初二数学_面积法解题

合集下载

巧用面积法妙解几何题

巧用面积法妙解几何题

论,并说明理由。
A
分析:此题的条件虽然发生了变化,
但是思路、方法不变,还是应用面
积法。连结PA、PB、PC,根据
S△ABC=S△ABP+S△ACP-S△BCP, 由AB=BC=AC,可得正确结论:
D B
EH
F C
PD+PF-PE=AH
P
• 证角相等
例3.点C是线段AB上一点,分别以AC、BC为边在 AB同侧作等边△ACD和等边△BCE,连接BD、 AE交于O点,再连接OC,求证:∠AOC=∠BOC.
∴BD=CE
C
用面积 法好简 单哟!
变式训练
1.已知:等腰△ABC中,AB=AC,D为底边BC
的中点,DE⊥AB,DF⊥AC,垂足分别为E、
F.求证:DE=DF.
A
分析:此题用三角形全等可完成,
但题中出现两条“垂线段”,可考
虑面积法,连接AD,则S△ABD=S△ACD, 由AB=AC,可得DE=DF.
D
C
第4题
※5.设E是△ABC的角平分线AD上一点,连接 EB、EC,过C作CF∥BE交AB的延长线于F, 过B作BG∥EC交AC的延长线于G,求证: BF=CG.(提示:S△BEF=S△BEC=S△CEG)
A
E
B
C D
第5题
F G
※6.在△ABC中,AD是∠BAC的平分线,求证: AB︰AC=BD︰CD.
分析:要证∠AOC=∠BOC,可证点
E
C到AO、BO的距离相等,如此就要 过C点作CP⊥AE于P,CQ⊥BD于Q, 证CP=CQ,可考虑面积法,证
DO Q
P
△ACE≌△DCB,则有 S△ACE =S△DCB

面积——等面积法

面积——等面积法

面积法在中学数学解题中的巧用利用同一图形的面积相等,可以列方程计算线段的值,或证明线段间的数量关系;利用图形面积的和、差关系列方程,将相等的高或底约去,可以计算或证明线段间的数量关系。

利用等积变形,可以排除图形的干扰,实现“从形到数〞的转化,从而从数量方面巧妙地解决问题。

用面积法解题就是根据题目给出的条件,利用等积变换原理和有关面积计算的公式、定理或图形的面积关系进行解题的方法。

运用面积法,巧设未知元,可获“柳暗花明〞的效果。

有关面积的公式〔1〕矩形的面积公式:S=长⨯宽〔2〕三角形的面积公式:ah S 21=〔3〕平行四边形面积公式: S=底⨯高〔4〕梯形面积公式: S=21⨯(上底+下底)⨯高〔5〕对角线互相垂直的四边形:S=对角线乘积的一半〔如正方形、菱形等〕 有关面积的公理和定理 1、面积公理〔1〕全等形的面积相等;〔2〕一个图形的面积等它各部分面积之和; 2、相关定理〔1〕等底等高的两个三角形面积相等;夹在平行线间的两个共底的三角形面积相等;如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD〔2〕等底等高的平行四边形、梯形〔梯形等底应理解为两底的和相等〕的面积相等;〔3〕等底的三角形、平行四边形面积之比等于其高之比;等高的三角形、平行四边形面积之比等于其底之比;〔4〕相似三角形的面积的比等于相似比的平方;〔5〕在两个三角形中,若两边对应相等,其夹角互补,则这两个三角形面积相等;〔6〕等底等高的平行四边形面积是三角形面积的2倍。

一个长方形分成4个不同的三角形,绿色三角形面积是长方形面积的15%,黄色三角形的面积是21平方厘米。

问:长方形的面积是__________平方厘米。

等面积法的应用一:利用平行线间两个共底的三角形面积相等解题。

如图,矩形ABCD 中,AB=3cm ,AD=6cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且EF=2BE ,则AFC S =△92cm如图,在四边形ABCD 中,动点P 从点A 开始沿A →B →C →D 的路径匀速前进到D 为止。

