平行四边形的性质同步课堂练习题含答案

合集下载

华师大版初中数学八年级下册《18.1 平行四边形的性质》同步练习卷(含答案解析

华师大版初中数学八年级下册《18.1 平行四边形的性质》同步练习卷(含答案解析

华师大新版八年级下学期《18.1 平行四边形的性质》同步练习卷一.选择题(共23小题)1.如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD 的面积是()A.8B.C.2D.42.如图,▱ABCD中,AB=3cm,BC=5cm,BF平分∠ABC交AD于F点,CE平分∠BCD交AD于E点,则EF的长为()A.1cm B.2cm C.3cm D.4cm3.如图,在平行四边形ABCD中,对角线AC和BD相交于O,∠BCD的平分线CE与边AB相交于E,若EB=EA=EC,那么下列结论正确的个数有()①∠ACE=30°②OE∥DA ③S▱ABCD=AC•AD ④CE⊥DBA.1B.2C.3D.44.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC <2S△CEF;④∠DFE=4∠AEF.A.①②③④B.①②③C.①②D.①②④5.如图,平行四边形纸片ABCD和CEFG上下叠放(G在CD上),CE∥AD且CE=AD,连结AF、CF.已知▱ABCD的面积为10,▱CEFG的面积为4,则图中阴影部分△AFC的面积为()A.4B.6C.7D.86.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.67.如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF 相交于点G.下列结论错误的是()A.∠BAD=2∠DFC B.若BC=4EF,则AB:BC=3:8C.AF=DE D.∠BGC=90°8.如图,已知点M为▱ABCD边AB的中点,线段CM角BD于点E,S△BEM=1,则图中阴影部分的面积为()A.2B.3C.4D.59.如图,▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD=S△AEF;④∠上,连接EF、AF,下列结论:①2∠BAF=∠C;②EF=AF;③S△ABF BFE=3∠CEF中,一定成立的是()A.只有①②B.只有②③C.只有①②④D.①②③④10.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个11.如图,平行四边形ABCD的对角线AC,BD相交于点O,CE平分∠DCB交BD 于点F,且∠ABC=60°,AB=2BC,连接OE,下列结论:①∠ACD=30°②S▱ABCD=AC•BC③OE:AC=1:4④S=2S△OEF△OCF其中正确的有()A.1个B.2个C.3个D.4个12.已知▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD上,连结EF、AF,下列结论:①2∠BAF=∠BAD;②EF=AF;③S△ABF ≤S△AEF.中一定成立的是()A.①②B.①③C.②③D.①②③13.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个14.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A.①②③B.①②④C.②③④D.①②③④15.如图所示,在▱ABCD中,BC=6,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F为边AD的中点,AG⊥BE于点G,若AG=2,则BE的长度是()A.10B.8C.4D.416.如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3B.5C.2D.6.517.如图,已知□ABCD的对角线AC、BD交于点O,DE平分∠ADC交BC于点E,交AC于点F,且∠BCD=60°,BC=2CD,连结OE.下列结论:①OE∥AB;=BD•CD;②S平行四边形ABCD③AO=2BO;④S=2S△EOF.△DOF其中成立的个数有()A.1个B.2个C.3个D.4个18.如图,点P是▱ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S3=S2+S4②如果S4>S2,则S3>S1③若S3=2S1,则S4=2S2④若S1﹣S2=S3﹣S4,则P点一定在对角线BD上.其中正确结论的个数是()A.1B.2C.3D.419.如图,E是平行四边形内任一点,若S平行四边形ABCD=8,则图中阴影部分的面积是()A.3B.4C.5D.620.如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=()A.50°B.40°C.80°D.100°21.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是5+;④四边形ACEB的面积是16.则以上结论正确的是()A.①②B.②④C.①②③D.①③④22.如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD 于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD= BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是()A.1B.2C.3D.423.如图,F是▱ABCD的边AD上一点,连接BD,BF,BF的延长线与CD的延长线交于点E.若∠E=∠A,∠BDC=90°,则下列结论中不正确的是()A.2DF=BC B.BE=BCC.∠ADE=∠CBE D.D是CE的中点二.填空题(共4小题)24.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE交于点P,BF 与CE交于点Q,若S=20cm2,S△BQC=30cm2,则图中阴影部分的面积为△APDcm2.25.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,OE⊥BD交边AD于点E,若平行四边形ABCD的周长为20,则△ABE的周长等于.26.已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,AF⊥DC于F,则DF的长是.27.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,如果AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,那么DP:DC等于.三.解答题(共23小题)28.如图,在平行四边形中,AE⊥BC于E,AF⊥CD于F,∠EAF=60°,BE=2,DF=3,求AB,BC的长及平行四边形ABCD的面积?29.如图,平行四边形ABCD中,AE平分∠BAD,交CD于点F,交BC的延长线于点E,连结BF.(1)求证:BE=CD;(2)若点F是CD的中点.①求证BF⊥AE;②若∠BEA=60°,AB=4,求平行四边形ABCD的面积.30.如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E 为AC的中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:DF=AE.31.如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.32.在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F.(1)求证:BE=BF;(2)若∠ADC=90°,G是EF的中点,连接AG、CG.求证:AG=CG;AG⊥CG.33.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.34.如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为9,求AB的长;(2)求证:AF=GE.35.如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠F=60°,BE=2,求AB的长.36.如图,在平行四边形ABCD中,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F恰好为边AD的中点.(1)求证:△ABF≌△DEF;(2)若AG⊥BE于G,BC=4,AG=1,求BE的长.37.已知,在平行四边形ABCD中,E为AD上一点,且AB=AE,连接BE交AC 于点H,过点A作AF⊥BC于F,交BE于点G.(1)若∠D=50°,求∠EBC的度数;(2)若AC⊥CD,过点G作GM∥BC交AC于点M,求证:AH=MC.38.如图,在▱ABCD中,M、N分别是AD、BC的中点,∠AND=90°,连结CM交DN于点O.(1)求证:△ABN≌△CDM;(2)猜想:四边形CDMN是什么特殊四边形?并证明你的猜想;(3)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.39.已知如图,▱ABCD,AD=a,AC为对角线,BM∥AC,过点D作DE∥CM,交AC的延长线于F,交BM的延长线于E.(1)求证:△ADF≌△BCM;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求四边形ABED的面积(用含a的代数式表示).40.如图所示,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)求证:CG=CD;(2)若CF=2,AE=3,求BE的长.41.如图,在▱ABCD中,E为AB中点,EF与CF分别平分∠AEC与∠DCE,G为CE中点,过G作GH∥EF交CF于点O,交CD于点H.(1)猜想四边形CGFH是什么特殊的四边形?并证明你的猜想;(2)当AB=4,且FE=FC时,求AD长.42.已知E为平行四边形ABCD中AB边上一点,且BE=AB,连接DE交BC于F,交AC于G.(1)求证:△BEF≌△CDF;(2)试探究OF与AB有什么位置关系和数量关系,并说明理由.43.已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.44.如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AD=2AB,连接DE,试判断DE与AF的位置关系,并说明理由.45.如图,在▱ABCD中,∠BCD=120°,分别以BC和CD为边作等边△BCE和等边△CDF.求证:AE=AF.46.已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长BC至E,使CE=BC,连接AE交CD于点F.(1)求证:CF=FD;(2)若AD=DC=6,求:∠BDE的度数和OF的长.47.在平行四边形ABCD中,E是BC上任意一点,延长AE交DC的延长线与点F.(1)在图 中当CE=CF时,求证:AF是∠BAD的平分线.(2)根据(1)的条件和结论,若∠ABC=90°,G是EF的中点(如图‚),请求出∠BDG的度数.(3)如图 ,根据(1)的条件和结论,若∠BAD=60°,且FG∥CE,FG=CE,连接DB、DG,求出∠BDG的度数.48.在平行四边形ABCD中,∠BAD的平分线交直线BC于E,交直线DC于F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),讨论线段DG与BD的数量关系.49.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=120°,FG∥CE,FG=CE,分别连结DB、DG(如图2),求∠BDG 的度数.50.如图,已知平行四边形ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD,CE=3,AB=5.(1)求线段CF的长度;(2)求证:AB=DG+CE.华师大新版八年级下学期《18.1 平行四边形的性质》同步练习卷参考答案与试题解析一.选择题(共23小题)1.如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD 的面积是()A.8B.C.2D.4【分析】根据等边三角形的判定得出△DOC是等边三角形,再根据平行四边形的性质和的面积公式即可求解.【解答】解:∵在▱ABCD中,∴AB=DC,∵α=60°.AB=OD=2,∴△DOC是等边三角形,∴△DOC的面积=,∴▱ABCD的面积=4△DOC的面积=4,故选:D.【点评】本题考查了平行四边形的性质和面积,解此题的关键是熟练掌握平行四边形的性质.2.如图,▱ABCD中,AB=3cm,BC=5cm,BF平分∠ABC交AD于F点,CE平分∠BCD交AD于E点,则EF的长为()A.1cm B.2cm C.3cm D.4cm【分析】根据平行四边形的性质可知∠AEB=∠EBC,又因为BE平分∠ABC,所以∠ABE=∠EBC,则∠ABE=∠AEB,则AB=AE=3,同理可证FD=3,继而可求得EF=AE+DE﹣AD.【解答】解:∵四边形ABCD是平行四边形,∴∠AEB=∠EBC,AD=BC=5cm,∵BE平分∠ABC,∴∠ABE=∠EBC,则∠ABE=∠AEB,∴AB=AE=3cm,同理可证:DF=DC=AB=3cm,则EF=AE+FD﹣AD=3+3﹣5=1cm.故选:A.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.3.如图,在平行四边形ABCD中,对角线AC和BD相交于O,∠BCD的平分线CE与边AB相交于E,若EB=EA=EC,那么下列结论正确的个数有()①∠ACE=30°②OE∥DA ③S▱ABCD=AC•AD ④CE⊥DBA.1B.2C.3D.4【分析】想办法证明∠ACB=90°,△BCE是等边三角形即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,OD=DB,∴∠DCA=∠CEB,∵∠DCA=∠BCE,∴∠BCE=∠CEB,∴BC=EC,∵EB=EA=EC,∴∠ACB=90°,EC=BC=EB,∴△BEC是等边三角形,∴∠ABC=60°,∴∠CAB=30°,故①正确,∵OD=DB,AE=EB,∴OE∥AD,故②正确,∵AD∥BC,∴∠DAC=∠ACB=90°,∴AD⊥AC,∴S▱ABCD=AC•AD,故③正确,假设CE⊥BD,则推出四边形ABCD是菱形,显然不可能,故④错误,故选:C.【点评】本题考查平行四边形的性质、直角三角形的判定和性质、等边三角形的判定和性质、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC <2S△CEF;④∠DFE=4∠AEF.A.①②③④B.①②③C.①②D.①②④【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故①正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴CF=EF,故②正确;③∵EF=FM,∴S=S△CFM,△EFC∵MC>BE,∴S△BEC <2S△EFC故③正确;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④错误.故选:B.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DMF是解题关键.5.如图,平行四边形纸片ABCD和CEFG上下叠放(G在CD上),CE∥AD且CE=AD,连结AF、CF.已知▱ABCD的面积为10,▱CEFG的面积为4,则图中阴影部分△AFC的面积为()A.4B.6C.7D.8【分析】作EN⊥AB,延长DC交EN与M,由S阴影=S四边形FEBA﹣S△EFC﹣S△ABC可求阴影部分面积.【解答】解:如图作EN⊥AB,延长DC交EN与M∵AB∥CD,AN⊥EN∴CM⊥EN∵AB∥CD∴且EC=AD=BC ∴EM=MN∵S阴影=S四边形FEBA﹣S△EFC﹣S△ABC=﹣EF×EM﹣AB×MN∴S阴影=(EF+AB)×EM﹣﹣EF×EM﹣AB×MN=EF×EM+AB×MN=S四边形EFGC +S四边形ABCD且S四边形EFGC=4,S四边形ABCD=10∴S阴影=7故选:C.【点评】本题考查了平行四边形的性质,关键是作出平行四边形的高,用已知面积表示阴影部分面积.6.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.6【分析】想办法证明S阴=S△ADE+S△DEC=S△AEC,再由EF∥AC,可得S△AEC=S△ACF解决问题;【解答】解:连接AF、EC.∵BC=4CF,S△ABC=12,∴S△ACF=×12=3,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥AC,∴S△DEB=S△DEC,∴S阴=S△ADE+S△DEC=S△AEC,∵EF∥AC,∴S△AEC=S△ACF=3,∴S阴=3.故选:B.【点评】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.7.如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF 相交于点G.下列结论错误的是()A.∠BAD=2∠DFC B.若BC=4EF,则AB:BC=3:8C.AF=DE D.∠BGC=90°【分析】求出AB=CD,AD∥BC,根据平行线性质和角平分线性质求出∠ABE=∠AEB,推出AB=AE,同理求出DF=CD,求出AE=DF可知选项C正确,由∠A=∠BCD=2∠FDC,可知选项A正确,由∠GBC=∠ABC,∠GCB=∠BCD,又∠ABC+∠BCD=180°,推出∠GBC+∠GCB=90°,可知D正确;【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠A=∠BCD,∴∠AEB=∠EBC,∠BCF=∠DFC,∵BE平分∠ABC,CF平分∠BCD,∴∠ABE=∠CBE,∠BCF=∠DCF,∴∠ABE=∠AEB,∴∠BAD=2∠DFC,故A正确∴AB=AE,同理DF=CD,∴AE=DF,即AE﹣EF=DF﹣EF,∴AF=DE.