) = h(\xi)E(\eta|\xi) .柯西-施⽡茨不等式:|E(XY|Z)|\le \sqrt{E(X^2|Z)}\cdot \sqrt{E(Y^2|Z)} .⽅差定义称\xi-E\xi为\xi关于均值E\xi的离差,若E(\xi-E\xi)^2存在有限,则称其为\xi的⽅差,记作Var\xi或D\xiVar\xi = E(\xi-E\xi)^2 = E\xi^2 - (E\xi)^2为了统⼀量纲,有时使⽤标准差\sqrt{Var\xi} .切⽐雪夫不等式若⽅差存在,则\forall \epsilon>0,有P(|\xi-E\xi|\ge\epsilon)\le\dfrac{Var\xi}{\epsilon^2}Proof.⾮常巧妙的放缩法\begin{aligned} P(|\xi-E\xi|\ge\epsilon) &= \int_{|x-E\xi|\ge\epsilon}dF(x)\\ &\le \int_{|x-E\xi|\ge\epsilon}\dfrac{(x-E\xi)^2}{\epsilon^2}dF(x)\\ &\le \int_{-\infty}^{+\infty}\dfrac{(x-E\xi)^2}{\epsilon^2}dF(x)\\ &= \dfrac{1}{\epsilon^2}\int_{-\infty}^{+\infty}(x-E\xi)^2dF(x)\\ &= \dfrac{Var\xi}{\epsilon^2} \end{aligned}切⽐雪夫不等式说明\xi离均值E\xi的距离,被⽅差所控制,即\xi落在(E\xi-\epsilon,E\xi+\epsilon)的概率⼤于1-\frac{Var\xi}{\epsilon^2} .性质Var\xi = 0 \Leftrightarrow P(\xi=c)=1;切⽐雪夫不等式的直接推论.Var(c\xi+b) = c^2Var\xi .Var\xi \le E(\xi-c)^2 .加法性质:Var\left(\sum_{i=1}^n\xi_i\right) = \sum_{i=1}^nVar\xi_i + 2 \sum_{1\le i<j\le n} Cov(\xi_i,\xi_j)若\xi_1,\cdots,\xi_n两两独⽴,则Var\left(\sum_{i=1}^n\xi_i\right) = \sum_{i=1}^nVar\xi_i此时Cov(\xi_i,\xi_j) = 0 .协⽅差定义设\xi_i,\xi_j有联合分布F_{ij}(x,y),若E|(\xi_i-E\xi_i)(\xi_j-E\xi_j)|<\infty,称E(\xi_i-E\xi_i)(\xi_j-E\xi_j) = \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(x-E\xi_i)(y-E\xi_j)dF_{ij}(x,y)为\xi_i,\xi_j的协⽅差,记作Cov(\xi_i,\xi_j) .性质Cov(\xi,\eta) = Cov(\eta,\xi) = E\xi\eta-E\xi E\eta\begin{aligned} E(\xi-E\xi)(\eta-E\eta) &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(x-E\xi)(y-E\eta)dF(x,y)\\ &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(xy-xE\eta-yE\xi+E\xi E\eta)dF(x,y)\\ &= E\xi\eta - 2E\xi E\eta + E\xi E\eta = E\xi\eta - E\xi E\eta \end{aligned}加法性质:Cov\left(\sum_{i=1}^n\xi_i,\eta\right) = \sum_{i=1}^nCov(\xi_i,\eta)Cov(a\xi+c,b\xi+d) = abCov(\xi,\eta) .Cov(\xi,\eta) \le \sqrt{Var\xi}\sqrt{Var\eta} .Cov(a\xi+b\eta,c\xi+d\eta) = acCov(\xi,\xi) + (ad+bc)Cov(\xi,\eta) + bdCov(\eta,\eta) .