高等代数学答案03
高等代数(北大版第三版)习题答案I

高等代数(北大版第三版)习题答案I篇一:高等代数(北大版)第3章习题参考第三章线性方程组1.用消元法解以下线性方程组:?x1?x?1?1)?x1x1x13x25x34x413x22x32x42x2x3x4x54x2x3x4x52x2x3x4x5 x12x23x42x51x5??1?x1x23x3x43x523 2)2x?3x?4x?5x?2x?72345?139x9x6x16x2x252345?11x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?17x?3x?x3?7x?2x?x?3x0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1?3x1?2x2?x3?x4?13x1?2x2?2x3?3x4?25)? 6)?2x1?3x2?x3?x4?12x2x2xx15x1x2x32x4123412xxx3x4234?15x1?5x2?2x3?2解1)对方程组得增广矩阵作行初等变换,有111111000033?2?420000?1521112?3?20?1?4?2?11?1?1200101?1?11010001??110??30??3??01?011?200?0000030?5?7?10000?15?3?4?4?400?200423581200001?1?11010001?2?2? ?221?2?0? ?0?0由于rank(A)?rank(B)?4?5,因此方程组有无穷多解,其同解方程组为x1x412x1x52,?2x03x?x?0?24解得x1x2x3x4x51kk0k22k其中k为任意常数。
2)对方程组德增广矩阵作行初等变换,有112910 ??002?1?3?920?3463151632?3221??120?0725022?3?7?27120?346341110?2?5?2?1631?1 5161334512529?8?011??333033?2529??72?10??334?512529? 8001?1?3330000??01?由于rank(A)?4?rank(A)?3,因此原方程无解。
高等代数《行列式》部分习题及解答

高等代数《行列式》部分习题及解答例1:决定以下9级排列的逆序数,从而决定它们的奇偶性: 1).134782695;2).217986354;3).987654321. 答:1). ()134782695=10τ,134782695是一个偶排列;2). ()217986354=18τ,217986354是一个偶排列; 3). ()987654321=36τ,987654321是一个偶排列. 例2:写出把排列12435变成排列25341的那些对换.答:()()()()()()()12154,312435214352543125341−−→−−→−−−→.例3:如果排列121...n n x x x x -的逆序数为k ,排列121...n n x x x x -的逆序数是多少?答:()112n n k --例4:按定义计算行列式: 000100201).0100000n n - 010000202).0001000n n -001002003).1000000n n-答:1).原行列式()()()()1,1,,2,121!1!n n n n n n τ--=-=-2).原行列式()11!.n n -=-3).原行列式()()()1221!n n n --=-.例5:由行列式定义计算()212111321111x x x f x x x-=中4x 与3x 的系数,并说明理由. 答:()f x 的展开式中x 的4次项只有一项;2,x x x x ⋅⋅⋅故4x 的系数为2;x 的3次项也只有一项()()213411,x x x τ-⋅⋅⋅故3x 的系数为-1.例6:由111111=0111,证明:奇偶排列各半.证明:由于12n j j j 为奇排列时()()121n j j j τ- 为-1,而偶排列时为1,.设有k 个奇排列和l 个偶排列,则上述行列式()()()()12121212110.n n nnj j j j j j j j j j j j l k ττ=-+-=-=∑∑ 即奇偶排列各占一半.例7:证明1111111112222222222b cc a a b a b c b c c a a b a b c b c c a a b a b c ++++++=+++. 证明:111111111111111111122222222222222222222222.2b cc a a bac aa baa b a cab c b c c a a b a c a a b a a b a c a b c b c c a a b a c a a b a a b a c a b c +++-+++++++=-++=++=+++-++++ 例8:算出行列式:121401211).00210003-;1122).321014-的全部代数余子式. 答:111213142122232431323334414243441).6,0;12,6,0;15,6,3,0;7,0,1, 2.A A A A A A A A A A A A A A A A =-====-=====-=-=====-1112132122233132332).7,12,3;6,4,1;5,5, 5.A A A A A A A A A ==-====-=-== 例9:计算下面的行列式:111121131).12254321-;11112112132).1111321112---;01214201213).135123312121035-- 答:1111111111110115011501151).= 1.011400010012012300120001---------==-=-------原式132).12-3).483-. 例10:计算下列n 级行列式: 0000001).;000000x y x y x yyx1112121222122).n nn n n na b a b a b a b a b a b a b a b a b ---------122222223).;2232222n1231110004)..02200011n n n n-----答:()()110000000000000001).11.000000000000000n n n n xy xy yx y x xy x y x y x y x yy yxxxy++=+-=+-2).当1n =时,为11a b -;当2n =时,为()()1212a a b b --;当3n ≥时,为零.()12221000222222223).22!223200102220002n n n -==-⋅--(利用第2行(列)的特点)()()11231110001!4).1.02200211n n nn n n---+=---- (从左起,依次将前一列加到后一列) 例11:用克拉默法则解线性方程组1234123412341234232633325323334x x x x x x x x x x x x x x x x -++=⎧⎪-++=⎪⎨--+=⎪⎪-+-=⎩.答:2132333270031123131d --==-≠----,所以可以用克拉默法则求解.又因16132533270;31124131d --==-----22632353270;33123431d ==---32162335270;31323141d --==----42136333570;31133134d --==----所以此线性方程组有唯一解,解为1234 1.x x x x ====例12:求12121212111222,n nnnj j j j j j j j j nj nj nj a a a a a a a a a ∑这里12nj j j ∑是对所有n 级排列求和.答:对每个排列12n j j j ,都有:()()121212121111112122221222121.n n nnj j j n j j j j j j nn n nnnj nj nj a a a a a a a a a a a a a a a a a a τ=- 因为在全部n 级排列中,奇偶排列个数相同,各有!2n 个.所以121212121112220n n nnj j j j j j j j j nj nj nj a a a a a a a a a =∑.例13:计算n 级行列式:12222122221212111.nnn n n nnn n nx x x x x x x x x x x x ---答:作范德蒙德行列式:1212222121111111211211111.n n n n n n n n n n nnn nn n x x x x x x x x D x x x x x x x x ++----++=将这个行列式按最后一列展开,展开式中11n n x -+的系数的()11n n++-倍就是所求行列式D ,因为()111,ji i j n D xx ≤<≤+=-∏所以()()()()11111111.nnn nji k ji k k k i j n i j n D xx x xx x ++==≤<≤+≤<≤+=---=-∑∑∏∏。