故C正确∵∠GBC=∠ABC,∠GCB=∠BCD,又∠ABC+∠BCD=180°,∴∠GBC+∠GCB=90°,∴∠BGC=90°,故D正确,故选:B.【点评】本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.如图,已知点M为▱ABCD边AB的中点,线段CM角BD于点E,S△BEM=1,则图中阴影部分的面积为()A.2B.3C.4D.5【分析】由四边形ABCD是平行四边形,推出AB=CD,AB∥CD,由AM=BM,推=2S△EBM,S△EBC=2S△EBM,由此即可解决问题;出===,可得S△DEM【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AM=BM,∴===,=2S△EBM,S△EBC=2S△EBM,∴S△DEM=1,∵S△BEM=S△EBC=2,∴S△DEM=2+2=4,∴S阴故选:C.【点评】本题考查平行四边形的性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD=S△AEF;④∠上,连接EF、AF,下列结论:①2∠BAF=∠C;②EF=AF;③S△ABF BFE=3∠CEF中,一定成立的是()A.只有①②B.只有②③C.只有①②④D.①②③④【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.【解答】解:①∵F是BC的中点,∴BF=FC,∵在▱ABCD中,AD=2AB,∴BC=2AB=2CD,∴BF=FC=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠FAB,∴2∠BAF=∠BAD,∵∠BAD=∠C,∴∠BAF=2∠C故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∠CEF=∠M,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AEF=S△AFM,∴S△ABF <S△AEF,故③错误;④设∠FEA=x,则∠FAE=x,∴∠BAF=∠AFB=90°﹣x,∴∠EFA=180°﹣2x,∴∠EFB=90°﹣x+180°﹣2x=270°﹣3x,∵∠CEF=90°﹣x,∴∠BFE=3∠CEF,故④正确,故选:C.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△AEF≌△DME.10.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个【分析】如图延长EF交BC的延长线于G,取AB的中点H连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;【解答】解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,=S△CFG,∵S△DFE=S△EBG=2S△BEF,故③正确,∴S四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.【点评】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.如图,平行四边形ABCD的对角线AC,BD相交于点O,CE平分∠DCB交BD 于点F,且∠ABC=60°,AB=2BC,连接OE,下列结论:①∠ACD=30°②S▱ABCD=AC•BC③OE:AC=1:4=2S△OEF④S△OCF其中正确的有()A.1个B.2个C.3个D.4个【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故②正确,根据直角三角形的性质得到AC=BC,根据三角形的中位线的性质得到OE=BC,于是得到OE:AC=:6;故③错误;根据相似三角形的性=2S△OEF;故④正确.质得到=2,求得S△OCF【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故②正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6;故③错误;∵AO=OC,AE=BE,∴OE∥BC,∴△OEF∽△BCF,∴=2:1,∴S△OCF :S△OEF==2,∴S△OCF=2S△OEF;故④正确.故选:C.【点评】此题考查了相似三角形的判定和性质,平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE是等边三角形,OE 是△ABC的中位线是关键.12.已知▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD上,连结EF、AF,下列结论:①2∠BAF=∠BAD;②EF=AF;③S△ABF ≤S△AEF.中一定成立的是()A.①②B.①③C.②③D.①②③【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.【解答】解:①∵F是BC的中点,∴BC=2BF,∵在▱ABCD中,AD=2AB,∴BC=2AB,∴BF=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠FAB,∴2∠BAF=∠BAD,故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AFE=S△AFM,∴S△ABF ≤S△AEF,故③正确;故选:D.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△MBF≌△ECF.13.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个【分析】①只要证明DF=DC,利用平行线的性质可得∠DCF=∠DFC=∠FCB;②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD=∠CFD,根据三角形的外角性质求出即可;③④求出∠ECD=90°,根据平行线的性质得出∠BEC=∠ECD,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC=∠FCB,∴CF平分∠BCD,故①正确,延长EF和CD交于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠FDM,在△EAF和△MDF中,,∴△EAF≌△MDF(ASA),∴EF=MF,∵EF=CF,∴CF=MF,∴∠FCD=∠M,∵由(1)知:∠DFC=∠FCD,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M +∠FCD=2∠CFD ;故②正确,∵EF=FM=CF ,∴∠ECM=90°,∵AB ∥CD ,∴∠BEC=∠ECM=90°,∴CE ⊥AB ,故③④正确,故选:D .【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.14.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB=AE ,延长AB 与DE 的延长线交于点F .下列结论中:①△ABC ≌△EAD ;②△ABE 是等边三角形;③AD=AF ;④S △ABE =S △CEF 其中正确的是( )A .①②③B .①②④C .②③④D .①②③④【分析】由平行四边形的性质得出AD ∥BC ,AD=BC ,由AE 平分∠BAD ,可得∠BAE=∠DAE ,可得∠BAE=∠BEA ,得AB=BE ,由AB=AE ,得到△ABE 是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS 证明△ABC ≌△EAD ,①正确;由△FCD 与△ABD 等底(AB=CD )等高(AB 与CD 间的距离相等),得出S △FCD =S △ABD ,由△AEC 与△DEC 同底等高,所以S △AEC =S △DEC ,得出S △ABE =S △CEF .④正确.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE,BC=AD,∴△ABC≌△EAD(SAS);①正确;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),=S△ABC,∴S△FCD又∵△AEC与△DEC同底等高,=S△DEC,∴S△AEC∴S=S△CEF;④正确.△ABE若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不一定正确;∴①②④正确,故选:B.【点评】此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.15.如图所示,在▱ABCD中,BC=6,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F为边AD的中点,AG⊥BE于点G,若AG=2,则BE的长度是()A.10B.8C.4D.4【分析】根据平行四边形的性质和角平分线的定义可求出AB=AF,再根据等腰三角形的性质可求出BG的长,进而可求出BF的长,根据全等三角形的性质得到BF=EF,所以BE=2BF,问题得解.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABF=∠E,∵点F恰好为边AD的中点,∴AF=DF,在△ABF与△DEF中,,∴△ABF≌△DEF,∴BF=EF,BE=2BF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6,∵∠AFB=∠FBC,∵∠ABC的平分线与CD的延长线相交于点E,∴∠ABF=∠FBC,∴∠AFB=∠ABF,∴AB=AF,∵点F为AD边的中点,AG⊥BE.∴BG==,∴BF=2,∴BE=2BF=4.故选:C.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、角平分线的定义、等腰三角形的判定和性质、勾股定理的运用,题目的综合性较强,难度中等.16.如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3B.5C.2D.6.5【分析】根据作图过程可得得AE平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAE=∠DEA,证出AD=DE=5,即可得出CE的长.【解答】解:根据作图的方法得:AE平分∠DAB,∴∠DAE=∠EAB,∵四边形ABCD是平行四边形,∴DC∥AB,AD=BC=5,∴∠DEA=∠EAB,∴∠DAE=∠DEA,∴AD=DE=5,∴CE=DC﹣DE=8﹣5=3;【点评】此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AD=DE是解决问题的关键.17.如图,已知□ABCD的对角线AC、BD交于点O,DE平分∠ADC交BC于点E,交AC于点F,且∠BCD=60°,BC=2CD,连结OE.下列结论:①OE∥AB;=BD•CD;②S平行四边形ABCD③AO=2BO;=2S△EOF.④S△DOF其中成立的个数有()A.1个B.2个C.3个D.4个【分析】①证明BE=CE,OA=OC,根据三角形中位线定理可得结论正确;②证明BD⊥CD,可得结论正确;③设AB=x,分别表示OA和OB的长,可以作判断;④先根据平行线分线段成比例定理可得:DF=2EF,由同高三角形面积的比等于对应底边的比可作判断.【解答】解:①∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠ADC+∠BCD=180°,∵∠BCD=60°,∴∠ADC=120°,∵DE平分∠ADC,∴∠CDE=60°=∠BCD,∴△CDE是等边三角形,∴CE=CD,∵BC=2CD,∴BE=CE,∴OE∥AB;故①正确;②∵△DEC是等边三角形,∴∠DEC=60°=∠DBC+∠BDE,∵BE=EC=DE,∴∠DBC=∠BDE=30°,∴∠BDC=30°+60°=90°,∴BD⊥CD,∴S=BD•CD;平行四边形ABCD故②正确;③设AB=x,则AD=2x,则BD=x,∴OB=,由勾股定理得:AO==x,故③不正确;④∵AD∥EC,∴=,∴DF=2EF,=2S△EOF.∴S△DOF故④正确;故选:C.【点评】此题考查了平行线分线段成比例定理,平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE是等边三角形,OE 是△ABC的中位线是关键.18.如图,点P是▱ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S3=S2+S4②如果S4>S2,则S3>S1③若S3=2S1,则S4=2S2④若S1﹣S2=S3﹣S4,则P点一定在对角线BD上.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据平行四边形的对边相等可得AB=CD,AD=BC,设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4,然后利用三角形的面积公式列式整理即可判断出①正确;根据三角形的面积公式即可判断②③错误;根据已知进行变形,求出S1+S4=S2+S3=S△ABD=S△BDC=S平行四边形ABCD,即可判断④.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4,则S1=ABh1,S2=BCh2,S3=CDh3,S4=ADh4,∵ABh1+CDh3=AB•h AB,BCh2+ADh4=C•h BC,又∵S=AB•h AB=BC•h BC平行四边形ABCD∴S2+S4=S1+S3,故①正确;根据S4>S2只能判断h4>h2,不能判断h3>h1,即不能得出S3>S1,∴②错误;根据S3=2S1,能得出h3=2h1,不能推出h4=2h2,即不能推出S4=2S2,∴③错误;∵S1﹣S2=S3﹣S4,∴S1+S4=22+S3=S平行四边形ABCD,此时S1+S4=S2+S3=S△ABD=S△BDC=S平行四边形ABCD,即P点一定在对角线BD上,∴④正确;故选:B.【点评】本题考查了平行四边形的性质,三角形的面积,以及平行四边形对角线上点的判定的应用,用平行四边形的面积表示出相对的两个三角形的面积的和是解题的关键,也是本题的难点.19.如图,E 是平行四边形内任一点,若S 平行四边形ABCD =8,则图中阴影部分的面积是( )A .3B .4C .5D .6【分析】根据三角形面积公式可知,图中阴影部分面积等于平行四边形面积的一半.所以S 阴影=S 四边形ABCD .【解答】解:设两个阴影部分三角形的底为AD ,CB ,高分别为h 1,h 2,则h 1+h 2为平行四边形的高,∴S △EAD +S △ECB=AD•h 1+CB•h 2=AD (h 1+h 2)=S 四边形ABCD=4.故选:B .【点评】本题主要考查了三角形的面积公式和平行四边形的性质(平行四边形的两组对边分别相等).要求能灵活的运用等量代换找到需要的关系.20.如图,在平行四边形ABCD 中,DE 平分∠ADC 交BC 于E ,AF ⊥DE ,垂足为F ,已知∠DAF=50°,则∠B=( )A .50°B .40°C .80°D .100°【分析】由平行四边形的性质及角平分线的性质可得∠ADC 的大小,进而可求解∠B 的度数.【解答】解:在Rt △ADF 中,∵∠DAF=50°,∴∠ADE=40°,又∵DE平分∠ADC,∴∠ADC=80°,∴∠B=∠ADC=80°.故选:C.【点评】本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.21.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是5+;④四边形ACEB的面积是16.则以上结论正确的是()A.①②B.②④C.①②③D.①③④【分析】证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【解答】解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC∥DE,∵CE∥AD,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③错误;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:A.【点评】本题主要考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.等腰三角形的判定方法,属于中考常考题型.22.如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD 于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD= BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是()A.1B.2C.3D.4【分析】通过判断△BDE为等腰直角三角形,得到BE=DE,BD=BE,则可对①进行判断;根据等角的余角相等得到∠BHE=∠C,再根据平行四边形的性质得到∠A=∠C,则∠A=∠BHE,于是可对②进行判断;根据“AAS”可证明△BEH≌△DEC,得到BH=CD,接着由平行四边形的性质得AB=CD,则AB=BH,运算可对③进行判断;因为∠BDH=90°+∠EBH,∠BDG=90°+∠BDE,由∠BDE>∠EBH,推出∠BDG>∠BHD,所以④错误;【解答】解:∵∠DBC=45°,DE⊥BC,∴△BDE为等腰直角三角形,∴BE=DE,BD=BE,所以①正确;∵BF⊥CD,∴∠C+∠CBF=90°,而∠BHE+∠CBF=90°,∴∠BHE=∠C,∵四边形ABCD为平行四边形,∴∠A=∠C,∴∠A=∠BHE,所以②正确;在△BEH和△DEC中,∴△BEH≌△DEC,∴BH=CD,∵四边形ABCD为平行四边形,∴AB=CD,∴AB=BH,所以③正确;∵∠BDH=90°+∠EBH,∠BDG=90°+∠BDE,∵∠BDE>∠EBH,∴∠BDG>∠BHD,所以④错误;故选:C.。