协⽅差矩阵协⽅差矩阵的元素是随机向量各分量两两之间的协⽅差B = E(\xi-E\xi)(\xi-E\xi)^T = \left( \begin{matrix} b_{11} & b_{12} & \cdots & b_{1n}\\ b_{21} & b_{22} & \cdots & b_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ b_{n1} & b_{n2} & \cdots & b_{nn}\\ \end{matrix} \right),\quad b_{ij} = Cov(\xi_i,\xi_j)容易看出B对称半正定.若有变换\eta = C\xi,则有EC(\xi-E\xi)(C(\xi-E\xi))^T = CBC^T为\eta的协⽅差矩阵.⼆维随机向量的协⽅差矩阵C = \left( \begin{matrix} Var\xi & E\xi\eta - E\xi E\eta\\ E\xi\eta - E\xi E\eta & Var\eta \end{matrix} \right)相关系数的计算r_{\xi,\eta} = \dfrac{Cov(\xi,\eta)}{\sqrt{Var\xi Var\eta}}相关系数为0则不相关.相关系数定义令\xi^* = (\xi-E\xi)/\sqrt{Var\xi},\ \eta^* = (\eta-E\eta)/\sqrt{Var\eta},称r_{\xi\eta} = Cov(\xi^*,\eta^*) = E\xi^*E\eta^*为\xi,\eta的相关系数.柯西-施⽡茨不等式()任意随机变量\xi,\eta有|E\xi\eta|^2\le E\xi^2E\eta^2等式成⽴当且仅当\exists t_0,\ \mathrm{s.t.}\ P(\eta=t_0\xi) = 1 .Proof.考虑u(t) = E(\eta-t\xi)^2 = t^2E\xi^2-2tE\xi\eta+E\eta^2\ge 0,分析判别式即可.性质|r_{\xi\eta}| \le 1,并且当|r_{\xi\eta}| = 1,称\xi,\eta以概率1线性相关;若|r_{\xi\eta}| = 0,称\xi,\eta不相关.若⽅差有限,则有等价条件Cov(\xi,\eta) = 0\xi,\eta不相关E\xi\eta = E\xi E\etaVar(\xi+\eta) = Var\xi + Var\eta若\xi,\eta独⽴,且它们⽅差有限,则\xi,\eta不相关.对⼆元正态随机向量,两个分量不相关与独⽴等价.矩⽅差、协⽅差本质上都是对随机变量分布分离程度的度量,可以⽤矩的概念进⾏推⼴.原点矩:m_k=E\xi^k,称为k阶原点矩中⼼距:c_k = E(\xi-E\xi)^k,称为k阶中⼼矩绝对矩:M_{\alpha} = E|\xi|^{\alpha},\ \alpha\in\mathbb{R},称为\alpha阶绝对矩。
《数学期望》课件

在计算过程中需要注意积分的上下 限以及概率密度函数的取值范围。
连续型随机变量的数学期望的性质
01
02
03
非负性
E(X) ≥ 0,即数学期望的 值总是非负的。
可加性
如果X和Y是两个独立的随 机变量,那么E(X+Y) = E(X) + E(Y)。
线性性质
如果a和b是常数,那么 E(aX+b) = aE(X)+b。
方差是数学期望的度量,表示随机变量取值 与数学期望的偏离程度。
04
CATALOGUE
连续型随机变量的数学期望
连续型随机变量的定义
连续型随机变量
如果一个随机变量X的所有可能 取值是实数轴上的一个区间变量。
概率密度函数
描述连续型随机变量X在各个点 上取值的概率分布情况,其数学
《数学期望》PPT课件
CATALOGUE
目 录
• 引言 • 数学期望的基本性质 • 离散型随机变量的数学期望 • 连续型随机变量的数学期望 • 数学期望的应用 • 总结与展望
01
CATALOGUE
引言
数学期望的定义
数学期望是概率论和统计学中的 一个重要概念,它表示随机变量
取值的平均数或加权平均数。
数学期望的定义基于概率论的基 本原理,通过将每个可能的结果 与其对应的概率相乘,然后将这
些乘积相加得到。
数学期望具有一些重要的性质, 如线性性质、期望值不变性质等 ,这些性质在概率论和统计学中
有着广泛的应用。
数学期望的起源和历史
数学期望的起源可以追溯到17世纪,当时的一些数学家开始研究概率论和统计学中 的一些基本概念。
通过计算投资组合的数学期望, 我们可以了解投资组合的预期收 益,从而制定更加合理的投资策
《数学期望》课件

欢迎来到《数学期望》PPT课件。从定义到应用,本课程将为您全面介绍数学 期望的相关知识。