高等代数习题答案

高等代数(北大版第三版)习题答案I I(总95页)-本页仅作为预览文档封面,使用时请删除本页-高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。
证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。
故必存在非退化线性替换Y C X 1-=使()BY Y ACY C Y AX X '=''='-12222122221n p p p y y y y y y ----+++=++ ,且在规范形中必含带负号的平方项。
于是只要在Y C Z 1-=中,令p y y y === 21,1,021=====++n p p y y y 则可得一线性方程组 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++1102211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使()0111000<--=----+++='p n AX X s s, 即证存在0≠X ,使0<'A X X 。
13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。
证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X ,于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。
《高等代数》复习思考题答案

(0158)《高等代数》复习思考题答案一、略 二、判断题1. 错。
含有n 个未知量的m 个方程的线性方程组有无穷解的充要条件是系数矩阵的秩<n 。
2. 错。
如:向量组s ααα,,,21Λ中的每个向量都不是齐次线性方程组的解向量,但0向量是齐次线性方程组的解向量,0向量也是s ααα,,,21Λ线性组合。
3. 错。
如:方程组25320253202532025320253243214321432143214321=-++=-++=-++=-++=-++x x x x x x x x x x x x x x x x x x x x虽然方程的个数多余未知量的个数,但是它毕竟等价于第一个单独的方程因此有无穷多解。
4. 错。
如矩阵⎪⎪⎭⎫⎝⎛0010的秩为1,但是它的1阶主子式为0。
5. 错。
所给出的条件是正交相似,不是一般意义的相似条件。
6. 错。
如:2224)1(12+=++x x x 在有理数域上可约,但是无根。
7. 对。
因为线性变换σ为数乘变换的充要条件是该变换在任意基下的矩阵A 为数量矩阵I λ,所以A 适合多项式λ-x ,即为极小多项式,从而是一次多项式。
反之,如果极小多项式次数为1,设为λ-x ,则0=-I A λ。
根据线性变换与矩阵的对应关系知λεσ=,其中ε为恒等变换,即得σ为数乘变换 8. 错。
如:5)4()(-=x x f ,)(|)4(2x f x -,但不是f(x)的2重根,它是4重根。
9. 错。
如:12++x x 无有理根,但是不可能存在任何素数整除除首项以外的项的系数。
10. 对。
11. 对。
12. 对。
13. 对。
14. 对。
15. 对。
三、计算题第1、2、3、4、5题略。
6、因为]5)10([)5)(3(58223b a x b x b x x a x x x -++-++++=+++,所以a x x xb x x +++++58|3232的充要条件是05)10(=-++-b a x b 。
线性代数数学答案整理(高等教育出版社)

第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)38114112---; ( 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++- =4-2.按自然数从小到大为标准次序,求下列各排列的逆序数: (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; 解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯--- =143102211014--321132c c c c ++1417172001099-=0 5.证明:(1)1112222b b a a b ab a +=3)(b a -;证明(1)00122222221312a b ab a a b a ab ac c c c ------=左边 ab ab a b a ab 22)1(22213-----=+21))((ab a a b a b +--=右边=-=3)(b a7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nnnn ------=---+; 提示:利用范德蒙德行列式的结果. 解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n a a a)1)(1(2)1(--⋅-+n n n a a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行 交换,得nn nn n n n n n n a a a n a a a n a a a D )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-∙-∙-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D 即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.第二章 矩阵及其运算3.设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,150421321⎪⎪⎪⎭⎫ ⎝⎛--=B求.23B A A AB T 及- 解A AB 23-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛-=0926508503⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛----=22942017222132 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算下列乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; 解(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫ ⎝⎛=49635 5.设⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫ ⎝⎛=2101B ,问:(1)BA AB =吗?