初中数学“面积法”解题分析

初中数学“面积法”解题分析

初中数学“面积法”解题分析姓名:__________指导:__________日期:__________面积法是中学数学的一种重要方法,所谓面积法就是利用图形的面积关系,建立一个或几个关于图形面积的等式或不等式,然后通过推理、演算,以达到证题目的的一种方法.三角形面积是一个数量,通过三角形面积公式把面积、边、角之间关系互相沟通,以恰当的转换求解.应用面积法解题简洁、明了,面积法是解几何题的常用方法.面积法的理论依据是面积公式,在△ABC中,约定三边长分别为a,b,c,h为边a上的高,r为内切圆半径,R为外接圆半径,则三角形的面积当问题涉及如下方面时,不妨用面积法尝试求解.(1)两个全等形面积相等;(2)一个图形的面积等于它的各部分面积之和;(3)等(同)底等(同)高的两个三角形面积相等;(4)等底(或等高)的两个三角形面积之比等于该底上的高(或对应底边)之比;(5)与平行四边形同底同高的三角形的面积是平行四边形面积的一半.面积法是中学数学中一种重要的证明方法.它在证明线段相等、角相等、不等关系、线段比例等方面都经常会用到.【典型例题1】已知,如图,在△ABC中,AB=AC,P为底边BC 上任意一点,PD⊥AB于点D,PE⊥AC于点E,求证:PD+PE是一个定值.【思路分析】本题的关键是看到垂线,就可看作三角形的高,于是连接AP,过点C 作CF⊥AB于点F,再通过面积法即可求证.【答案解析】【典型例题2】如图,以直角三角形ABC的两直角边AC,BC为一边各向外侧作正方形ACDE,BCGH,连接BE,AH 分别交AC,BC于点P,Q.求证:CP=CQ.【思路分析】本题两次利用了借助面积的等积变换,通过等底(高)等积的三角形对应高(底)相等来证线段等,往往能起到很好的效果,本题发现△AGQ 和△BPD 底相同,而又要证明等高,即CP=CQ,很容易想到要证明两个三角形面积相等即可得证,面积相等需要用等积变换来实现,本题是借助△ABC的面积当桥梁,使△ACH 和△BCE的面积都等于△ABC的面积,又可知△ACH 和△AGQ的面积相等,△BCE和△BPD 的面积也相等,进而得证.【答案解析】【典型例题3】如图,D是Rt△ABC直角边AC上任意一点,AE∥BC,DE=2AB,求证:∠ABC=3∠EBC.【思路分析】【答案解析】。

等面积法例题初二数学

等面积法例题初二数学

等面积法例题初二数学(原创版)目录1.等面积法的概念2.等面积法的应用3.初二数学中常见的等面积题目类型4.解决等面积题目的步骤和技巧5.例题解析正文一、等面积法的概念等面积法是一种求解几何问题的方法,主要是通过将复杂的几何问题转化为简单的面积问题,从而简化问题。

等面积法在初二数学中是一个重要的知识点,对于提高学生的几何解题能力有重要作用。

二、等面积法的应用等面积法在初二数学中的应用非常广泛,例如在求解三角形、四边形、圆等几何图形的面积时,都可以运用等面积法。

此外,等面积法还可以用于解决一些复杂的几何组合问题,如求解两个三角形面积之和等于一个矩形面积的问题等。

三、初二数学中常见的等面积题目类型初二数学中常见的等面积题目类型主要包括以下几种:1.已知两个图形的面积,求它们的形状和大小;2.已知一个图形的面积和一个边长,求其他边的长度;3.已知两个图形的边长,求它们的面积和形状;4.求解两个图形面积之和等于一个矩形面积的问题。

四、解决等面积题目的步骤和技巧解决等面积题目一般可以分为以下几个步骤:1.观察题目,找出已知条件和需要求解的问题;2.根据已知条件,运用等面积法将问题转化为面积问题;3.利用相关的几何公式,求解面积问题;4.根据求解的结果,得出结论。

在解决等面积题目时,可以运用一些技巧,如:1.利用相似三角形的面积比等于相似比的平方;2.利用两个三角形共边时,它们的面积和等于共边边上的高的比;3.利用矩形的面积等于长乘以宽。