什么是数学期望
1 定义
数学期望是随机变量取值的加权平均数,是 一个平均性的数值特征。
2 意义
数学期望能够用来描述随机变量的中心位置, 是概率分布的重要特征之一。
离散型随机变量的期望
1
期望的运算规律
期望的运算规律
期望也具有线性性、单调性和保号性等运算规律, 但概率密度函数的图像更难以直观展示。
期望的性质
期望的线性性质
期望具有加法和数乘的线性运算规律,对于相互独 立的随机变量,期望还满足可加性。
期望的矩估计
期望的矩估计可以帮助我们了解随机变量的高阶特 征,如方差、偏度和峰度等。
应用实例
期望在概率分布中的应用
量的期望
离散型随机变量的期望等于随机变量取
每个值的概率乘以该值的加权和,连续
型随机变量的期望等于其概率密度函数
3
期望的运算规律和性质
的加权积分。
期望具有线性性、单调性和保号性等运
算规律,还具有可加性和矩估计等特性。
应用实例
4
期望在概率分布中和随机变量期望在实 际问题中都有广泛应用。
参考资料
• 离散数学 • 概率论与数理统计 • 数理统计方法及其应用
2
期望具有线性性、单调性和保号性等运
算规律。
3
离散型随机变量的期望定义
离散型随机变量的期望等于随机变量取 每个值的概率乘以该值的加权和。
概率分布的图像
概率分布的图像能够直观地展示数学期 望的定义和特性。
连续型随机变量的期望
连续型随机变量的期望定义
连续型随机变量的期望等于其概率密度函数的加权 积分。
数学期望

第四章
随机变量的数字特征
§1 数学期望
例7 国际市场上每年对我国某种出口商品的需求量 是随机变量 X(吨),X ~ U[2000,4000],每售出这 种商品一吨,可为国家挣得外汇3万元,但销售不出 而囤积在仓库,则每吨需浪费保养费1万元。问需要 组织多少货源,才能使国家收益最大。 解: y 为预备出口的该商品的数量,则 设 用 Z 表示国家的收益(万元)
§1 数学期望
一、数学期望定义
1) 离散型
设离散型随机变量X的, k 1,2,
若级数
x
i 1
k
p k 绝对收敛,则称随机变量 X 的数
学期望存在,记作 EX,
且
EX x k pk
i 1
数学期望也称为均值。
第四章
随机变量的数字特征
§1 数学期望
说 明
(1)X 的数学期望刻划了 X 变化的平均值.
(2)由于随机变量 X 的数学期望表示的是随机变 量 X 变化的平均值。
因此,只有当级数 保证级数
x
n 1
n
pn 绝对收敛时,才能
x
n 1
n
pn 的和与其级数
x
n 1
n
pn的求
和顺序无关.
3).几种常见的随机变量的期望 几种离散型随机变量的期望
(1) 两点分布
若 X B(1,p),则 E[X]=p
(2) 二项分布
若 X B(n,p),则 E[X]=np
(3) 超几何分布
nM 若 X H(n,M,N) 则 E[X]= N
第四章
随机变量的数字特征
§3 几种期望与方差
(4) poisson分布
数学期望

引例2 有甲、乙两射手,他们的射击技术用下表给 出
甲 射 手 击中环数 X甲 8 概 率 0.3 乙 射 手 击中环数 X 乙 8 概 率 0.2 9 0.1 9 0.5 10 0.6 10 0.3
问甲和乙谁的射击水平较高?
解 “射击水平”一般用平均击中环数来反映。所以, 只要对他们的平均击中环数进行比较即可。 问题:已知随机变量的概率分布, 如何计算其平均值?
击中环数 X甲 概 率 击中环数 X 乙 概 率
8 0.3 8 0.2
9 0.1 9 0.5
10 0.6 10 0.3
分析:若甲射击N次, 设击中8环, 9环和10环的次数分 别为 N1、 2和N3 次,则甲在N次射击中,平均每次击中 N 的环数为
N3 N1 N2 8 N1 9 N 2 10 N3 8 f1 9 f2 10 f3 8 9 10 N N N N
p (x) = 0.2 e – 0.2 x , x > 0
问这个人的平均等车时间是几分钟? 解. 平均等车时间即是数学期望 E X ,因此
EX
5 ye y dy 5
0
xp( x ) dx
0.2 xe 0.2 x dx
0
即平均需要等待 5 分钟。
□
例 5 设在某一规定的时间内,一电气设备用于最大负荷的 时间X(单位:min)是一个随机变量,概率密度函数为
定理1 设二维离散型随机变量(X,Y)的联合概率分布为
P{X xi , Y y j } pi j , i, j 1, 2,
则
E ( X ) xi pi j ,
i 1 j 1
数学期望

定义:设离散型随机变量X 的分布律为
xk pk
k 1
P{ X xk } pk , k 1,2, .