八年级数学下册《第六章-平行四边形的性质》练习题-附答案(北师大版)

八年级数学下册《第六章-平行四边形的性质》练习题-附答案(北师大版)

八年级数学下册《第六章平行四边形的性质》练习题-附答案(北师大版)一、选择题1. 下列说法正确的是( )A. 平行四边形是轴对称图形B. 平行四边形的邻边相等C. 平行四边形的对角线互相垂直D. 平行四边形的对角线互相平分2. 在▱ABCD中,∠A:∠B:∠C:∠D的值可能是.( )A. 3:1:1:3B. 3:3:1:1C. 1:3:3:1D. 1:3:1:33. 在▱ABCD中AD=3,AB=2则它的周长是.( )A. 10B. 6C. 5D. 44. 如图,▱ABCD中CE⊥AB,E为垂足,如果∠D=65°,则∠BCE等于( )A. 25°B. 30°C. 35°D. 55°5. 如图,在▱ABCD中,AC与BD相交于点O,则下列结论中不一定成立的是( )A. AB=CDB. AO=COC. AC=BDD. BO=DO6. 如图,在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为( )A. 26cmB. 24cmC. 20cmD. 18cm7. 如图,平行四边形的两条对角线将平行四边形的面积分成四部分,分别记作S1,S2,S3,S4,下列关系式成立的是.( )A. S1<S2<S3<S4B. S1=S2=S3=S4C. S1+S2>S3+S4D. S1=S3<S2=S48. 如图,在▱ABCD中AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为.( )D. 2A. 4B. 3C. 529. 如图,在▱ABCD中,下列结论错误的是.( )A. ∠ABD=∠BDCB. ∠BAD=∠BCDC. AB=CDD. AB=BC10. 如图,点P为▱ABCD外一点,连接PA、PB、PC、PD若△APB的面积为18,△APD的面积为5,则△APC的面积为( )A. 10B. 13C. 18D. 20二、填空题11. 两组对边分别平行的四边形是,一组对边平行,另一组对边不平行的四边形叫做.12. 平行四边形是图形,两条对角线的交点是它的.13. 如图,▱ABCD的周长是30,AC,BD相交于点O,△OAB的周长比△OBC的周长大3,则AB的长为.14. 如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点M,N.若△CON 的面积为2,△DOM的面积为4,则▱ABCD的面积为.15. 如图,在□ABCD中AD=5,AB=3,BE平分∠ABC,则DE=_________.16. □ABCD的对角线相交于点O,S△AOB=2cm2则S □ ABCD=_________cm2.17. 如图,已知▱ABCD的对角线BD=4cm,将▱ABCD绕其对称中心O旋转180∘,则点D所转过的路径长为.(结果保留π)18. 如图,已知点O是▱ABCD的对角线的交点AC=38cm,BD=24cm,AD=14cm则△OBC的周长等于cm19. 如图,▱ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么▱ABCD的周长是.20. 如图,在▱ABCD中,点E,F分别在边AB、AD上,将△AEF沿EF折叠,点A恰好落在BC边上的点G处.若∠A=45°,AB=6√ 2,5BE=AE则AF长度为______.三、解答题21. 如图,小斌用一根50m长的绳子围成一个平行四边形场地,其中一边长16m,求其他三边的长度.22.如图,在▱ABCD中,对角线AC与BD相交于点O,BD⊥AD求OB的长度及▱ABCD的面积.23. 如图,四边形ABCD是平行四边形.求:(1)∠ADC和∠BCD的度数;(2)AB和BC的长度.24. 如图,▱ABCD中,O为对角线AC和BD的交点BE⊥AC,DF⊥AC垂足分别为E、F求证:OE=OF.25. 如图,在▱ABCD中EF//BC,GH//AB,EF,GH相交于点O.试找出图中的平行四边形,与你的同伴比一比,看看谁找出的多.参考答案1、D2、D3、A4、A5、C6、D7、B8、B9、D10、B11、平行四边形梯形12、中心对称对称中心13、914、2415、216、817、2π18、45.19、1620、15221、解:∵四边形ABCD是平行四边形∴AB=CD∵周长为50∴AB+BC=25∵一边长为16m∴另一边长为9m∴其他三边的长为9m16m9m.22、解:由题可得BD⊥AD AB=10∴BD=√ AB2−AD2=√ 102−82=6.∵四边形ABCD是平行四边形∴OB=12BD=3∴S▱ABCD=6×8=48.23、解:(1)∵四边形ABCD是平行四边形∴∠ADC=∠B=56°∴∠BCD=124°(2)∵四边形ABCD是平行四边形∴AB=CD=25BC=AD=30.24、证明:OE=OF.理由如下:∵四边形ABCD是平行四边形∴OB=OD.又∵BE⊥AC∴∠OFD=∠OEB.又∠DOF=∠BOE∴△BOE≌△DOF.∴OE=OF.25、解:∵四边形ABCD是平行四边形∴AB//CD∵AD//EF∴AB//GH//CD∴平行四边形有:▱ABCD,▱ABHG,▱CDGH,▱BCFE,▱ADFE,▱AGOE,▱BEOH,▱OFCH,▱OGDF共9个.即共有9个平行四边形.。

2021年华师大版八年级数学上册 第16.1 平行四边形的性质同步练习题及答案 (12)

2021年华师大版八年级数学上册 第16.1 平行四边形的性质同步练习题及答案 (12)

E FA B C D 16.1 平行四边形第1题. 在平行四边形ABCD 中,∠B =110°,延长AD 至F ,延长CD 至E ,连接EF ,则∠E +∠F =( )A.110° B. 30° C. 50° D.70°答案:D第2题. 如图,四边形ABCD 是平行四边形.对角线AC 、BD 交于点O ,过点O 画直线EF ,分别交AD 、BC 于点E 、F .求证:OE OF =.答案:证明:∵四边形ABCD 是平行四边形AD BC ∴∥,AO CO = EAO FCO ∠=∠∴AOE COF ∠=∠∵ ∴△AOE ≌△COF OE OF =∴第3题. 如图3,E F 、是ABCD 对角线AC 上两点,且AE CF =,连结DE 、BF ,则图中共有全等三角形的对数是A.1对 B.2对 C.3对 D.4对答案:C第4题. 如图90ABC ∠=,45A ∠=,2cm AB =,则ABCD 的面积是_________.F (第2题图)图3 BCD A答案:24cm第5题. _______________是平行四边形.答案:两组对边分别平行的四边形第6题. 如图AC 是ABCD 的对角线,ABC △按什么方向,平移多少距离,才能到达DCE △的位置,这时四边形ACED 是怎样的四边形?答案:由ABC △得到DCF △,平移方向是A D →.平移距离是线段AD 的长,四边形ACED 是平行四边形.第7题. 请列举出3个我们常见或常用的平行四边形________ __________ _________.答案:防盗网,篱笆,桌面第8题. 平行四边形ABCD 中,AB ________CD 且AB _________CD ,BC =_________.答案:∥ = AD第9题. ABCD 中,2A B ∠=∠,则平行四边形各内角度数为__________ .答案:120,60,120,60第10题. ABCD 的周长为30cm ,且23AB BC =∶∶,那么AB =_______cm .答案:6A DC E B第11题. 如图所示,在ABCD 中AE BC ⊥,AF CD ⊥,垂足分别是E F ,,60B ∠=,2cm BE =,3cm DF =,则CE =__________,CF =____________ .答案:4cm ,1cm第12题. 已知ABCD 中的对角线AC BD ,相交于O ,24AC =,38BD =,15AD =,则BOC △的周长=____________.答案:46第13题. 一个平行四边形的周长为70cm ,两组对边之间的距离为10cm 和15cm ,则平行四边形的各边长为_______________.答案:21cm ,14cm ,21cm ,14cm第14题. 平行四边形两邻边分别是4和6,其中一边上的高是3,则平行四边形的面积是__________.答案:12或18第15题. ABCD 中,对角线AC BD ,相交于点O ,6cm AB =,AOB △的周长比BOC △的周长少2cm ,则ABCD 的周长为_____________.答案:28cm第16题. 平行四边形是中心对称图形,其对称中心是_______________.答案:对角线的交点第17题. 在ABCD 中,A ∠的平分线分BC 成4cm 和3cm 两条线段,则ABCD 的周长为__________. A F C E B答案:20cm 或22cm第18题. 如图在ABCD 中,对角线AC ,BD 相交于点O ,则ABO S =△____ ____=__________=___ ______ ABD S △=_____ ___=__ ______=_________ _.答案:BCO S △,CDO S △,ADO S △;ABC S △,BCD S △,ACD S △.第19题. 如图,12l l ∥,AB CD ∥,则下列结论错误的是( )A.AB CD = B.CE FG =C.A B ,两点间距离就是线段AB 的长度D.1l 与2l 之间的距离就是线段CD 的长度答案:D第20题. 在ABCD 中,AB C D ∠∠∠∠∶∶∶的值可以是( ) A.1234∶∶∶ B.1221∶∶∶ C.2211∶∶∶ D.2121∶∶∶答案:DA B CD O A C F1l 2lG E D B第21题. 平行四边形的一条对角线与一边垂直且此对角线为另一边的一半,则此平行四边形两邻角之比为( )A.12∶ B.13∶ C.14∶ D.15∶答案:D第22题. 直线12l l ∥,在1l 上有两定点A B ,,线段AB CD =,如果CD 在直线2l 上作平行移动(左右不限)那么四边形ABCD 的面积( )A.会变大 B.会变小 C.不会变 D.不能确定答案:C第23题. 以三角形的三个顶角为其中三个顶点作形状不同的平行四边形,一共可以作出( )A.1个 B.2个 C.3个 D.4个答案:C第24题. 到直线l 的距离相等的两点A B ,,下列说法正确的是( )A.AB l ∥ B.l 平分AB C.AB l ∥或l 平分AB D.无法确定答案:C第25题. 如图所示ABCD 中,AE 平分BAD ∠,BE 平分ABC ∠,且AE BE ,相交于CD 上一点E .试说明:AE BE ⊥.答案: 四边形ABCD 为平行四边形,180DAB ABC ∴∠+∠=.又AE ,BE 分别平分DAB ∠,ABC ∠, D E C B A12BAE DAB ∴∠=∠,12ABE ABC ∠=∠, 1()902BAE ABE OAB ABC ∴∠+∠=∠+∠=. 180AEB EAB EBA ∠+∠+∠=,90AEB ∴∠=.AE BE ∴⊥.第26题. 如图ABCD 中,过对角线交点O 作线段EF 交AD 于E ,交BC 于F ,若4AB =,5CB =, 1.5OE =.求:四边形EFCD 的周长.答案:12第27题. 如图,四边形ABCD 中,ABC ADC ∠=∠,AD BD ⊥,BC BD ⊥.试说明:四边形ABCD 是平行四边形.答案:AD BD ⊥,BC BD ⊥,ADB DBC ∴∠=∠,AD BC ∴∥. 又ABC ADC ∠=∠,ABD CDB ∴∠=∠,DC AB ∴∥, ∴四边形ABCD 是平行四边形.第28题. 如图ABCD 中,ABC ∠,CDA ∠的平分线分别交AD ,CB 的延长线于E F ,.试说明:DE BF =.A E C D OF BE G D C BF HA答案:利用等腰三角形性质第29题. 如图,在ABCD 中,2AD AB =,延长AB 到F ,使BF AB =,延长BA 到E ,使AE AB =,连结CE ,DF ,交AD ,BC 于G H ,.试说明:CE DF ⊥.答案:提示:AFD △为等腰三角形,EAG CDG △≌△,DGC △为等腰三角形.第30题. 下列条件中,不能判定四边形是平行四边形的是( )A.一组对边平行,另一组对边相等B.一组对边平行且相等C.两组对边分别平行D.对角线互相平分答案:AF。

华东师大版八年级下册《18.1平行四边形的性质》同步测试(含解析)

华东师大版八年级下册《18.1平行四边形的性质》同步测试(含解析)