五、例题解析例题:已知一个矩形的长为 8cm,宽为 6cm,求一个与它等面积的三角形的高。

解:根据等面积法,可知该三角形的面积等于矩形的面积,即S=8*6=48。

由于三角形的面积等于底乘以高的一半,所以可以得出:48=底*高/2,解得高=48*2/底。

由于题目没有给出三角形的底,因此需要进一步求解。

可以利用相似三角形的性质,设该三角形的底为 x,那么根据相似比的平方等于面积比,可得出:x/8=高/6,解得 x=48/5。

等面积法例题初二数学

等面积法例题初二数学

等面积法例题初二数学
等面积法例题初二数学指的是在初二数学中,使用等面积法解题的示例问题。

等面积法是一种常用的数学解题方法,主要基于面积的守恒原理,通过比较不同图形之间的面积关系来解决问题。

在初二数学中,等面积法常用于解决与面积有关的问题,如面积的证明、计算等。

以下是一些初二数学中应用等面积法的示例问题:
题目1:有一个矩形和一个三角形,它们的面积相等。

矩形的一条边长为6厘米,对应的另一条边长为8厘米。

三角形的底边长为12厘米,底边上的高为5厘米。

求矩形的另一条边长。

解法:我们设矩形的另一条边长为x厘米。

由于矩形的面积为长乘宽,所以矩形的面积为6×8=48平方厘米。

同理,三角形的面积为1/2×12×5=30平方厘米。

由于两者的面积相等,所以有:6x=30,解得x=5,所以,矩形的另一条边长是5厘米。

题目2:证明以下等式成立:a^2 + b^2 = c^2。

解法:我们可以将两个边长为a和b的正方形拼接成一个大的矩形,该矩形的长度为a+b,宽度为a。

矩形的面积为(a+b) × a = a^2 + ab。

由于大矩形的面积为两个小正方形的面积之和,所以有:a^2 + b^2 = c^2。

总的来说,“等面积法例题初二数学”就是初二数学中使用等面积法的例子及解析,通常用在解答关于几何形状的问题时帮助学生找到更快捷和直观的方法找到解题途径。

以上解答和解析仅供参考,如有疑问可以咨询数学老师或查阅教辅练习的解析。

八年级数学竞赛例题专题讲解:面积法

八年级数学竞赛例题专题讲解:面积法

八年级数学竞赛例题专题讲解:面积法阅读与思考平面几何学的产生源于人们测量土地面积的需要,面积关联着几何图形的重要元素边与角.所谓面积法是指借助面积有关的知识来解决一些直接或间接与面积问题有关的数学问题的一种方法.有许多数学问题,虽然题目中没有直接涉及面积,但由于面积联系着几何图形的重要元素,所以借助于有关面积的知识求解,常常简捷明快.用面积法解题的基本思路是:对某一平面图形面积,采用不同方法或从不同角度去计算,就可得到一个含边或角的关系式,化简这个面积关系式就可得到求解或求证的结果.下列情况可以考虑用面积法:(1)涉及三角形的高、垂线等问题;(2)涉及角平分线的问题.例题与求解【例1】如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的边长为______________.(全国初中数学联赛试题) 解题思路:从寻求三条垂线段与等边三角形的高的关系入手.等腰三角形底边上任一点到两腰距离之和等于一腰上的高,那么等边三角形呢?等腰梯形呢?【例2】如图,△AOB中,∠O=,OA=OB,正方形CDEF的顶点C在DA上,点D在OB上,点F在AB上,如果正方形CDEF的面积是△AOB的面积的,则OC:OD等于( )A.3:1 B.2:1C.3:2 D.5:3解题思路:由面积关系,可能想到边、角之间的关系,这时通过设元,即可把几何问题代数化来解决.【例3】如图,在□ABCD中,E为AD上一点,F为AB上一点,且BE=DF,BE与DF交于G,求证:∠BGC=∠DGC.(长春市竞赛试题)解题思路:要证∠BGC=∠DGC,即证CG为∠BGD的平分线,不妨用面积法寻找证题的突破口.【例4】如图,设P为△ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D、E、F.求证:(1);(2).(南京市竞赛试题)解题思路:过P点作平行线,产生比例线段.【例5】如图,在△ABC中,E,F,P分别在BC,CA,AB上,已知AE,BF,CP相交于一点D,且,求的值.解题思路:利用上例的结论,通过代数恒等变形求值.