如果级数 xk pk 绝对收敛,则称 xk pk 的和为 X 的数学期
k 1
k1
望,记为 E( X ). 即 E( X ) xk pk .
i 1
n
E(X) E(Xi ) np i1
Xi(i 1,2, , n)相互独立.
n
D(X) D(Xi ) np(1 p)
i1
3. 设 X ~ ()
分布律为:P( X k) ke , k 0, 1, 2,
k!
E( X ) k ke k ke
4). 设 X,Y 相互独立,则有 E(XY ) E( X ) E(Y ),
推广:设 X1, X2, , Xn 相互独立,
证明则:仅E对( 连 X1续X2型 随X机 n ) 变E量( X加以 1 ) 证E(明X。2 ) E( Xn ),
1) E(C) Cf (x)dx C f (x)dx C.
1 (b2 ab a2 ) ( a b )2 1 (b a)2
3
2
12
即 E( X ) a b , D( X ) (b a)2 .
2
12
23
5. 指数分布
设 X 是服从参数为 的指数分布,
密度函数为
f
(
x
)
1
e
x
/
0
x0 其它
E(X)
E(X) 的偏离程度,又因为E[ X E(X) ] 的运算复杂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计
数学期望在经济中的应用
班级:电子信息工程2班
小组成员:李建辉201208102069
刘廷201208102068
姚立志201208102045
刘卫超201208102057
李艳东201208102064
贾辉201208102081
指导教师:边学军
时间:2013~2014第二学期
数学期望在经济中的应用
[摘要]
文章通过实例介绍了数学期望在减少工作量、选择最优存储量、选择最佳进货量、总利润最大问题等方面的应用,说明了数学期望在经济决策中的重要作用.[关键词] 数学期望经济决策应用
概率论是从数量上研究随机现象统计规律性的学科,而随机变量的分布函数能够全面地反映随机变量的统计规律性.但在诸多的经济管理或决策工作中,一方面由于求出随机变量的分布函数并非易事,而且对于某些实际问题来说,并不需要对随机变量进行全面的描写,只需知道能够反映随机变量的某些重要的数字特征即可.数学期望是反映随机变量总体取值的平均水平的一个重要的数字特征,它在经济决策工作中有着广泛的应用,为决策者做出最优决策提供重要的理论依据。
一、数学期望的概念
定义1(1)设离散型随机变量X的概率分布为P{X=xk}=pk,k=1,2,…,若级数绝对收敛,则称级数为离散型随机变量X的数学期望(或均值),记为EX,即。
若级数发散,则称随机变量X的数学期望不存在;(2)设连续型机变量X的概率密度函数为f(x),若积分绝对收敛,则称其为连续型随机变量X的数学期望或均值,记为E(X),
定义2设Y为随机变量X的函数:Y=g(X)(g是连续函数),(1)X是离散型随机变量,分布律为P{X=xk}=pk,k=1,2,…,若级数绝对收敛,则有(2)X是连续型随机变量,概率密度函数为f(x),若积分绝对收敛,则有
二、数学期望的应用
1.期望值问题
例1一商场共有16层楼,设有10位顾客在一层进入电梯,每位乘客在楼上任何一层出电梯是等可能的,且各乘客是否出电梯相互独立,求直到电梯中的乘客出空为止电梯需停次数X的期望值。
解:引入计数随机变量
则有X=X2+X3+ (X16)
由题意,每一个人在任何一层出电梯的概率为1/15,若10个人同时不在第i 层出电梯,那么电梯在该层就不停,而此时的概率为
因此,进而
2.减少工作量
例2某商场对员工(N人)进行体检,其中普查某种疾病需要逐个验血,一般来说,若血样呈阳性,则有此种疾病;呈阴性则无此疾病.逐个验血需要N次,
若N很大,验血的工作量也很大.为了能减少验血的工作量,有人提出想法:把k(k>1)个人的血样混合后再检验,若呈阴性,则k个人都无此疾病,这时k个人只需作一次检验;若呈阳性,则对k个人再分别检验,这时为弄清谁有此种疾病共需检验k+1次.若该商场员工中患此疾病的概率为p,且各人得此病相互独立,那么此种方法能否减少验血次数?若能减少,那么能减少多少工作量?
