二进制与十进制的转换 PPT

合集下载

高中信息技术《十进制与二进制间的转换》优质教学课件设计

高中信息技术《十进制与二进制间的转换》优质教学课件设计
在 不 同位置上所代表的值不同
例 : 110101=1×25 + 1×24 + 0×23 + 1×22 + 0×21 + 1×20
常用数制及其重要参 数
进制 十进制 二进制
状态 0—9 0 、 1
基数 10
2
位权 10n
2n
二 进 制 转 换 为 十 进 制 ——按 权 展开
将数表达为各个数位的数码与其相应 位权数乘积之和的形式,这种式子叫做按 权 展开式。
( A ) 25 ( B ) 26 ( C ) 27 ( D )28
2 、十进制数21转换成二进制数是( )
( A ) (10011) 2 ( B ) (10101) 2 ( C ) (10111) 2 ( D ) (11
综合提高题:
1 . 三位二进制数能表示的最大十进制数是 ()
A.1
B.7
C .8
D2..89 位 二 进 制 数 所 能 表 示 最 大 的 十
进 制整数是
?
例 1 将下列二进制数换算成十进制数:
( 1 ) (110)2
( 2) (10111) 2
解 :( 1 ) 110 = 0×20 +1×21 +1×22 = 0+2+4=6
( 2 ) 10111 =1×20+1×21+1×22+0×23 + 1×24 =1+2+4+0+16 =23
练习 1 : 将下列二进制转换成十进制,写出步骤。
在实际应用中,还使用其他的数制,如 : 一小时( 60 分钟) 一天 ( 24 小时) 一年 ( 365 天 )
......
这种逢几进一的计数法, 称为进位计数制。 简 称 “数 制 ”或 “进 制 ”。

课件二进制.ppt

课件二进制.ppt

10
1010
12
11
1011
13
12
1100
14
13
1101
15
14
1110
16
15
1111
17
9
A
B
C
D
E
F
4
➢各种进制之间的转换
二进制、八进制、十六进制转换成十进制
-方法:按权相加
(10101.11)2 =12(34510)823 122 021 120 12-1 12-2 =16 + 0 + 4 + 0 + 1 + 0.5 + 0.25
表示形式: ➢十进制小数形式:(必须有小数点) 如 0.123, .123, 123.0, 0.0, 123. ➢指数形式:(e或E之前必须有数字;指 数必须为整数)如12.3e3 ,123E2, 1.23e4, e-5, 1.2E-3.5
实型常量的类型 ➢默认double型 ➢在实型常量后加字母f或F,认为是float 型
64
-1.7e308 ~ 1.7e308
128
-1.2e4932 ~ 1.2e4932
8
-128 ~ 127
8
0 ~ 255
13
➢ VC6.0 基本数据类型
14
3.2 常量和变量
➢常量
定义:程序运行时其值不能改变的量(即常数)
分类:
➢符号常量:用标识符代表常量
定义格式: #define 符号常量 常量
第3章 数据类型、运算符与表达式
▪ 计算机中数的表示 ▪ C语言的基本数据类型 ▪ 常量和变量 ▪ 数据类型转换 ▪ 运算符与表达式