《18.1平行四边形的性质》同步测试一、选择(每小题3分,共24分)1.已知□ABCD中,∠A+∠C=200°,则∠B的度数是()A. 100°B. 160°C. 80°D. 60°分析:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∵∠A+∠C=200°,∴∠A=100°,∴∠B=180°﹣∠A=80°.故选C.2.平行四边形ABCD中,对角线AC、BD交于点O(如图),则图中全等三角形的对数为()A.2B.3C. 4D.5分析:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC;OD=OB,OA=OC;∵OD=OB,OA=OC,∠AOD=∠BOC;∴△AOD≌△COB(SAS);①同理可得出△AOB≌△COD(SAS);②∵BC=AD,CD=AB,BD=BD;∴△ABD≌△CDB(SSS);③同理可得:△ACD≌△CAB(SSS).④因此本题共有4对全等三角形,故选C.3.在□ABCD中,∠A:∠B:∠C:∠D的值可以是()A. 1:2:3:4B. 1:2:1:2C. 1:1:2:2D. 1:2:2:1分析:由于平行四边形对角相等,所以对角的比值数应该相等,其中A,C,D都不满足,只有B满足.故选B.4.若平行四边形的两条对角线长是8cm和16cm,则这个平行四边形的一边长可以是()A. 3cmB. 4cmC. 8cmD. 12cm分析:∵平行四边形的两条对角线长是8cm和16cm,∴平行四边形两条对角线的一半分别为4cm,8cm,设另一边长为x,4<x<12,各选项中在这个范围内的有8cm.故选C.5.如图,□ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8B.9C.10D.11分析:∵□ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.6.如图,在平面直角坐标系中,□AOCB的顶点C的坐标为(3,4),点A的坐标为(6,0),则顶点B的坐标为()A. (6,4)B. (7,4)C. (8,4)D. (9,4)分析:∵四边形ABCD是平行四边形,∴BC=AO,∵点A的坐标为(6,0),∴CB=AO=6,∵C的坐标为(3,4),∴点B的坐标为(9,4),故选:D.7.如图,□ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE 的周长为()A. 4cmB. 6cmC. 8cmD. 10cm分析:∵四边形ABCD为平行四边形,∴OA=OC;∵OE⊥AC,∴AE=EC;∵□ABCD的周长为16cm,∴CD+AD=8cm;∴△DCE的周长=CD+CE+DE=CD+AD=8cm.故选:C.8.如图,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,且□ABCD 的周长为40,则□ABCD的面积为()A. 24B. 36C. 40D. 48分析:∵□ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S□ABCD=4BC=6CD,整理得,BC=CD②,联立①②解得,CD=8,∴□ABCD的面积=AF•CD=6CD=6×8=48.故选:D.二、填空(每小题4分,共24分)9.如图,在□ABCD中,AD=12,AC=8,BD=16.△BOC的周长是.分析:∵在□ABCD中,对角线AC和BD交于点O,AC=8,BD=16,AD=12,∴AO=CO=AC=4,BO=BD=8,AD=BC=12,∴△BOC的周长是:BO+CO+BC=4+8+12=24.故答案为:24.10.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=115°,则∠BCE=.分析:∵四边形ABCD是平行四边形,∴∠B=180°﹣∠A=180°﹣115°=65°,∵CE⊥AB,∴∠BCE=90°﹣∠B=25°.故答案为:25°.11.如图,在□ABCD中,∠ABC的平分线交AD于点E,AB=4,BC=6,则DE的长为.分析:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC=6,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AB=AE=4,∴ED=AD﹣AE=BC﹣AE=6﹣4=2.故答案为:2.12.用平行四边形纸条沿对边AB、CD边上的点E、F所在的直线折成V字形图案,已知图中∠1=68°,∠2的度数为.分析:根据题意可得:∠3=∠1=68°,∵∠1+∠2+∠3=180°,∴∠2=44°.故答案为:44°.13.如图,在△ABC中,AB=AC=5,D、E、F分别是BC、AC、AB边上的点,四边形AFDE 是平行四边形,那么四边形AFDE的周长是.分析:∵四边形AFDE是平行四边形,∴DF∥AC,DE∥AB,∵AB=AC=5,∴∠B=∠C,由DF∥AC,得∠FDB=∠C=∠B,∴FD=FB,同理,得DE=EC.∴四边形AFDE的周长=AF+AE+FD+DE=AF+FB+AE+EC=AB+AC=5+5=10.故答案为10.14.如图,在□ABCD中,∠B=80°,∠ADC的角平分线DE与BC交于点E.若BE=CE,则∠DAE=度.分析:∵在□ABCD中,∠B=80°,∴AD∥BC,AB=CD,∴∠ADE=∠CED,∵DE是∠ADC的角平分线,∴∠ADE=∠CDE,∴∠CED=∠CDE,∴CE=CD,∵BE=CE,∴AB=BE,∴∠AEB=∠BAE=50°,∴∠DAE=∠AEB=50°.故答案为:50.三、解答(5个小题,共52分)15.在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,A B′和CD相交于点O.求证:OA=OC.分析:由平行四边形的性质与折叠的性质可得∠DCA=∠B′AC,则可证得OA=OC.证明:∵△AB′C是由△ABC沿AC对折得到的图形,∴∠BAC=∠B′AC,∵在平行四边形ABCD中,AB∥CD,∴∠BAC=∠DCA,∴∠DCA=∠B′AC,∴OA=OC.16.如图,已知□ABCD中,F是BC边的中点,连接DF并延长,交AB的延长线于点E.求证:AB=BE.分析:根据平行四边形性质可得到△CDF≌△BEF的条件,从而推出BE=DC.证明:∵F是BC边的中点,∴BF=CF,∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠C=∠FBE,∠CDF=∠E,∵在△CDF和△BEF中∴△CDF≌△BEF(AAS),∴BE=DC,∵AB=DC,∴AB=BE.17.如图,在□ABCD的形外分别作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,连接AC、EF.在图中找一个与△FAE全等的三角形,并加以证明.分析:由平行四边形对边相等、邻角互补,及等腰直角三角形两腰相等,即可证得△FAE≌△BAC.解:△FAE≌△BAC或△FAE≌△CDA.理由:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠BAD+∠ABC=180°,∵△ABF和△ADE是等腰直角三角形,∴AF=AB,AE=AD,∠BAF=∠DAE=90°,∴AE=BC,∠FAE+∠BAD=360°﹣∠BAF﹣∠DAE=180°,∴∠FAE=∠ABC,在△FAE和△ABC中,,∴△FAE≌△ABC(SAS).18.如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.分析:(1)根据平行四边形邻角互补及角平分线的性质,在△APB中求出∠APB的度数;(2)根据平行四边形对边平行及角平分线可求出AD=DP,BC=PC,再利用勾股定理求出△APB的周长.解:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;(2)∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5cm同理:PC=CB=5cm即AB=DC=DP+PC=10cm,在Rt△APB中,AB=10cm,AP=8cm,∴BP==6(cm)∴△APB的周长是6+8+10=24(cm).19.如图,在平行四边形ABCD中,∠B=∠AFE,EA是∠BEF的角平分线.求证:(1)△ABE≌△AFE;(2)∠FAD=∠CDE.分析:(1)根据角平分线和∠B=∠AFE,公共边AE,利用AAS可证明△ABE≌△AFE;(2)利用AAS可证明△AFD≌△DCE,进而得到∠FAD=∠CDE.证明:(1)∵EA是∠BEF的角平分线,∴∠1=∠2,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS);(2)∵△ABE≌△AFE,∴AB=AF,∵四边形ABCD是平行四边形,∴AB=CD,AD∥CB,AB∥CD,∴AF=CD,∠ADF=∠DEC,∠B+∠C=180°,∵∠B=∠AFE,∠AFE+∠AFD=180°,∴∠AFD=∠C,在△AFD和△DCE中,,∴△AFD≌△DCE(AAS),∴∠FAD=∠CDE.附加题:20.(1)如图1,点P是平行四边形ABCD对角线AC、BD的交点,若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4则S1、S2、S3、S4的关系为S1=S2=S3=S4.请你说明理由;(2)变式1:如图2,点P是平行四边形ABCD内一点,连接PA、PB、PC、PD.若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,则S1、S2、S3、S4的关系为;(3)变式2:如图3,点P是四边形ABCD对角线AC、BD的交点若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,则S1、S2、S3、S4的关系为.请你说明理由.分析:(1)根据平行四边形的对角相互相平分与如果三角形等底等高面积相同解答;(2)可以根据△ABD≌△CDB求得;(3)由△ABP中AP边上的高与△BCP中CP边上的高相同与△PAD中AP边上的高与△PCD中CP边上的高相同,可得即,即,所以,即S1•S3=S2•S4.解:(1)∵四边形ABCD是平行四边形,∴AP=CP,又∵△ABP中AP边上的高与△BCP中CP边上的高相同,∴S△PAB=S△PBC,即S1=S2,同理可证S2=S3S3=S4,∴S1=S2=S3=S4;(2)S1+S3=S2+S4;(3)S1•S3=S2•S4;理由:∵△ABP中AP边上的高与△BCP中CP边上的高相同,∴即,∵△PAD 中AP 边上的高与△PCD 中CP 边上的高相同,∴即,∴,∴S 1•S 3=S 2•S 4.方法点津:注意:等底等高的两个三角形面积相等,等底的两个三角形的面积比等于高的比,等高的两个三角形面积的比等于底的比.。

北师大版八下数学《平行四边形的性质》同步练习2(含答案)

北师大版八下数学《平行四边形的性质》同步练习2(含答案)