(2)2222)(B AB A B A ++=+吗? (3)22))((B A B A B A -=-+吗? 解(1)⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫⎝⎛=2101B则⎪⎪⎭⎫ ⎝⎛=6443AB ⎪⎪⎭⎫⎝⎛=8321BA BA AB ≠∴(2) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎪⎭⎫⎝⎛=2914148但=++222B AB A ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛43011288611483⎪⎪⎭⎫⎝⎛=27151610故2222)(B AB A B A ++≠+(3) =-+))((B A B A =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10205222⎪⎪⎭⎫⎝⎛9060而 =-22B A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛430111483⎪⎪⎭⎫⎝⎛7182故 22))((B A B A B A -≠-+ 6.举反列说明下列命题是错误的: (1)若02=A ,则0=A ;(2)若A A =2,则0=A 或E A =; (3)若AY AX =,且0≠A ,则Y X =.解 (1) 取⎪⎪⎭⎫ ⎝⎛=0010A 02=A ,但0≠A (2) 取⎪⎪⎭⎫ ⎝⎛=0011A A A =2,但0≠A 且E A ≠ (3) 取⎪⎪⎭⎫ ⎝⎛=0001A ⎪⎪⎭⎫ ⎝⎛-=1111X ⎪⎪⎭⎫⎝⎛=1011YAY AX =且0≠A 但Y X ≠9.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵. 证明 已知:A A T =则 AB B B A B A B B AB B T T T T TT T T===)()( 从而 AB B T 也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =.证明 由已知:A A T = B B T =充分性:BA AB =⇒A B AB T T =⇒)(AB AB T=即AB 是对称矩阵.必要性:AB AB T=)(⇒AB A B T T =⇒AB BA =. 11.求下列矩阵的逆矩阵:(2)⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫ ⎝⎛---145243121; 解(2)01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎪⎭⎫ ⎝⎛-=-θθθθcos sin sin cos 1A(3) 2=A , 故1-A 存在 024312111==-=A A A 而 1613322212-==-=A A A 21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎭⎫ ⎝⎛-----=171621321301212.解下列矩阵方程:(2) ⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311*********X ;解(2) 1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A .又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18.设n 阶矩阵A 的伴随矩阵为*A ,证明: (1) 若0=A ,则0=*A ; (2) 1-*=n A A .证明(1) 用反证法证明.假设0≠*A 则有E A A =-**1)( 由此得O A E A A AA A ===-*-**11)()(O A =∴* 这与0≠*A 矛盾,故当0=A 时 有0=*A (2) 由于*-=A AA 11, 则E A AA =* 取行列式得到: nA A A =*若0≠A 则1-*=n AA若0=A 由(1)知0=*A 此时命题也成立 故有1-*=n AA19.设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,B A AB 2+=,求B .解 由B A AB 2+=可得A B E A =-)2(故A E A B 1)2(--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-3210113301210113321⎪⎪⎪⎭⎫⎝⎛-=01132133020. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得(A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B .解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1 )21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=Λ2001,求11A . 解 Λ=-AP P 1故1-Λ=P P A 所以11111-Λ=P P A3=P ⎪⎪⎭⎫ ⎝⎛-=*1141P ⎪⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Λ11111120012001故⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎪⎭⎫ ⎝⎛--=68468327322731 24(不). 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫⎝⎛--340313021201; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001 (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~rr r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000000000221003211 3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.3.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛323513123; 解 (1)⎪⎪⎪⎭⎫ ⎝⎛100010001323513123⎪⎪⎪⎭⎫⎝⎛---101011001200410123~ ⎪⎪⎪⎪⎪⎭⎫⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2102121129227100010003~ ⎪⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267100010001~4.(不) (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r ,所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X .4.(1) 设⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=132231,113122214B A ,求X 使B AX =;解(1) ()⎪⎪⎪⎭⎫ ⎝⎛----=132231113122214B A 初等行变换~⎪⎪⎪⎭⎫ ⎝⎛--412315210100010001⎪⎪⎪⎭⎫ ⎝⎛--==∴-4123152101B A X5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为 ⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,所以 ⎪⎪⎭⎫ ⎝⎛---=-=-011101110)2(1A E A X .9.