(黄冈市竞赛试题)【例6】如图,设点E,F,G,H分别在面积为1的四边形ABCD的边AB,BC,CD,DA上,且(是正数),求四边形EFGH的面积.(河北省竞赛试题)解题思路:连对角线,把四边形分割成三角形,将线段的比转化为三角形的面积比.线段比与面积比的相互转化,是解面积问题的常用技巧.转化的基本知识有:(1) 等高三角形面积比,等于它们的底之比;(2) 等底三角形面积比,等于它们的高之比;(3) 相似三角形面积比,等于它们相似比的平方.能力训练1.如图,正方形ABCD的边长为4cm,E是AD的中点,BM⊥EC,垂足为M,则BM=______.(福建省中考试题)2.如图,矩形ABCD中,P为AB上一点,AP=2BP,CE⊥DP于E,AD=,AB=,则CE=__________.(南宁市中考试题)第1题图第2题图第3题图3.如图,已知八边形ABCDEFGH中四个正方形的面积分别为25,48,121,114,PR=13,则该八边形的面积为____________.(江苏省竞赛试题) 4. 在△ABC中,三边长为,,,表示边上的高的长,,的意义类似,则(++)的值为____________. (上海市竞赛试题)5.如图,△ABC的边AB=2,AC=3,Ⅰ,Ⅱ,Ⅲ分别表示以AB,BC,CA为边的正方形,则图中三个阴影部分的面积之和的最大值是__________.(全国竞赛试题) 6.如图,过等边△ABC内一点P向三边作垂线,PQ=6,PR=8,PS=10,则△ABC的面积是 ( ).A. B.C.D.(湖北省黄冈市竞赛试题)第5题图第6题图第7题图7.如图,点D是△ABC的边BC上一点,若∠CAD=∠DAB=,AC=3,AB=6,则AD的长是( ).A.2 B. C.3 D.8.如图,在四边形ABCD中,M,N分别是AB,CD的中点,AN,BN,DM,CM划分四边形所成的7个区域的面积分别为,,,,,,,那么恒成立的关系式是( ).A.+=B.+=C.+= D.+=9.已知等边△ABC和点P,设点P到△ABC三边AB,AC,BC的距离分别为,,,△ABC的高为.若点P在一边BC上(如图1),此时,可得结论:++=.请直接用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立.请给予证明;若不成立,,,与之间又有怎样的关系?请写出你的猜想,不需证明.(黑龙江省中考试题)10.如图,已知D,E,F分别是锐角△ABC的三边BC,CA,AB上的点,且AD、BE、CF相交于P点,AP=BP=CP=6,设PD=,PE=,PF=,若,求的值.(“希望杯”邀请赛试题)11.如图,在凸五边形ABCDE中,已知AB∥CE,BC∥AD,BE∥CD,DE∥AC,求证:AE∥BD.(加拿大数学奥林匹克试题)12.如图,在锐角△ABC中,D,E,F分别是AB,BC,CA边上的三等分点. P,Q,R分别是△ADF,△BDE,△CEF的三条中线的交点.(1) 求△DEF与△ABC的面积比;(2) 求△PDF与△ADF的面积比;(3) 求多边形PDQERF与△ABC的面积比.13.如图,依次延长四边形ABCD的边AB,BC,CD,DA至E,F,G,H,使,若,求的值.(上海市竞赛试题)14.如图,一直线截△ABC的边AB,AC及BC的延长线分别交于F,E,D三点,求证:.(梅涅劳斯定理)15.如图,在△ABC中,已知,求的值.(“华罗庚金杯”少年数学邀请赛试题)。

数学方法篇:面积法

数学方法篇:面积法

数学方法篇三:面积法用面积法解几何问题是一种重要的数学方法,在初中数学中有着广泛的应用,这种方法有时显得特别简捷,有出奇制胜、事半功倍之效。

(一)怎样证明面积相等。

以下是常用的理论依据1.三角形的中线把三角形分成两个面积相等的部分。

2.同底同高或等底等高的两个三角形面积相等。

3.平行四边形的对角线把其分成两个面积相等的部分。

4.同底(等底)的两个三角形面积的比等于高的比。

同高(或等高)的两个三角形面积的比等于底的比。

5.三角形的面积等于等底等高的平行四边形的面积的一半。

6.三角形的中位线截三角形所得的三角形的面积等于原三角形面积的417.三角形三边中点的连线所成的三角形的面积等于原三角形面积的418.有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。