6.1平行四边形的性质一.填空题:(每题4分,共32分)1.已知ABCD Y 中,AB =8cm ,BC =7cm ,则此平行四边形的周长为 cm .2.已知ABCD Y 中,100B D ∠+∠=o ,则=∠A ο.3.已知平行四边形的周长为20cm ,一条对角线把它分成两个周长都是18cm 的三角形,则这条对角线长为 cm .4.如图,在ABCD Y 中,已知AB 、BC 、CD 三条边长分别为()()21,3,13x cm x cm cm +-,则 ABCD Y 的周长为 cm .(第4题) (第5题) (第6题)5.如图,已知直线a ∥b ,点A 、点C 分别在直线a 、b 上,且AB ⊥b ,CD ⊥a ,垂足分别为B 、D ,有以下四种说法:①点A 到直线b 的距离为线段AB 的长;②点D 到直线b 的距离为线段CD 的长;③a 、b 两直线之间距离为线段AB 的长;④a 、b 两直线之间距离为线段CD 的长;⑤AB=CD ,其中正确的有(只填相应的序号) .6.如图,点O 是ABCD Y 的对角线AC 、BD 的交点,则图中全等的三角形共有 对.7.如图,AE ∥BD ,AE =5,BD =8,ABD ∆的面积为16,则ACE ∆的面积为 .(第7题) (第8题) (第9题) 8.如图,在ABCD Y 中,AC 、BD 相交于点O ,若BOC ∆的面积为3,则平行四边形ABCD 的面积为 . 二.选择题:(每题4分,共24分)9.如图,在ABCD Y 中,下列各式不一定正确的是( )ABECABCOabAB CDABC DA BCDOA.12180∠+∠=oB.23180∠+∠=oC.34180∠+∠=oD.24180∠+∠=o 10.有下列说法:①平行四边形既是中心对称图形,又是轴对称图形;②平行四边形的对角线一定相等;③平行四边形相邻的两角一定互补;④平行四边形的对角线一定互相平分.其中,说法正确的有( )A.1种B.2种C.3种D.4种 11.在ABCD Y 中,D C B A ∠∠∠∠:::的值可以是( )A.1:2:3:4B.1:1:2:2C.1:2:1:2D.2:3:3:2 12.如图,ABCD Y 中,AF 垂直对角线BD 于点E ,交BC 于点F ,若ο30=∠ADE ,则AFB ∠的度数是 ( ) A.ο35 B.ο55 C.ο70 D.ο60(第12题) 13.在给定的条件中,能画出平行四边形的是 ( ) A.以60cm 为一条对角线,20cm 、34cm 为两条邻边 B.以6cm 、10cm 为对角线,8cm 为一边 C.以20cm 、36cm 为对角线,22cm 为一边 D.以6cm 为一条对角线,3cm 、10cm 为两条邻边 14.如图,E 是ABCD Y 的一边AD 上任一点,若EBC ∆的 面积为1S ,ABCD Y 的面积为S ,则下列S 与1S 的大小关系中正确的是 ( ) (第14题) A.112S S = B.112S S < C.112S S > D.无法确定S 与1S 的大小关系 三.解答题:(第15、16每题10分,第17题12分,共32分)15.如图,在ABCD Y 中,点E 是BC 边上的一点,且AB=BE ,AE 的延长线交DC的延长线于点F ,若ο62=∠F ,试求ABCD Y 的各个内角的度数.(第15题)ABCDE1SAE FBDCA BDFEC16.如图, 已知ABCD Y 的周长为32cm ,AC 、BD 交于点O ,BOC ∆的周长比AOB ∆的周长多4cm ,试求AB 的长.(第16题)17.已知ABCD Y 对角线AC 平分DAB ∠,请问对角线AC 、BD 是否互相垂直平分?并说明理由.18.在ABCD Y 中,一个角的平分线把一条边分成3cm 和4cm 的两部分,试求ABCD Y 的周长.四.探索题:(共12分)19.如图,ABCD Y 中,BE 平分ABC ∠,若AB =6cm ,BC=10cm . 试求:(1)ABCD Y 的周长;(2)边DE 的长. (第19题)ABCDOABCDE备选题:20.如图,已知ABCD Y 的周长为12cm ,对角线AC 、BD 相交于点O ,且BD =4cm ,AOB ∆与BOC ∆的周长之和为15cm ,试求对角线AC 的长.(第20题)21.如图,在ABCD Y 中,点E 是AB 边的中点,点M 是CD 边(除端点C 、D 外)上的任意一点,请问EBM ∆与ABC ∆的面积之间有什么关系,并说明理由.(第21题)ABCDOABDEM参考答案1.30.2.130.3.8.4.32cm .提示:在ABCD Y 中,由AB =CD ,即2113x +=,解得6x =,所以ABCD Y 的周长为()()2213332.AB BC +=⨯+=5.①②③④⑤.6.4.提示:它们是,,,.ABO CDO AOD COB ABC CDA ABD CDB ∆≅∆∆≅∆∆≅∆∆≅∆7.10.提示:设AE 与BD 之间的距离为h ,则116,2ABD S BD h ∆=⋅=解得4h =.所以110.2ACE S AE h ∆=⋅= 8.12.提示:由已知可说明,,,AOB BOC COD DOA ∆∆∆∆的面积相等, 所以44312ABCD BOC S S ∆==⨯=Y . 9.D. 10.B. 11.C. 12.D.13.C.提示:解答本题的依据是三角形的三边关系,即“三角形的任何两边的和大于第三边” .当两邻边与一条对角线构成三角形时,才能画出平行四边形,因此,A 、D 选项不正确;同时,两条对角线各取一半与一边构成三角形时, 才能画出平行四边形,因此B 选项不正确.只有选C.14.A.提示:过E 作EH BC ⊥,垂足为H ,则EH 既是EBC ∆的BC 边上的高,也是ABCD Y 中BC 边上的高,又1,2EBC ABCD S BC EH S BC EH ∆=⋅=⋅Y ,所以112S S =,选A.15.因为四边形ABCD 是平行四边形,所以AB ∥DC ,所以ο62=∠=∠F BAE .在ABE ∆中,由AB=BE ,可得ο62=∠=∠BAE BEA ,从而()18056B BEA BAE ∠=-∠+∠=o o .根据平行四边形对角相等,邻角互补,可得ο56=∠=∠B D ,οο124180=∠-=∠=∠B BCD BAD .16.由ABCD Y 的周长为32cm ,可得2(AB+BC )=32,即 AB+BC=16 ① 又因为平行四边形的对角线互相平分,所以OA=OC .又BOC ∆的周长比AOB ∆的周长多4cm ,所以(BC+OC+OB )-(AB+OA+OB )=4, 从而有 BC -AB=4 ② 由①、②,得 AB =6cm . 17.AC 、BD 互相垂直平分.理由:如图,由已知AC 平分DAB ∠,所以DAC BAC ∠=∠.又ABCD Y 中AD ∥BC ,所以ACB DAC ∠=∠.从而有ACB BAC ∠=∠,所以AB=BC . 因为平行四边形的对角线互相平分,所以OA=OC .ABCDO在等腰ABC ∆中,由OA=OC ,根据等腰三角形的“三线合 一”,可得BD AC ⊥.18.如图,点E 把AD 分成了3cm 和4cm 的两条线段,应该有以下两种情况.本题应有两个解.因为四边形ABCD 是平行四边形,所以AD ∥BC , 所以∠AEB =∠EBC .因为BE 是∠ABC 的平分线,所以∠EBA =∠EBC .所以∠EBA =∠AEB ,所以AB =AE .(1)若AE =3cm ,则ED =4cm .所以AB=AE =3cm .所以CD=AB =3cm ,BC=AD =7cm .所以周长为()220AB BC cm +=.(2)若AE =4cm ,则ED =3cm ,仿照(1)可得周长为()=+BC AB 222cm . 所以ABCD Y 的周长为20cm 或22cm .19. (1)ABCD Y 的周长=2(AB +BC )=()=+⨯106232(cm ); (2)因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以ABE AEB EBC ABE ABC BE EBC AEB ∠=∠∠=∠∠∠=∠从而所以平分又因为,,., 所以AE=AB =6,所以DE=AD-AE=BC-AB =10-6=4(cm ).20.由ABCD Y 的周长是12cm ,可得()122=+BC AB ,即AB+BC =6.又因为四边形ABCD 是平行四边形,所以OB =221=BD .因为的周长与BOC AOB ∆∆之和为15,所以()5226152)(15,15)(=⨯--=-+-=+=+++++OB BC AB OC OA BC OC OB OB OA AB 从而,所以).(5cm AC = 21.过点M作从而的延长线于点交作过点的延长线于点或交,,,,H AB AB CH C F AB AB AB MF ⊥⊥D4cm3cmABCE4cm 3cmABCDE有MF=CH .因为点E 是AB 的中点,所以AB BE 21=.又EBM ∆的面积=,212121MF AB MF BE ⨯⨯=⨯⨯ ABC ∆的面积=,21CH AB ⨯⨯所以EBM ∆的面积是ABC ∆的面积的21.。

人教版数学八年级下册18.1.1 平行四边形的性质同步练习(解析版)

人教版数学八年级下册18.1.1  平行四边形的性质同步练习(解析版)

第十八章平行四边形 18.1 平行四边形 18.1.1 平行四边形的性质基础闯关全练1.如图18-1-1-1,如果AD ∥EF ∥BC ,AB ∥GH ∥CD ,EF 与GH 相交于点O ,那么图中的平行四边形一共有( )A .4个B .5个C .8个D .9个2.在平行四边形ABCD 中,如果∠A=55º,那么∠C 的度数是 ( )A .45ºB .55ºC .125ºD .145º3.如图18-1-1-2,在□ABCD 中,已知AC=4 cm ,若△ACD 的周长为13 cm ,则☐ABCD 的周长为( )A .26 cmB .24 cmC .20 cmD .18 cm4.如图18-1-1-3,在平行四边形ABCD 中,∠ADC 的平分线交BC 于点E .若∠CED=35º,则∠B 的度数为( )A .40ºB .50ºC .60ºD .70。