解:令X表示该商场每人需要验血的次数,那么X是只取2个值的随机变量,其分布律为
则每人平均验血次数为
而新的验血方法比逐个验血方法平均能减少验血次数为1-EX=只要EX<1,就能减少验血的工作量。
例如,当p=0.1,k=2时,这时1-EX=0.92-0.5=0.31(次),若商场有员工10000人,则可减少3100次,即减少31%的工作量。
3.选择最优存储量
例3春节期间一商场某种食品的进价为65元/千克,零售价为70元/千克,若卖不出去,则削价20%处理,如供应短缺,有关部门每千克罚款10元。
已知顾客对该食品的需求量X服从[20000,80000]上的均匀分布,求该商场在春节期间对该食品的最优存储策略。
解:设存储量为y,则20000≤y≤80000,存储量为y时所得利润为
需求量X服从均匀分布,其密度函数为
则期望利润为
令可得y=57500,即当存储量为57500千克时,期望利润最大,且最大期望利润为81250元。
4.选择最佳进货量
例4设某种商品每周的需求量X是服从区间[10,30]上均匀分布的随机变量,而经销的商场进货数量为区间[10,30]中的某一整数.商场每销售一单位商品可获利500元;若供大于求则削价处理,每处理一单位商品亏损100元;若供不应求,则可从外部调剂,此时每一单位商品仅获利300元.为使商场所获利润期望值不少于9280元,试确定最少进货量。
解:设进货量为a,利润为Y,则利润函数为
X的概率密度函数为
根据随机变量函数的数学期望,有
令-7.5a2+350a+5250≥9280,
即解得在此范围内a取最小的整数21。
以上两个问题属于随机存储模型,由于需求量是随机变量,在知道其概率分布的前提下,构造利润函数(它是随机变量的函数)也是随机变量,根据期望利润最大,确定最佳定货量或最佳存储量.这类问题为随机存储决策提供依据。
5.总利润最大
例 5 设某商场正在与一出版社联系订购下一年的挂历问题,已知的有关条
件如下:零售价80元/本,挂历的进价50/本.若当年的12月31日以后挂历尚未售出,该商场不得不降价到20元/本全部销售出去.根据该商场以往10年的销售情况,可知需求概率如下:在当年12月31日以前只能售出150本、160本、170本和180本的概率分别为0.1、0.4、0.3、0.2.根据以上条件,该商场应订购多少本挂历,可使期望利润最大?
解:显然,订购的数量应在150本至180本之间.该商场的订购方案有150本、160本、170本和180本,且各种订购方案的获利都是随机变量,记X1,X2,X3,X4分别表示这四种订购方案所获得的利润。
根据购进、售出的数量可得如下利润表(单位:百元):
各订购方案的期望利润分别为
根据期望利润最大的原则,应选择期望利润最大的订购方案,即订购160本或170本.
这种决策是建立在风险中性的基础上的,风险中性的决策者认为:1单位期望利润等于1单位确定利润。
在销售市场上,机会与风险并存,不愿冒风险也不可能博取高额利润。
因此,对于风险型决策往往持风险中性态度,以期望利润最大原则进行决策.由于需求的不确定性,各种订购方案的利润都是随机变量,随机变量的期望值反映了它的平均水平,即期望利润;随机变量的方差反映了它取值的不确定性,因此反映了经销的风险.在期望利润相等(或很近似)的情况下,应选择利润方差(风险)最小的方案。
由于订购160本和170本的期望利润相等,又是期望利润最大的方案,我们应从中选择获利方差较小的方案。
由于EX22=2250,EX32=2262.2,
则DX2=3.24<DX3=15.84,
所以,订购160本挂历是最优方案.
这类问题是根据期望利润最大的原则进行决策,是建立在风险中性的基础之上,也是风险型决策的前提.如果有两个以上的方案都能够使得期望收益达到最大,那么就应该比较收益的方差(风险),风险较小者较优.所以,在风险决策问题中,应综合考虑收益的期望和方差,将超额收益(超过无风险收益的部分)作为承担风险的补偿,选择最优的方案才是最合理的。
参考文献:
茆诗松等:概率论与数理统计[M].北京:中国统计出版社,2000
杨金英新编概率论与数理统计内蒙古大学出版社2010。