(二)用面积法解几何问题(常用的解题思路)1.分解法:通常把一个复杂的图形,分解成几个三角形。

2.作平行线法:通过平行线找出同高(或等高)的三角形。

3.利用有关性质法:比如利用中点、中位线等的性质。

4.还可以利用面积解决其它问题。

【范例讲析】一、怎样证明面积问题1. 分解法例1. 从△ABC的各顶点作三条平行线AD、BE、CF,各与对边或延长线交于D、E、F,求证:△DEF的面积=2△ABC的面积。

2. 作平行线法例2. 已知:在梯形ABCD中,DC//AB,M为腰BC上的中点,二、用面积法解几何问题1. 用面积法证线段相等例1. 已知:如图,AD是△ABC的中线,CF⊥AD于F,BE⊥AD交AD的延长线于E。

求证:CF=BE。

2. 用面积法证两角相等例2. 如图,C是线段AB上的一点,△ACD、△BCE都是等边三角形,AE、BD相交于O。

求证:∠AOC=∠BOC 。

3. 用面积法证线段不等例3. 如图,在△ABC中,已知AB>AC,∠A的平分线交BC于D。

求证:BD>CD。

4. 用面积法证线段的和差例4. 已知:如图,设等边△ABC一边上的高为h,P为等边△ABC内的任意一点,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F。

浅谈初中数学面积法在解题中的应用

浅谈初中数学面积法在解题中的应用

浅谈初中数学面积法在解题中的应用[论文摘要]随着新课程改革的不断深入,这几年我市初中数学教材也在不断更新与完善。

教材的变化带来的是中考题型的变化,但是这里解决数学问题的思想方法却是没有改变的。

笔者根据近几年的中考和日常的教学实际情况总结一下一种重要的数学方法—面积法。

一、直接运用公式法和割补法:对于三角形或者特殊四边形的面积,可以直接运用面积公式求解;对于不规则的几何图形的面积,可以运用割补法求解。

(一)规则图形面积有关的公式(二)不规则的图形可以通过割补法转化为规则图形二、运用转化法求解图形的面积:此法就是通过等积变换、平移、旋转等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。

(一)等积变换:同底等高,等底同高(二)通过平移变换求解面积(三)通过旋转变换求解面积随着新课程改革的不断深入,这几年我市初中数学教材也在不断更新与完善。

教材的变化带来的是中考题型的变化,但是这里解决数学问题的思想方法却是没有改变的。

笔者根据近几年的中考和日常的教学实际情况总结一下一种重要的数学方法—面积法。

所谓面积法,就是利用面积相等或者成比例,来证明其他的线段相等或成比例的方法。

它在初中数学中有着广泛的应用,这种方法有时显得特别简捷,有出奇制胜、事半功倍之效。

许多数学问题,表面上看来似与面积无关,但灵活运用面积法,往往能使问题顺利获解。

下面列举几个例子说说面积法在解题中的应用。

一、直接运用公式法和割补法 :对于三角形或者特殊四边形的 面积,可以直接运用面积公式求解;对于不规则的几何图形的面积,可以运用割补法求解。

(一)规则图形面积有关的公式1、三角形的面积公式:ah S 21=2、矩形的面积公式:S=长⨯宽3、平行四边形面积公式: S=底⨯高4、梯形面积公式: S=21⨯(上底+下底)⨯高 对于这些规则图形直接运用面积公式计算即可。

(二)不规则的图形可以通过割补法转化为规则图形1、 作对角线,化四边形为三角形例1. 如图1所示,凸四边形ABCD 的四边AB 、BC 、CD 和DA 的长分别是3、4、12和3,,求四边形ABCD 的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学---面积法解题【本讲教育信息】【讲解容】——怎样证明面积问题以及用面积法解几何问题 【教学目标】1. 使学生灵活掌握证明几何图形中的面积的方法。