5.在平行四边形ABCD 中,已知∠A-∠B=60º,则∠C=________.6.如图18-1-1-4,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点,求证:∠ABF=∠CDE.7.如图18-1-1-5,l ₁∥l ₂,AB ⊥l ₂,DC ⊥l ₁,则下列结论:①AB ⊥l ₁;②AB ∥CD ;③AB=CD ;④AC=BD ,其中正确的个数是( )A .4B .3C .2D .18.如图18-1-1-6,在☐ABCD 中,D 是对角线AC ,BD 的交点,若△AOD 的面积是4,则☐ABCD 的面积是( )A .8B .12C .16D .20 能力提升全练1.如图18-1-1-7,在平行四边形ABCD 中,∠ABC 、∠BCD 的平分线分别交AD 于点E 、F ,且AD=8.EF=2,则AB 的长是( )A .3B .4C .5D .62.如图18-1-1-8,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,过点O 的直线分别交AD ,BC 于点M ,N ,若△CON 的面积为2,△DOM 的面积为4,则△AOB 的面积为_______.3.如图18-1-1-9①,☐ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AD 、BC 分别相交于点E 、F ,则OE=OF.若将EF 向两边延长与平行四边形的两对边的延长线分别相交(如图②和图③),OE 与OF 还相等吗?若相等,请你说明理由.三年模拟全练 一、选择题1.(2018黑龙江大庆肇源期末,3,★☆☆)如图18-1-1-10,在平行四边形ABCD 中,不一定成立的是 ( )①AO=CO ;②AC ⊥BD ;③AD ∥BC ;④∠CAB=∠CAD.A .①和④B .②和③C .③和④D .②和④2.如图18-1-1-11,☐ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E .AB=3.AC=2.BD=4,则AE 的长为( )A .23 B .23C .721D .7212 二、填空题3.如图18-1-1-12,在☐ABCD 中,∠A=130º,在边AD 上取一点E .使DE=DC ,则∠ECB=_______.三、解答题4.如图18-1-1-13,在平行四边形ABCD 中,∠BAD 的平分线AE 交CD 于点F ,交BC 的延长线于点E . (1)求证:BE=CD ;(2)连接BF,若BF⊥AE,∠BEA=60º,AB=4,求平行四边形ABCD的面积.五年中考全练一、选择题1.在☐ABCD中,若∠BAD与∠CDA的平分线交于点E,则△AED的形状是 ( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定2.如图18-1-1-14,将☐ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F.若∠ABD=48º,∠CFD=40º,则∠E为( )A.102º B.112º C.122º D.92º3.在☐ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为 ( )A.3 B.5 C.2或3 D.3或5二、填空题4.如图18-1-1-15,☐ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图18-1-1-16,在☐ABCD中,AB=10,AD=6,AC⊥BC,则BD=_______.三、解答题6.如图18-1-1-17,在☐ABCD中,点E,F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,求证:AG=CH.核心素养全练1.如图18-1-1-18,已知□ABCD.(1)试用三种不同的方法用一条直线MN将它分成面积相等的两部分;(保留作图痕迹,不写作法)(2)由上述方法,你能得到什么样的结论?(3)解决问题:兄弟俩分家,原来他们共同承包了一块平行四边形田地ABCD,现要拉一条直线将田地平均划分,在这块地里有一口井P,如图18-1-1-19所示,为了兄弟俩都能方便使用这口井,聪明的你能帮他们解决这个问题吗?(保留作图痕迹,不写作法)2.我们知道:平行四边形的面积=底边×底边上的高.如图18-1-1-20,四边形ABCD 是平行四边形,AD∥BC,AB∥CD,设它的面积为S:(1)如图①,点肼为AD上任意一点,则△BCM的面积S₁=_______S,△BCD的面积S₂与△BCM的面积S₁的数量关系是_______;(2)如图②,设AC、BD交于点D,则O为AC、BD的中点,试探究△AOB的面积与△COD 的面积之和S₃与平行四边形ABCD的面积S的数量关系,并说明理由:(3)如图③,点P为平行四边形ABCD内任意一点,记△PAB的面积为S′,△PCD的面积为S″,猜想S′、S″的和与S的数量关系:(4)如图④,点P为平行四边形ABCD内任意一点,△PAB的面积为3,△PBC的面积为7,求△PBD的面积.第十八章 平行四边形 18.1 平行四边形 18.1.1 平行四边形的性质 1.D根据平行四边形的定义,可知图中的平行四边形有☐AEOG,☐GOFD ,☐EBHO,☐OHCF,☐AEFD ,☐EBCF,☐ABHG,☐GHCD ,☐ABCD 共9个. 2.B ∵四边形ABCD 是平行四边形,∴∠A =∠C ,∵∠A=55º,∴∠C=55º. 3.D 根据平行四边形的两组对边分别相等,得在☐ABCD 中AB=CD,BC=AD.由C △ACD=AD+AC+CD=13 cm,AC=4 cm ,得AD+CD=9 cm,∴C ☐ABCD =2(AD+CD)=2×9=18 cm ,故选D.4.D 在□ABCD 中,AD ∥BC ,∠B=∠ADC,∴∠A DE =∠C ED=35º.又∵DE 平分∠A DC ,∴∠A DC=2∠A DE=70º,∴∠B =∠A DC=70º. 5.答案 120º解析如图所示,由平行四边形的邻角互补可知∠A +∠B =180º,又∠A -∠B =60º,所以∠A=120º,又因为平行四边形对角相等,所以∠C=∠A =120º.6.证明 ∵四边形ABCD 为平行四边形, ∴AB=CD,AD=BC,∠C=∠A ,∵E 、F 分别是边BC 、AD 的中点,∴CE=21BC,AF=21AD , ∴AF=CE,∴△ABF ≌△CDE(SAS),∴∠A BF=∠C DE. 7.A ①②③④全部正确,故选A .8.C 因为平行四边形对角线互相平分,所以BO=DO ,AO=CO ,则△ABO 与△ADO 是等底同高的三角形,所以面积相等,同理,△ABO 与△CBO 面积相等.因此△ABO ,△ADO ,△CDO ,△CBO 面积都相等,所以S ☐ABCD =4S △ADO =16.1.C ∵BE 是∠A BC 的平分线,∴∠A BE =∠EBC,∵四边形ABCD 是平行四边形,∴AD ∥BC,∴ ∠A EB=∠EBC ,∴∠A EB =∠A BE,∴AB=AE ,同理DF=DC .又平行四边形的对边相等, ∴AB=CD,故AE=DF.∴AE-EF=DF-EF,即AF=DE,∵AF+EF+DE=AD=8,∴ 2AF+EF=8, 又∵EF=2.∴AF=3,AB=AE=AF+EF=5. 2.答案6解析 ∵四边形ABCD 是平行四边形,∴AD ∥BC, OA=OC,OB=OD .∴∠CAD =∠A CB, ∵∠A OM =∠NOC,∴△AOM ≌△CON(ASA),∴S △AOM =S △CON =2,∴S △AOD =S △DOM +S △AOM =4+2=6.又∵△AOB 与△AOD 等底同高,∴S △AOB =S =6. 3.解析题图②中OE=OF.理由:在☐ABCD 中,AB ∥CD,OA=OC, ∴∠E=∠F,叉∵∠A OE=∠COF, ∴△AOF ≌△COF(AAS), ∴OE=OF. 题图③中OE=OF.理由:在☐ABCD 中,AD ∥BC,OA=OC, ∴∠E =∠F, 又∵∠A OE =∠C OF ,∴△AOE ≌△COF(AAS), ∴OE=OF. 一、选择题1.D ∵四边形ABCD 是平行四边形,∴AO=CO ,故①成立;AD ∥BC ,故③成立,利用排除法可得②与④不一定成立.故选D .2.D .∵四边形ABCD 是平行四边形,AC=2,BD=4, ∴AO=21AC=1.BO=21BD=2, ∵AB=3.∴AB ²+AO ²=(3)²+1²=2²=BO ², ∴∠B AC=90º,在Rt △BAC 中,BC=()7232222=+=+AC AB ,∴S △BAC =21•AB •AC=21•BC •AE, ∴3×2=7AE . ∴AE=7212.故选D . 二、填空题 3.答案 65º解析 因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠A +∠D=180º.因为∠A=130º,所以∠D =50º,因为DE=DC ,所以∠D EC =∠D CE 、由AD ∥BC 得∠D EC =∠B CE ,所以∠ECB =∠D EC =∠D CE=21(180º-∠D )=21×(180º-50º)=65º. 三、解答题4.解析(1)证明: ∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠D AE =∠E,∵∠B AD 的平分线AE 交CD 于点F ,交BC 的延长线于点E ,∴∠BAE=∠DAE ,∴∠E =∠B AE , ∴AB=BE,又在平行四边形ABCD 中,AB=CD,∴BE=CD.(2)由BE=CD=AB ,∠B EA=60º得△ABE 为等边三角形,∴AE=AB=4,又∵BF ⊥AE,∴AF=EF=2,根据勾股定理得BF=23,易证△ADF ≌△ECF ,∴S △AFD =S △ECF ,又S ☐ABCD =S 四边形ABCF+S △AFD ,S △ABE =S 四边形ABCF +S △CFE ,∴平行四边形ABCD 的面积等于△ABE 的面积,故S ☐ABCD =S△ABE=21AE •BF=21×4×23=43.一、选择题1.B ∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠B AD+∠A DC=180º,∵∠B AD 与∠C DA 的平分线交于点E ,∴∠EAD=21∠B AD, ∠EDA=21∠C DA ,∴∠EAD+∠EDA=21(∠B AD+∠C DA)=21×180º=90º, ∴∠A ED=90º,故△AED 是直角三角形.2.B 设∠A=∠E=x ,∵∠DBE =∠A BD=48º,∠B FE =∠D FC=40º,∴∠FBD=180º-x-48º=132º-x ,∴∠EBF =∠D BE-∠FBD=48º-(132º-x)=x-84º,又∠E+∠BFE+∠EBF=180º.即∠EBF=180º-∠E-∠BFE=180º-x-40º=140º-x, ∴x-84º=140º-x,∴x=112º.3.D 分两种情况讨论:(1)如图①,在□ABCD 中,BC ∥AD,∴∠D AE =∠A EB,∠A DF =∠D FC .∴AE 平分∠BAD 交BC 于点E,DF 平分∠A DC 交BC 于点F,∴∠BAE=∠D AE,∠A DF=∠C DF, ∴∠BAE=∠A EB, ∠C FD=∠C DF, ∴AB=BE,CF=CD.在□ABCD中 ,AB=CD,∴BC=BE+CF -EF=2AB-EF,即2AB-2=8,∴AB=5.(2)如图②,在☐ABCD中,BC∥AD,∴∠D AE=∠A EB,∠A DF=∠D FC,∵AE平分∠BAD交BC于点E,DF平分∠A DC交BC于点F, ∴∠BAE=∠DAE, ∠A DF=∠CDF,∴∠B AE=∠A EB,∠C FD=∠C DF,∴AB=BE,CF=CD.在☐ABCD中,AB=CD,∴BC=BE+CF+EF=2AB+EF,即2AB+2=8,∴AB=3.综上所述,AB的长为3或5.二、填空题4.答案14解析在☐ABCD中,BC=AD=6,OB=OD=21BD,OA=OC=21AC,且AC+BD=16,∴OB+OC=21(AC+BD)=8,∴△BOC的周长为OB+OC+BC=14.5.答案413解析过点D作DE⊥B C交BC的延长线于点E,∵四边形ABCD为平行四边形,∴AD=BC=6,∴AC⊥BC,∴DE=AC=226-10=8.∵BE=BC+CE=6+6=12,∴BD=22812+=413.三、解答题6.证明∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠A=∠C,∴∠F=∠E,∵BE=DF.∴AD+DF=CB+BE.即AF=CE,在△AGF和△CHE中,⎪⎩⎪⎨⎧E,∠=F∠,CE=AFC,∠=A∠∴△AGF≌△CHE(ASA),∴AG=CH.1.解析(1)作图如下.(2)过对角线交点的任意一条直线都能将平行四边形分成面积相等的两部分. (3)作图如下.2.解析(1)21;S ₁=S ₂,设在☐ABCD 中,BC 边上的高为h ₁, ∵S ☐ABCD =BC •h ₁=S,∴S △BCM =21BC •h ₁=21S,S △BCD =21BC •h ₁=21S, ∴S ₁=21S,S ₂=21S,∴S ₁=S ₂. (2)S ₃=21S .理由:∵O 为AC 、BD 的中点,∴S ₃=S △AOB +S △COD =21S △ABD +21S △BCD =21(S △ABD +S △BCD =21S. (3)S ′+S ″=21S .设在☐ABCD 中,CD 边上的高为h ₂,△ABP 中AB 边上的高为h ₃,△PCD 中CD 边上的高为h ₄,∵AB ∥CD,∴ h ₃+h ₄=h ₂,又AB=CD ,∴S △PAB +S △PCD )=21AB •h ₃+21CD •h ₄=21AB •(h ₃+h ₄)=21AB •h ₂=21S ,即S ′+S ″=21S . (4)易知S △PAB +S △PCD =21S=S △BCD , ∵S △PAB =3,S △PBC =7,∴S △PBD =S 四边形PBCD -S △BCD =S △PBC +S △PCD -S △BCD =7+(21S-3)-21S=7-3=4.。

精编浙教版八年级数学下册第四章平行四边形《4.2平行四边形及其性质》同步练习3课时(含答案)