二进制与十进制、八进制、十六进制之间的转换

二进制与十进制、八进制、十六进制之间的转换
2.二进制 二进制数只有两个代码“0”和“1”,所有的数据都 由它们的组合来实现。 基为:2 运算规则:“逢二进一,借一当二”的原则。 在二进制数的后面加大写字母B以示区别。
3.八进制 使用的符号:0、1、2、3、4、5、6、7; 运算规则:逢八进一; 基为:8 在八进制数据后加英文字母“O”,
4.十六进制 使用的符号:采用0~9和A、B、C、D、E、F六个英文 字母一起共十六个代码。 运算规则:逢十六进一 基为:16 在十六进制数据后加英文字母“H”以示分别。
各数制的权
各数制中整数部分不同位的权为“基的n-1次方(n为数 值所在的位数,n的最小值取1)”,小数部分不同位的权 值为“基的-n次方”。
一个十进制数(135.7)01+5×100+7×10-1 如:十进制中,各位的权为10n-1
二进制中,各位的权为2n-1 十六进制中,各位的权为16n-1
制数时,从小数点开始,将二进制数的整数和 小数部分每四位分为一组,不足四位的分别在 整数的最高位前和小数的最低位后加“0”补足, 然后每组用等值的十六进制码替代,即得目的 数。十六进制数转换成二进制数时正好相反, 一位十六进制数用四位二进制数来替换。对于 有小数的数,要分小数和整数部分处理。
例: (111011.10101)2=(3B.A8)H
【例1】将(236)D转换成二进制。 转换过程如图1所示。
2 2 36 2 118 2 59 2 29 2 14 27 23 21 0
…………… 0 …………… 0 …………… 1 …………… 1 …………… 0 …………… 1 …………… 1 …………… 1
二进制数的低位 二进制数的高位
图1 将十进制数转变成二进制数
如(0.8125D)转成二进制的过程是:

二进制及其转换PPT课件

二进制及其转换PPT课件

2020/10/13
3
中国与十进制
中国是世界上第一个同时使用“十进制”和 “位值制”的国家。古埃及、古希腊和古罗马都没 有发明位值制。古代美洲玛雅人和两河流域的古巴 比伦人虽然发明了位值制,却分别使用的是20进制 和60进制计数法。
今天通用的十进制阿拉伯数字系统,实际上是 10世纪后由印度传入地中海沿岸及西欧各国。 考证 历史,直到6世纪末以后,印度才开始使用十进制 计数法。于是,有学者认为,印度的十进制计数法 可能源自中国,古代中国才是今天通行的十进制计 数法的真正源头。
2020/10/13
2
中国与十进制
中国古代使用的是十进制计数法,即每满10个 数目就进一个单位,如10个1进为10,10个10进为 100等。十进制起源于何时已不可考,但至迟春秋时 期,中国古人就已经能够熟练使用十进制进行计数 和运算了。
中国古代的十进制计数方法实际包括了“位值
制”十进制”和“位值制”两种计数方法。位值制 就是以位置定数目,如22,同样是两个2,第一个2 因位于十位上,故代表20,第二个2因位于个位上, 故代表2。可以看出,由于使用了位值制,就可以很 简捷地记录较大的数目。
104 万 1028 穰 1052 恒河沙 1076 全仕祥 10-23 阿摩罗
108 亿 1032 沟 1056 阿僧祇
10-24 涅盘寂静
5
十进制的定义
把0,1,2,3,4,5,6,7,8,9这十个数码放到相应的位 置来表示数。
数码所在的位置叫做数位,个位、十位、百位、 千位……等等。
每个数位上可以使用的数码的个数叫做这种计数 制的基数,十进制的基数是10。
每个数位所代表的数叫做位权数,进位规则“逢 十进一”。
2020/10/13

二进制数字与十进制数字的相互转换原理

二进制数字与十进制数字的相互转换原理
二进制数字与十进制数字的相互转换原理 二进制转换为十进制:
原理:从二进制数字的右边第一个数字开始,每个数字乘以2的n次方,n从0开始依次递增1,然后将每个乘积相加,结果就是该二进制 对应的十进制数字。 例子:二进制数字:1011010 转换为十进制为:90 转换过程如下图:
十进制转换为二进制:
原理:将十进制数字作为被除数,除数为2,做整除运算,得到余数和商,一直除到商为0为止,然后倒序取余数,得到的结果就是转换 的对应二进制数字 例子:十进制数字:11 转换为二进制为:1011 转换过程如下图:
2019-03-22