2. 培养学生分析问题、解决问题的能力。

【 重点、难点】:重点:证明面积问题的理论依据和方法技巧。

难点:灵活运用所学知识证明面积问题。

【教学过程】(一)证明面积问题常用的理论依据1. 三角形的中线把三角形分成两个面积相等的部分。

2. 同底同高或等底等高的两个三角形面积相等。

3. 平行四边形的对角线把其分成两个面积相等的部分。

4. 同底(等底)的两个三角形面积的比等于高的比。

同高(或等高)的两个三角形面积的比等于底的比。

5. 三角形的面积等于等底等高的平行四边形的面积的一半。

6. 三角形的中位线截三角形所得的三角形的面积等于原三角形面积的。

147. 14三角形三边中点的连线所成的三角形的面积等于原三角形面积的。

8. 有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。

(二)证明面积问题常用的证题思路和方法1. 分解法:通常把一个复杂的图形,分解成几个三角形。

2. 作平行线法:通过平行线找出同高(或等高)的三角形。

3. 利用有关性质法:比如利用中点、中位线等的性质。

4. 还可以利用面积解决其它问题。

【典型例题】(一)怎样证明面积问题 1. 分解法例1. 从△ABC 的各顶点作三条平行线AD 、BE 、CF ,各与对边或延长线交于D 、E 、F ,求证:△DEF 的面积=2△ABC 的面积。

FEAB D C分析:从图形上观察,△DEF 可分为三部分,其中①是△ADE ,它与△ADB 同底等高,故S S ADE ADB ∆∆=②二是△,和上面一样,ADF S S ADF ADC ∆∆=③三是△AEF ,只要再证出它与△ABC 的面积相等即可 由S △CFE =S △CFB故可得出S △AEF =S △ABC 证明:∵AD//BE//CF∴△ADB 和△ADE 同底等高 ∴S △ADB =S △ADE同理可证:S △ADC =S △ADF ∴S △ABC =S △ADE +S △ADF 又∵S △CEF =S △CBF ∴S △ABC =S △AEF∴S △AEF +S △ADE +S △ADF =2S △ABC ∴S △DEF =2S △ABC2. 作平行线法例2. 已知:在梯形ABCD 中,DC//AB ,M 为腰BC 上的中点求证:S S ADM ABCD ∆=12分析:由M 为腰BC 的中点可想到过M 作底的平行线MN ,则MN 为其中位线,再利用平行线间的距离相等,设梯形的高为hA BS S S MN h S AMD DMN AMN ABCD ∆∆∆=+=⋅=1212证明:过M 作MN//AB ∵M 为腰BC 的中点 ∴MN 是梯形的中位线 设梯形的高为hMN DC AB=+2则S MN h ABCD =⋅又ΘS S S MN h AMD AMN MND ∆∆∆=+=⋅12∴=S S ADM ABCD ∆12(二)用面积法解几何问题有些几何问题,往往可以用面积法来解决,用面积法解几何问题常用到下列性质: 性质1:等底等高的三角形面积相等 性质2:同底等高的三角形面积相等性质3:三角形面积等于与它同底等高的平行四边形面积的一半 性质4:等高的两个三角形的面积比等于底之比性质5:等底的两个三角形的面积比等于高之比 1. 证线段之积相等例3. 设AD 、BE 和CF 是△ABC 的三条高,求证:AD ·BC =BE ·AC =CF ·ABAFEB D C分析:从结论可看出,AD 、BE 、CF 分别是BC 、AC 、AB 三边上的高,故可联想到可用面积法。

证明:∵AD 、BE 、CF 是△ABC 的三条高∴=⋅=⋅=⋅S AD BC BE AC CF ABABC ∆222∴⋅=⋅=⋅AD BC BE AC CF AB2. 证等积问题例4. 过平行四边形ABCD 的顶点A 引直线,和BC 、DC 或其延长线分别交于E 、F ,求证:S △ABF =S △ADEA DB E CF分析:因为AB//DF ,所以△ABF 与△ABC 是同底AB 和等高的两个三角形,所以这两个三角形的面积相等。

证明:连结AC ∵CF//AB∴==S S S ABF ABC ABCD ∆∆12平行四边形 又∵CE//AD∴==S S SADE ACD ABCD ∆∆12平行四边形∴=S S ABF ADE ∆∆3. 证线段之和例5. 已知△ABC 中,AB =AC ,P 为底边BC 上任一点,PE ⊥AB ,PF ⊥AC ,BH ⊥AC ,求证:PE+PF =BHAHF EB P C分析:已知有垂线,就可看作三角形的高,连结AP ,则S S S AB PE AC PF ABC ABP APC ∆∆∆=+=⋅+⋅1212又由,所以AB AC S AC PE PF ABC ==⋅+∆12()又S AC BHABC ∆=⋅12故PE+PF =BH证明:连结AP ,则S S S ABC ABP APC ∆∆∆=+∵AB =AC ,PE ⊥AB ,PF ⊥AC∴=⋅+⋅=⋅+S AB PE AC PF AC PE PF ABC ∆121212()又∵BH ⊥AC∴=⋅S AC BH ABC ∆12∴⋅+=⋅1212AC PE PF AC BH ()∴PE+PF =BH4. 证角平分线例6. 在平行四边形ABCD 的两边AD 、CD 上各取一点F 、E ,使AE =CF ,连AE 、CF 交于P ,求证:BP 平分∠APC 。