精编浙教版八年级数学下册《4.2平行四边形及其性质》同步练习3课时(含答案)4.2平行四边形及其性质(1)A练就好基础基础达标1.已知在ABCD中,∠B+∠D=200°,则∠A的度数为(C) A.100°B.160°C.80°D.60°2.已知一个平行四边形两邻边的长分别为10和6,那么它的周长为(C)A.16 B.60 C.32 D.303.已知ABCD的周长为34 cm,两邻边之差为3 cm,则两邻边长分别为(A)A.10 cm,7 cm B.11 cm,6 cmC.12 cm,5 cm D.18.5 cm,15.5 cm4.如图所示,在ABCD中,已知AD=5 cm,AB=3 cm,AE平分∠BAD交BC边于点E,则EC等于(B)A.1 cm B.2 cmC.3 cm D.4 cm5.如ABCD中,EF∥AD,GH∥CD,EF,GH相交于点O,则图中的平行四边形有(A)A.9个B.8个C.6个D.4个6.平行四边形ABCD与等边△AEF如图放置,如果∠B=45°,则∠BAE的大小是(A)A.75°B.70°C.65°D.60°7.如图所示,已知在ABCD中,∠B=50°,依据尺规作图的痕迹,则∠DAE=__80°__.8.如图所示,ABCD 与DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为__25°__.9.如图所示,四边形ABCD 是平行四边形,且AB =10,AD =6,AC ⊥BC ,求AC 的长及ABCD 的面积.【答案】 AC 的长是8,ABCD 的面积是48.10.如图所示,已知在ABCD 中,F 是BC 边的中点,连结DF 并延长,交AB 的延长线于点E .求证:AB =BE .证明:∵F 是BC 边的中点,∴BF =CF .∵四边形ABCD 是平行四边形,∴AB =DC ,AB ∥CD ,∴∠C =∠FBE ,∠CDF =∠E .在△CDF 和△BEF 中,∵⎩⎪⎨⎪⎧∠C =∠FBE ,∠CDF =∠E ,CF =BF ,∴△CDF ≌△BEF (AAS ),∴CD =BE .∵AB =DC ,∴AB =BE .B 更上一层楼 能力提升11.下面图形是用木条钉成的支架,其中不容易变形的是( B )A B C D12.如图所示,在ABCD 中,延长边CD 到点E ,使CE =AD ,连结BE 交AD 于点F ,图中等腰三角形有( C )A.1个B.2个C.3个D.4个13.2017·乐山如图所示,延长ABCD的边AD到点F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A,E和C,F.求证:AE =CF.证明:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,AB=CD,∴∠ABE=∠CDF.又∵BE=AB,DF=DC,∴AB=BE=DC=DF,∴△ABE≌△CDF,∴AE=CF.14.在平行四边形ABCD中,点E在AD边上,连结BE,CE,EB 平分∠AEC.(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.解:(1)△BCE是等腰三角形.理由:∵四边形ABCD是平行四边形,∴BC∥AD,∴∠CBE=∠AEB.∵EB平分∠AEC,∴∠AEB=∠BEC,∴∠CBE=∠BEC,∴CB=CE,∴△CBE是等腰三角形.(2)∵四边形ABCD是平行四边形,∠A=90°,∴∠A=∠D=90°,BC=AD=5.在Rt△ECD中,∵∠D=90°,ED=AD-AE=4,EC=BC=5,∴AB=CD=EC2-ED2=52-42=3.在Rt△AEB中,∵∠A=90°,AB=3,AE=1,∴BE =AB 2+AE 2=32+12=10.C 开拓新思路 拓展创新15.如图所示,在平面直角坐标系中,有A (3,4),B (6,0),O (0,0)三点,以A ,B ,O 三点为顶点的平行四边形的另一个顶点D 的坐标为 (9,4)或(-3,4)或(3,-4) .16.如图,在ABCD 外分别作等腰直角△ABF 和等腰直角△ADE ,∠F AB =∠EAD =90°,连结AC ,EF .求证:AC=EF . 证明:在平行四边形ABCD 中,AB =CD ,∠BAD +∠ADC =180°,∵等腰直角△ABF 和等腰直角△ADE 中,AF =AB ,AE =AD , ∠F AB =∠EAD =90°,∴∠F AE +∠BAD =180°,∴由ABCD 得AB ∥CD ,∴∠CDA +∠BAD =180°,∴∠F AE =∠CDA .在△F AE 和△CDA 中,∵⎩⎪⎨⎪⎧AF =DC ,∠CDA =∠F AE ,AE =AD ,∴△F AE ≌△CDA (SAS ),∴AC =EF .4.2 平行四边形及其性质(2)A 练就好基础 基础达标1.平行线之间的距离是指( B )A .从一条直线上一点到另一条直线的垂线段B .从一条直线上一点到另一条直线的垂线段长度C .从一条直线上一点到另一条直线的垂线的长度D .从一条直线上一点到另一条直线上的一点间线段的长度2.如图所示,直线a ∥b ,另有一条直线l 与直线a ,b 交于点A ,B ,若将直线l作平移运动,则线段AB的长度(C)A.变大B.变小C.不变D.变大或变小要看直线l平移的方向3.如图所示,在ABCD中,若∠A=45°,AD=6,则AB与CD 之间的距离为(B)A.6B.3C.2D.第3题图第4题图4.如图所示,a∥b,AB∥CD,CE⊥b,FG⊥b,点E,G为垂足,则下列说法中错误的是(D)A.CE∥FGB.CE=FGC.A,B两点的距离就是线段AB的长D.直线a,b间的距离就是线段CD的长5.已知在ABCD中,AB=3,AD=2,∠B=150°,则ABCD的面积为(B)A.2 B.3 C.3 3 D.66.如图所示,AB∥CD,AB与CD之间的距离为6,∠BAC=60°,则AC=.6题图第7题图7.如图所示,直线AB∥CD,若△ACO的面积为3 cm2,则△BDO的面积为__3__cm 2.8.如图,ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,若AE =4,AF =6,平行四边形ABCD 的周长为40,则ABCD 的面积为__48__.9.如图所示,甲船从北岸码头A 向南行驶,航速为36 km/h ;乙船从南岸码头B 向北行驶,航速为27 km/h.两船均于7:15出发,两岸平行,水面宽为18.9 km ,求两船距离最近时的时刻.【答案】 两船距离最近时的时刻为7:33.10.如图,a ∥b ,点A ,E ,F 在直线a 上,点B, C ,D 在直线b 上,BC =EF .△ABC 与△DEF 的面积相等吗?为什么?第10题图 第10题答图解:△ABC 和△DEF 的面积相等.理由如下:如图,过点A 作AH 1⊥直线b ,垂足为点H 1,过点D 作DH 2⊥直线a ,垂足为点H 2.设△ABC 和△DEF 的面积分别为S 1和S 2,∴S 1=12BC ·AH 1, S 2=12EF ·DH 2.∵a ∥b ,AH 1⊥直线b, DH 2⊥直线a,∴AH 1=DH 2.又∵BC =EF ,∴S 1=S 2,即△ABC 与△DEF 的面积相等.B 更上一层楼 能力提升11.如图所示,已知AB ∥CD ,∠BAC 与∠ACD 的平分线交于点O ,OE ⊥AC 交AC 于点E ,且OE =5 cm.则直线AB 与CD 之间的距离等于( B )A .5 cmB .10 cmC .20 cmD .5 cm 或10 cm12.如图所示,在平面直角坐标系中,四边形OABC 是平行四边形,AB =2,OA =2,∠ (-3,1) .13.如图所示,在ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,△=1,则S =__4__.【解析】 ∵EF ∥BC ,GH ∥AB ,∴四边形HPFD ,BEPG ,AEPH ,CFPG 为平行四边形,∴S △PEB =S △BGP .同理可得S △PHD =S △DFP ,S △ABD =S △CDB .∴S △ABD -S △PEB -S △PHD =S △CDB -S △BGP -S △DFP ,即S 四边形AEPH =S 四边形PFCG .∵CG =2BG ,S △BPG =1,∴S 四边形AEPH =S 四边形PFCG =4×1=4.C 开拓新思路 拓展创新14.如图,在方格纸中,每个小正方形的边长都是1,ABCD 的四个顶点都在小方格的顶点上,按下列要求画一个面积与ABCD 面积相等的四边形,使它的顶点均在方格的顶点上.(四边形的边用实线表示,顶点写上规定的字母)(1)在图甲中画一个长方形EFGH .(2)MNPQ .解:15.如图1,已知直线m ∥n ,点A ,B 在直线n 上,点C ,P 在直线m 上.(1)写出图1中面积相等的各对三角形:________________________.(2)如图1,A,B,C为三个顶点,点P在直线m上移动到任一位置时,总有________与△ABC的面积相等.(3)如图2,一个五边形ABCDE,你能否过点E作一条直线交BC(或BC的延长线)于点M,使四边形ABME的面积等于五边形ABCDE的面积?解:(1)∵m∥n,∴点C,P到直线n的距离与点A,B到直线m的距离相等.又∵同底等高的三角形的面积相等,∴图1中符合条件的三角形有:△CAB与△P AB,△BCP与△APC,△ACO与△BOP.故答案为△CAB与△P AB,△BCP与△APC,△ACO与△BOP. (2)∵m∥n,∴点C,P到直线n的距离是相等的,∴△ABC与△P AB的公共边AB上的高相等,∴总有△P AB与△ABC的面积相等.故答案为△P AB.(3)连结EC,过点D作直线DM∥EC交BC延长线于点M,连结EM,线段EM所在的直线即为所求的直线.4.2平行四边形及其性质(3)A练就好基础基础达标1.如图所示,在平行四边形ABCD中,AC,BD相交于点O.若AC =6,则线段AO的长是(C)A.1 B.2 C.3 D.61题图2题图2.如图所示,平行四边形ABCD的周长是28 cm,△ABC的周长是22 cm,则AC的长是(D)A.14 cm B.12 cmC.10 cm D.8 cm3.ABCD的对角线AC,BD交于点O,若BC=5 cm,BD=8 cm,AC=4 cm,则△AOD的周长是(C)A.17 cm B.13 cm C.11 cm D.9 cm4.如图所示,在ABCD中,已知∠ADB=90°,AC=10 cm,AD=4 cm,则BD的长为(C)A.4 cm B.5 cm4题图5题图5.如图所示,在ABCD中,AC,BD相交于点O,过点O作直线EF分别交AD,BC于点E,F,那么图中全等的三角形共有(C) A.2对B.4对C.6对D.8对6.周长为48 cm的平行四边形ABCD,对角线AC,BD交于O点,△ABO和△ADO的周长相差4 cm,那么这个平行四边形较短的边长为__10__cm.7.如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,将△AOD平移至△BEC的位置,若AC=6,BD=8,则四边形BECO 的周长为__14__.7题图8题图8.2018·衡阳如图,ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么ABCD 的周长是__16__.【解析】∵ABCD是平行四边形,∴OA=OC.∵OM ⊥AC ,∴AM =MC .∴△CDM 的周长=AD +CD =8.∴平行四边形ABCD 的周长是2×8=16.9.如图所示,在ABCD 中,O 是对角线AC ,BD 的交点,BE ⊥AC ,DF ⊥AC ,垂足分别为点E ,F .那么OE 与OF 是否相等?为什么?【答案】 OE =OF (证明略).10.如图所示,在ABCD 中,对角线AC 与BD 相交于点O ,过点O 作一条直线分别交AB ,CD 于点E ,F .(1)求证:OE =OF .(2)若AB =6,BC =5,OE =2,求四边形BCFE 的周长. 解:(1)证明:在ABCD 中,∵AC 与BD 相交于点O ,∴OA =OC ,AB ∥CD .∴∠OAE =∠OCF .在△OAE 和△OCF 中,∵⎩⎪⎨⎪⎧∠OAE =∠OCF ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF (ASA ),∴OE =OF .(2)∵△OAE ≌△OCF ,∴CF =AE ,∴BE +CF =AB =6.又∵EF =2OE =4,∴四边形BCFE 的周长=BE +CF +EF +BC =6+4+5=15.B 更上一层楼 能力提升11.如图所示,ABCD 的对角线AC ,BD 相交于点O ,S △AOB =2,则S ABCD =( C )A .4B .6 D .1011题图12题图12.2017·青岛如图所示,ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为点E,AB=3,AC=2,BD=4,则AE的长为(D)A.32 B.32 C.217 D.221713.如图所示,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D 在BC上,以AC为对角线的所有ADCE中,DE的最小值是__4__.13题图14题图14.如图所示,在ABCD中,AB=6,AD=8,∠B是锐角,将△ACD 沿对角线AC折叠,点D落在△ABC所在平面上的点E处.若AE过BC的中点F,则ABCD的面积等于.15.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15 m,AD=12 m,AC⊥BC.求:(1)小路BC,CD,OC的长;(2)绿地的面积;(3)AB,CD之间的距离.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AO=CO,∴BC=AD=12 m,CD=AB=15 m.∵AC⊥BC,∴AC=AB2-BC2=9(m),∴AO=CO=4.5 m.(2)绿地的面积为BC·AC=12×9=108(m2).(3)AB,CD之间的距离为7.2 m.C开拓新思路拓展创新16.如图1,已知ABCD的对角线AC,BD相交于点O,过点O任作一直线分别交AD,CB的延长线于点E,F,(1)求证:OE=OF.(2)求证:直线EF平分ABCD的面积.(3)利用结论(2)解决如下问题:如图2是一块蛋糕的形状,表面是平行四边形,且内有一个平行四边形的孔.要求沿直线切一刀将它分成面积相等的两块,请你画出刀法的示意图.1图2解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,DO=OB.∴∠E=∠F,∠EDO=∠FBO.∴△DOE≌△BOF(AAS),∴OE=OF.(2)证明:设直线EF交AB,CD于点M,N,易证:△AOM≌△CON,△AOD≌△COB,△BOM≌△DON,故直线EF平分ABCD的面积.(3)如图所示.。

《平行四边形的性质》同步测试(含参考答案)

《平行四边形的性质》同步测试1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________.2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.7.如图,在□ABCD中,DB=DC,∠A=65°,CE⊥BD于E,则∠BCE=______.8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.9.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.10.ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是.11.平行四边形周长是40cm,则每条对角线长不能超过______cm.12.如图,在ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D =______.◆填空题13.ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.14.在ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.15.在ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.16.在ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则ABCD的面积为______.17.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立.....的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE18.如图,下列推理不正确的是( ).(A)∵AB∥CD,∴∠ABC+∠C=180°(B)∵∠1=∠2,∴AD∥BC(C)∵AD∥BC,∴∠3=∠4(D)∵∠A+∠ADC=180°,∴AB∥CD19.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)1220.有下列说法:①平行四边形具有四边形的所有性质;◆选择题②平行四边形是轴对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形; ④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形. 其中正确说法的序号是( ). (A)①②④(B)①③④(C)①②③(D)①②③④21.平行四边形一边长12cm ,那么它的两条对角线的长度可能是( ).(A)8cm 和16cm(B)10cm 和16cm(C)8cm 和14cm(D)8cm 和12cm22.以不共线的三点A 、B 、C 为顶点的平行四边形共有( )个.(A)1 (B)2(C)3(D)无数23.在ABCD 中,点A 1、A 2、A 3、A 4和C 1、C 2、C 3、C 4分别是AB 和CD 的五等分点,点B 1、B 2、和D 1、D 2分别是BC 和DA 的三等分点,已知四边形A 4B 2C 4D 2的面积为1,则□ABCD 的面积为( )(A)2 (B)53 (C)35(D)1524.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1)(C)6n(D)6n (n +1)25.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.26.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.27.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.28.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.◆解答题29.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.30.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1 方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图231.已知:如图,在ABCD中,从顶点D向AB作垂线,垂足为E,且E是AB的中点,已知ABCD的周长为8.6cm,△ABD的周长为6cm,求AB、BC的长.32.已知:如图,在ABCD中,CE⊥AB于E,CF⊥AD于F,∠2=30°,求∠1、∠3的度数.33.已知:如图,O为ABCD的对角线AC的中点,过点O作一条直线分别与AB、CD交于点M、N,点E、F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.34.已知:如图,在ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF 的面积为2cm2,求ABCD的面积.参考答案1.平行,□ABCD. 2.平行,相等;相等;互补;互相平分;底边上的高.3.110°,70°. 4.16cm,11cm. 5.互相垂直. 6.25°.7.25°. 8.21cm2.9.60°、120°、60°、120°. 10.1<AB<7. 11.20.12.6,5,3,30°. 13.20cm,10cm. 14.18.提示:AC=2AO.15.53cm,5cm. 16.120cm2.17.C. 18.C. 19.D.20.B; 21.B. 22.C. 23.C. 24.B.25.提示:可由△ADE≌△CBF推出. 26.提示:可由△ADF≌△CBE推出.27.(1)提示:可证△AED≌△CFB;(2)提示:可由△GEB≌△DEA推出.28.提示:可先证△ABE≌△CDF.29.B(5,0),C(4,3),D(-1,3).30.方案(1)画法1:(1)过F作FH∥AB交AD于点H(2)在DC上任取一点G连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形;画法2:(1)过F 作FH ∥AB 交AD 于点H(2)过E 作EG ∥AD 交DC 于点G 连接EF ,FG ,GH ,HE ,则四边形EFGH 就是所要画的四边形画法3:(1)在AD 上取一点H ,使DH =CF(2)在CD 上任取一点G 连接EF ,FG ,GH ,HE ,则四边形EFGH 就是所要画的四边形 方案(2)画法:(1)过M 点作MP ∥AB 交AD 于点P ,(2)在AB 上取一点Q ,连接PQ ,(3)过M 作MN ∥PQ 交DC 于点N ,连接QM ,PN 则四边形QMNP 就是所要画的四边形31.AB =2.6cm ,BC =1.7cm .提示:由已知可推出AD =BD =BC .设BC =x cm ,AB =y cm ,则⎩⎨⎧=+=+.6.8)(2,62y x y x 解得⎩⎨⎧==,6.2,7.1y x32.∠1=60°,∠3=30°.33.(1)有4对全等三角形.分别为△AOM ≌△CON ,△AOE ≌△COF ,△AME ≌△CNF ,△ABC ≌△CDA .(2)证明:∵OA =OC ,∠1=∠2,OE =OF ,∴△OAE ≌△OCF .∴∠EAO =∠FCO .又∵在ABCD 中,AB ∥CD ,∴∠BAO =∠DCO .∴∠EAM =∠NCF .34.9.。