进制及进制转换第一课时公开课ppt课件

进制及进制转换第一课时公开课ppt课件
练习:
将二进制数10110.11转换成十进制数
答案:(10110.11)2 =(1×24+0×23+1×22+1×21+0×20+1×2-1+1×2-2)10
=(22.75)10
7
(2)八进制数转换成十进制数
方法同二进制转换成十进制完=(2 ×81+ 4 ×80+6 ×8-1+7 ×8-2)10
示14,F表示15,转换方法同前,仅仅基数为16。
例:
(2AB.C)16=(2×162+10×161+11×160+12×16-1)10 =(683.75)10
练习: 将十六进制数A7D.E转换成十进制数(14×16-1=0.875)
答案:
(A7D.E)16=(10×162+7×161+13×160+14×16-1 )10
练习:
=(20.859375)10
将八进制数35.7转换成十进制数(7 × 8-1=0.875)
答案:(35.7)8=(3 ×81+ 5 ×80+7 ×8-1)10
=(29.875)10
8
(3)十六进制数转换成十进制数
说明:十六进制数共有16个不同的符号:0、1、2、 3、4、5、6、7、8、9、A、B、C、D、E、F,其 中A表示10,B表示11,C表示12,D表示13,E表
=(2685.875)10
9
说明:其他进制转换成十进 制可类似进行。如七进制、 十二进制、二十四进制等, 只须改变基数(R)即可。
n
NR ki Ri im
10
3.2 十进制数转换成其他进制数
☞ 以十转二为例

二进制与十进制的转换(共8张PPT)

二进制与十进制的转换(共8张PPT)

(1010)= 1x23+0x2 2+1x2 +10x2 =010
十进制转二进制
21= 10101
45= 101101 32=
100000
德国数理哲学大师莱布尼兹
二进制是计算技术中广泛采用的一种数制。
321
0
由0和1两个数码来表示,进位规则是“逢二进一”。
21=
45=
32=
321
0
二进制是计算技术中广泛采用的一种数制。
321
0
13
课堂引入
定义及产生
转换运算
进制转换
课课堂堂练练习习
课后作业
二进制转十进制
(1111)= 1x2 3+1x2 2+1x2 1+1x2 =015
德国数理哲学大师莱布尼兹
二进制是计算技术中广泛采用的一种数制。
(1111)=
321
0
21=
45=
32=
21=
45=
32=
321
0
二进制是计算技术中广泛采用的一种数制。
321
0
(1010)=
321
0
321
0
德国数理哲学大师莱布尼兹
(1010)=
321
0
321
0
二进制是计算技术中广泛采用的 一种数制。由0和1两个数码来表示, 进位规则是“逢二进一”。
德国数理哲学大师莱布尼兹 由《易经》中的八卦符号联想而创造
发明
课堂引入
Байду номын сангаас
定义及产生
表转示换方运算法
进制转换
课堂练习
课后作业
110表示 ?

二进制与十进制间的转换方法(图文教程)

二进制与十进制间的转换方法(图文教程)

二进制与十进制间的转换方法(图文教程)二进制与十进制是计算机中最常用的两种数字表示和计算方法,它们之间的转换是非常简单的。

下面通过图文教程来介绍如何进行二进制和十进制之间的转换。

一、二进制转十进制1.求权重首先需要明确的是,二进制每一位的权重是2的n次方,其中n从0开始逐位递增。

例如二进制数1010的权重依次为2的0次方,2的1次方,2的2次方,2的3次方,即1,2,4,8。

2.计算只要按照权重和二进制数的规则来计算即可,例如二进制数1010的十进制数为:1 * 2的3次方 + 0 * 2的2次方 + 1 * 2的1次方 + 0 * 2的0次方 = 8 + 0 + 2 + 0 = 10注意:计算过程中需要按照从右往左的顺序计算,也就是从低位到高位。

二、十进制转二进制1.除2取余法十进制转二进制通常采用除2取余法,即将十进制数不断除以2,每次将余数作为当前位的二进制数,直到商为0为止,然后将所有的余数倒序排列即可。