分析:要证BP 平分∠APC ,我们可以考虑,只要能证出B 点到PA 、PC 的距离相等即可,也就是△ABE 和△BFC 的高相等即可,又由已知AE =FC 可联想到三角形的面积,因此只要证出S △ABE =S △BCF 即可由平行四边形ABCD 可得S △ABE =S △ABC ,S △BFC =S △ABC 所以S △ABE =S △BFC ,因此问题便得解。

证明:连结AC 、BE 、BF∵四边形ABCD 是平行四边形 ∴S △ABE =S △ABC S △BFC =S △ABC∴S △ABE =S △BFC 又∵AE =CF而△ABE 和△BFC 的底分别是AE 、CF ∴△ABE 和△BFC 的高也相等 即B 到PA 、PC 的距离相等 ∴B 点在∠APC 的平分线上 ∴PB 平分∠APC【模拟试题】(答题时间:25分钟)1. 在平行四边形ABCD 中,E 、F 点分别为BC 、CD 的中点,连结AF 、AE ,求证:S △ABE =S △ADFD F CEA B2. 在梯形ABCD 中,DC//AB ,M 为腰BC 上的中点,求证:S S S ADM DCM ABM ∆∆∆=+D CMA B3. Rt △ABC 中,∠ACB =90°,a 、b 为两直角边,斜边AB 上的高为h ,求证:111222a b h += Cb a hA D B4. 已知:E 、F 为四边形ABCD 的边AB 的三等分点,G 、H 为边DC 的三等分点,求证:S S EFGH ABCD =13DA G EF HB C5. 在△ABC中,D是AB的中点,E在AC上,且CEAC13,CD和BE交于G,求△ABC和四边形ADGE的面积比。

ADG EB C【试题答案】1. 证明:连结AC ,则S S ABC ADC ∆∆= 又∵E 、F 分别为BC 、CD 的中点∴=S S ABE ABC ∆∆12S S ADF ADC ∆∆=12 ∴=S S ABEADF ∆∆2. 证明:过M 作MN//DC//AB∵M 为腰BC 上的中点∴△DCM 和△ABM 的高相等,设为h 1∴+=⋅+⋅=+⋅S S DC h AB h DC AB h DCM ABM ∆∆121212111()又∵△DMN 与△AMN 的高也为h 1 ∴=+S S S ADM DMN AMN ∆∆∆=⋅+⋅=+=⋅12121211111MN h MN h MN h h MN h ()∵MN 为梯形的中位线 ∴MN AB CD =+12() ∴=+S S S ADMDCM ABM ∆∆∆3. 证明:∵在Rt △ABC 中,∠ACB =90°,CD ⊥AB∴==⋅S ab AB h ABC ∆1212∴=⋅ab AB h∴=⋅=+⋅a b AB h a b h 2222222()∴两边同时除以a b 22+得:111222ab h += 4. 证明:连结FD 、FG 、FC则由已知可得S S FGH DFC ∆∆=13①作DM//AB ,设它们之间的距离为h ,G 到DM 的距离为a ,则由已知可得H 、C 到DM 的距离分别为2a 、3a∴=+S EF h a EFG ∆12()ΘS S AF h BF h a AFD BFC ∆∆+=⋅+⋅+12123()=⋅+⋅+⋅EF h EF h EF a1232=⋅+⋅3232EF h EF a=⋅+⋅31212()EF h EF a =⋅⋅+312EF h a ()=3S EFG ∆即S S S EFG AFD BFC ∆∆∆=+13()②①+②得:S S EFGH ABCD=135. 证明:作DF//AC 交BE 于FB C可得△DFG ≌△CEG∴==⋅S S ABE CEG DFG ∆∆∆1412=⋅⋅=141223112S S ABC ABC∆∆而S S S S ADGE ABC ABC ABC=-=12112512∆∆∆∴△ABC 和四边形ADGE 的面积比是12:5。

相关文档
最新文档