(完整版)平行四边形的性质练习题及答案

(完整版)平⾏四边形的性质练习题及答案平⾏四边形的性质、课中强化(10分钟训练)1?如图3,在平⾏四边形 ABCD 中,下列各式不⼀定正确的是()A. / 1 + Z 2=180 °B. / 2+ / 3=180 °C. / 3+Z 4=180的周长为()3. 如图5,」ABCD 中,EF 过对⾓线的交点 O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形 BCFE 的周长为 ____________________ .4. 如图6,已知在平⾏四边形 ABCD 中,AB=4 cm , AD=7 cm , / ABC 的平分线交 AD 于点E ,5. 如图7,在平⾏四边形 ABCD 中,点E 、F 在对⾓线6. 如图 8,在 ABCD 中,AE 丄BC 于 E,AF 丄 CD 于 F,BE=2 cm,DF=3 cm, / EAF=60° ,试求 CF 的长.D. /2+ /4=180O , OE 丄AC 交AD 于丘,则⼛DCEA.4 cmB.6 cmC.8 cmD.10 cm交CD 的延长线于点 F ,贝U DF= _____________cm.BD 上,且 BE=DF ,求证:AE=CF.图32?如图4,⼆ABCD 的周长为图5图6图7图8三、课后巩固(30分钟训练)1?⼆ABCD中,/A⽐/ B⼤20。

,则/ C的度数为()A.60 °B.80 °C.100 °D.120 2?以A、B、C三点为平⾏四边形的三个顶点,作形状不同的平⾏四边形,⼀共可以作(A.0个或3个B.2个C.3个D.4个3?如图9 所⽰,在—ABCD 中,对⾓线AC、BD交于点0,下列式⼦中⼀定成⽴的是()A.AC 丄BDB.OA=OCC.AC=BDD.AO=OD4?如图10,平⾏四边形ABCD中,对⾓线AC、BD相交于点O ,将⼛AOD平移⾄△ BEC的位置,则图中与OA相等的其他线段有()A.1条B.2条C.3条D.4条5?如图11,在平⾏四边形ABCD中,EF // AB , GH // AD , EF与GH交于点O,则该图中的平⾏四边形的个数共有()6?如图12,平⾏四边形ABCD中,AE丄BD , CF丄BD,垂⾜分别为E、F,求证:/ BAE= / DCF.7、如图13所⽰,已知平⾏四边形ABCD中,E、F分别是BC和AD上的点,且BE=DF.求证:△ ABE CDF.A.7个B.8个C.9个D.11 个图12图138?如图14,已知四边形ABCD是平⾏四边形,/ BCD的平分线CF交边AB于F,/ ADC的平分线DG交边AB于G.⑴求证:AF=GB ;(2)请你在已知条件的基础上再添加⼀个条件,使得△EFG是等腰直⾓三⾓形,并说明理由?19.1.2平⾏四边形的判定⼆、课中强化(10分钟训练)1?如图3,在ABCD中,对⾓线AC、BD相交于点O,E、F是对⾓线AC上的两点,当E、F满⾜下列哪个条件时,四边形DEBF不⼀定是平⾏四边形()A.AE=CFC.Z ADE= / CBFD. / AED= / CFB,使四边形AECF是平⾏四边形.4. 如图6,AD=BC,要使四边形ABCD是平⾏四边形,还需补充的⼀个条件是:__________________5. 如图,在,ABCD中,已知M和N分别是边AB、DC的中点,试说明四边形BMDN也是平⾏四边形.2.如图4,AB 喪DC ,DC=EF=10 ,DE=CF=8,则图中的平⾏四边形有,理由分别是图4 图53.如图5,E、F是平⾏四边形ABCD对⾓线BD上的两点,B.DE=BF图14三、课后巩固(30分钟训练)1?以不在同⼀直线上的三个点为顶点作平⾏四边形最多能作()是平⾏四边形的是()4?已知四边形 ABCD 的对⾓线 AC 、BD 相交于点② OA=OC :③ AB=CD ;④/ BAD= / DCB :⑤ AD // BC.(1)从以上5个条件中任意选取 2个条件,能推出四边形 ABCD 是平⾏四边形的有(⽤序号表⽰): _____________________________ :(2)对由以上5个条件中任意选取 2个条件,不能推出四边形请选取⼀种情形举出反例说明平⾏四边形?6?如图,E 、F 是四边形ABCD 的对⾓线 AC 上的两点,AF=CE , DF=BE , DF // BE. 求证:⑴△AFD ◎△ CEB;(2)四边形ABCD 是平⾏四边形A.4个B.3个C.2个D.1个2?下⾯给出了四边形 ABCD 中/A 、/ B 、/ C 、/ D 的度数之⽐,其中能判定四边形 ABCDA.1 : 2 : 3 : 4B. 2 : 2 : 3 : 3C. 2 : 3 : 3 : 2D. 2 : 3 : 2 : 33?九根⽕柴棒排成如右图形状,图中 ____ 个平⾏四边形 ,你判断的根据是O ,给出下列 5个条件:①AB // CD ;5?若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对⾓线 ABCD 是平⾏四边形的,,另17?如图,已知DC // AB,且DC= — AB , E为AB的中点.2(1) 求证:△ AED ◎△ EBC ;(2) 观察图形,在不添加辅助线的情况下,除△EBC⼣⼘,请再写出两个与△ AED的⾯积相等的三⾓形(直接写出结果,不要求证明): ___________________________8?如图,已知⼆ABCD中DE丄AC,BF丄AC,证明四边形DEBF为平⾏四边形9?如图,已知■ ABCD中,E、F分别是AB、CD的中点?求证:(1) △ AFD ◎△ CEB;(2) 四边形AECF是平⾏四边形?⼆、课中强化(10 分钟训练)1 答案:D2. 解析:因为四边形ABCD 是平⾏四边形,所以OA=OC. ⼜0E丄AC , 所以EA=EC.贝U △ DCE 的周长=CD+DE+CE=CD+DE+EA=CD+AD. 在平⾏四边形ABCD 中,AB=CD ,AD=BC ,且AB+BC+CD+AD=16 cm ,所以CD+AD=8 cm.答案:C3?解析:0E=0F=1,其周长=BE+BC+CF+EF=CD+BC+EF=AD+AB+2DF=8(cm).答案:8 cm4?解析:由平⾏四边形的性质AB // DC,知/ ABE= / F,结合⾓平分线的性质/ ABE= / EBC,得/ EBC= / F,再根据等⾓对等边得到BC=CF=7 ,再由AB=CD=4 , AD=BC=7 得到DF=DE=AD-AE=3.答案:35?答案:证明:四边形ABCD是平⾏四边形,AB // CD , AB=CD./ ABE= / CDF.AB CD,在⼛ABE和⼛CDF中,ABE CDF ,BE DF .△ ABE ◎△ CDF.AE=CF.6. 解:/ EAF=60°AE 丄BC,AF 丄CD, C=120°. B=60°「./ BAE=30° .AB=2BE=4(cm). CD=4(cm). CF=1(cm).三、课后巩固(30 分钟训练)1 答案:C2. 解析:分两种情况,A、B、C三点共线时,可作0个当点A、B、C不在同⼀直线上时,可作3 个. 答案:A3. 解析:平⾏四边形对⾓线互相平分,所以OA=OC. 答案:B4. 解析:由平⾏四边形的对⾓线互相平分知OA=OC;再由平移的性质:经过平移,对应线段平⾏且相等可得OA=BE.答案:B5?解析:本题借助于平⾏四边形的定义,按照从左到右,从⼩到⼤的顺序,可找到下列的平⾏四边形:DEOH,.HOFC,. DEFC, EAGO,OGBF,EABF,■ DAGH,■ HGBC,⼆ABCD.答案:C6?答案:证明:四边形ABCD是平⾏四边形,AB // CD , AB=CD. /-Z ABE= / CDF ?/ AE 丄BD , CF 丄BD ,「./ AEB= / CFD=90 .△ABE ◎△ CDF. /.Z BAE= Z DCF.7、答案:证明:四边形ABCD是平⾏四边形,AB=CD, Z B= Z D.在⼛ABE和⼛CDF中,AB CD,B D, ?/△ ABE 也⼛CDF.BE DF.8?答案:(1)证明:四边形ABCD是平⾏四边形,? AB // CD. AGD= Z CDG.vZ ADG= Z CDG,/?/ ADG= Z AGD. ? AD=AG ?同理,BC=BF.⼜四边形ABCD 是平⾏四边形,? AD=BC,AG=BF. ? AG-GF=BF-GF ,即AF=GB.(2)解:添加条件EF=EG.理由如下:1 1由(1)证明易知Z AGD= Z ADG= Z ADC , Z BFC= Z BCF= Z BCD.2 2/ AD // BC,/?/ ADC+ Z BCD=180 ./Z AGD+ Z BFC=90 ./Z GEF=90 .⼜v EF=EG ,?△ EFG为等腰直⾓三⾓形.⼆、课中强化(10分钟训练)1. 解析:当E、F满⾜AE=CF时,由平⾏四边形的对⾓线相等知OB=OD,OA=OC , 故OE=OF.可知四边形DEBF是平⾏四边形.当E、F满⾜Z ADE= Z CBF 时,因为AD // BC,所以Z DAE= Z BCF.⼜AD=BC,可证出⼛ADE ◎△ CBF,所以DE=BF , Z DEA= Z BFC.故Z DEF= Z BFE.因此DE // BF,可知四边形DEBF是平⾏四边形.类似地可说明D也可以.。

人教版八年级数学下册《平行四边形的性质》练习题含答案

《平行四边形的性质》练习题含答案一、精心选一选1.平行四边形不一定具有的特征是 ( )A 对角线相等B 两组对角分别相等C 两组对边分别平行D 内角和为ο3602.平行四边形相邻两内角的平分线相交所成的角是 ( )A 锐角B 直角C 钝角D 无法确定3. 平行四边形ABCD 中,AD BC CD AB :::可以是 ( )A 5:4:3:2B 3:3:2:2C 3:2:3:2D 2:3:3:24.平行四边形ABCD 的一边为10cm,则两条对角线的长可以是 ( )A 24和12B 26和4C 24和4D 12和85.下列说法正确的是( ).(A )有两组对边分别平行的图形是平行四边形(B )平行四边形的对角线相等(C )平行四边形的对角互补,邻角相等(D )平行四边形的对边平行且相等二、细心填一填6.在平行四边形ABCD 中,若ο40=∠-∠B A ,则=∠C .7. 已知平行四边形ABCD 的周长为36cm,5:4:=BC AB ,则AB = .8. 已知平行四边形ABCD 的周长为28,对角线AC ,BD 相交于一点O ,且AOB ∆的周长比BOC ∆的周长大4,则AB = ; BC = .9. 在平行四边形ABCD 中, B ∠的平分线将CD 分成4cm 和2cm 两部分, 则平行四边ABCD 的周长为 .10.在平行四边形ABCD 中,AE ⊥BC 于E , AF ⊥CD 于F ,AE=4,AF=6,平行四边形ABCD 的周长为40,则平行四边形ABCD 的面积为 .三、认真答一答11.已知平行四边形ABCD 中,对角线AB AC ⊥,5:3:=BC AB ,8=AC , 求平行四边形ABCD 的面积.12.如图,平行四边形ABCD 中,对角线BD AC ,交于O ,AC EO ⊥,(1)若ABE ∆的周长为10cm,求平行四边形ABCD 的周长;(2)若ο78=∠ABC ,AE 平分BAC ∠,试求DAC ∠的度数.13.平行四边形ABCD 中,E 在AC 上,AE=2EC,F 在AB 上,BF=2AF ,如果BEF ∆的面积为22cm ,求平行四边形ABCD 的面积参考答案1-5 ABBAD6、110;7、8;8、9、5;9、20cm 或16cm ;10、4811、设AB 为3x,BC 为5x ,由勾股定理得(3x)²+8²=(5x )²解得x=2∴AB =6∴平行四边形ABCD 得面积等于4812、(1)AC,BD 交于O∴AO=OC∵EO ⊥AC∴∠AOE=∠COE又∵OE=OE∴△AOE ≌△COE(SAS )∴AE=CE∴ABCD 的周长=2(AB+BC)=2(AB+BE+CE)=2(AB+BE+AE)=2*10=20(2)∵AD‖CB∴∠DAB=180°-∠ABC=102°∠DAC=∠ECA又∵AE=CE∴∠EAC=∠ECA∵AE 平分∠BAC∴∠BAE=∠EAC=∠ECA=∠DAC∴∠DAC=∠BAE+∠EAC+∠DAC=3∠DAC=102°,∠DAC=34° 13.解:∵BF=2AFAB BF 32=∴323==∴S S BEF ABE △△又∵AE=2ECAE AC 23=∴2923323=⨯==∴S S ABE ABC △△∵四边形ABCD 是平行四边形, ∴292922cm S S ABC ABCD =⨯==△平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档