例如十进制数12的二进制数为:第一步:12 / 2 = 6 余0第二步:6 / 2 = 3 余0第三步:3 / 2 = 1 余1第四步:1 / 2 = 0 余1则12的二进制数为1100。

2.补位法另外一种十进制转二进制的方法是补位法,即根据数值大小和位数确定,先将转换后的二进制数补成相应位数,然后根据位权求和来确定十进制数。

例如将十进制数12转换为8位二进制数为00001100,然后再分别求出每位的权重和对应的二进制位是否为1,最终确定二进制数的值为12。

总结:以上就是二进制与十进制之间的转换方法,其中二进制转换时需要注意权重和从低位到高位的顺序,十进制转换时则需要注意数值大小和位数的补全。

细心认真的操作可以帮助我们更好地运用计算机中的数字表示和计算方法,提高计算效率和准确度。

二进制与十进制是计算机中最常用的两种数字表示和计算方法。

在计算机科学中,二进制由0和1表示,常被用来表示位于电子电路中的开关状态,而十进制是人们最常使用和理解的数字表示方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、十进制数的概念:
十进制数由0、1、2、3、4、5、6、7、 8、9十个不同的符号组成。 如1999年可表示成:
1×1000+9×100+9×10+9×1 =1×103+9×102+9×101+9×100
2、二进制数的概念: 由0和1两个不同的符号组成,
位置不同代表的数值也不一样。
* 在进位计数制制中有数位、基数和位权三 个要素。数位是指数码在一个数中所处的位 置;基数是指在某种进位计数制中,每个数 位上所能使用的数码的个数。例如:二进制 数计数是2,每个数位上所能使用的数码为0 和1两个数码。
把二进制数转换为十进制数数的方法是,将 二进制数按权展开求和。
例:将二进制数()2转换为十进制 数,可按“按劝展开求和”进行计算。
()2=0×20+1×21+1×22+0×23+1×24 +0×25+1×26+1×27
=0+2+4+0+16+64+128 =(214)10
例:将(10110011.101)2转换成十进制数 的方法如下:
(10110011.101)2=1×27+0×26+1×25+1×24 +0×23+0×22+1×21+1×20 +1×2-1+0×2-2 +1×2-3
=128+0+32+16+0+0+2+1+0 .5 +0+0.125
=(179.625)10
例:将十进制整数105转换为二进制
整数,可按“除2倒取余计算”
❖ 2 105
……1
2 52
……0
2 26
……0
2 13 ……1
2 6 ……0 2 3 ……1
1 得到105=(101001)2
4、十进制小数转换成二进制小 数:即“乘2取整法”
❖ 例:将十进制(0.6875)10转换成二进制数 的方法如下:
0.687 ×) 2 1.3750
0.3750 ×) 2 0.7500 ×) 2 1.500
0.500 ×) 2 1.0
整数=1 整数=0 整数=1 整数=1
(0.6875)10=(0.1011)2
5、二进制转换成十进制数:
位权:对于多位数,处在某一位上的1所 表示的数值的大小,称为该位似的位权。
一个二进制数具有下列两个基本特点:
❖两个不同的数字符号,即0和1 ❖逢二进一
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
3、十进制整数转换为二进制 整数: 把被转换的十进制数反复的除 以2,直到商为0,所得的余数 (从末位读起)就是这个数的 二进制数。 简单的说,就是“除2倒取余 法”。
二进制与十进制的转换
几种常用的数制及其特点
常见数制的书写规则
❖ ①字母后缀 ❖ 二进制数——B ❖ 十进制数——D ❖ 十六进制——H
如:101111B 如:75D 如:21H
用计算机处理十进制数,必须把 它转化成二进制数才能被计算机接受, 同理,计算结果应将二进制数转化成 十进制数。
那么,首先我们来看十进制和二 进制的概念
相关文档
最新文档