求下列矩阵的秩,并求一个最高阶非零子式:(2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; 解(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073131223123⎪⎪⎪⎭⎫⎝⎛---------15273321059117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫ ⎝⎛-----r r .二阶子式71223-=-.11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1;(2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3. 13.求解下列非齐次线性方程组:(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x解 (3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x17.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解 时求解.解 ⎪⎪⎪⎭⎫⎝⎛---------154224521222λλλλ初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解.当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解.此时,增广矩阵为⎪⎪⎪⎭⎫⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)故逆矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267第四章 向量组的线性相关性4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5不. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示; (2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1, a 2,a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示. 6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T . 解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关.11.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.证明 设有4321,,,x x x x 使得044332211=+++b x b x b x b x 则0)()()()(144433322211=+++++++a a x a a x a a x a a x 0)()()()(443332221141=+++++++a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,411x x k +=;212x x k +=;323x x k +=;434x x k +=;由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,即4321,,,b b b b 线性相 关.(2) 若4321,,,a a a a 线性无关,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+000043322141x x x x x x x x 011000110001110014321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⇒x x x x 由01100011000111001=知此齐次方程存在非零解 则4321,,,b b b b 线性相关.综合得证.13. 求下列向量组的秩, 并求一个最大无关组:(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6), a 3T =(1, -3, -4, -7). 解 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛------⎪⎪⎪⎭⎫ ⎝⎛------=00000059014110180590590141763451312141) , ,(~~321r r a a a , 知R (a 1T , a 2T , a 3T )=R (a 1, a 2, a 3)=2. 因为向量a 1T 与a 2T 的分量不成比例, 故a 1T , a 2T 线性无关, 所以a 1T , a 2T 是一个最大无关组.14.利用初等行变换求下列矩阵的列向量组的一个最大无关组:(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---14011313021512012211. 解(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---1401131302151201221114132~r r rr --⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122114323~r r r r ↔+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.15. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=5200111031116110111031113111332221) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5.22.求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x解 (1)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=000041431004012683154221081~初等行变换A所以原方程组等价于⎪⎩⎪⎨⎧+=-=4323141434x x x x x取3,143-==x x 得0,421=-=x x 取4,043==x x 得1,021==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=4010,310421ξξ 第五章 相似矩阵及二次型1.试用施密特法把下列向量组正交化:(1) ⎪⎪⎪⎭⎫ ⎝⎛=931421111),,(321a a a ;解 (1) 根据施密特正交化方法:令⎪⎪⎪⎭⎫ ⎝⎛==11111a b ,[][]⎪⎪⎪⎭⎫ ⎝⎛-=-=101,,1112122b b b a b a b ,[][][][]⎪⎪⎪⎭⎫⎝⎛-=--=12131,,,,222321113133b b b a b b b b a b a b ,故正交化后得: ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=311132013111),,(321b b b .5.求下列矩阵的特征值和特征向量:(2)⎪⎪⎪⎭⎫⎝⎛633312321;并问它们的特征向量是否两两正交?解(2) ① )9)(1(633312321-+-=---=-λλλλλλλE A 故A 的特征值为9,1,0321=-==λλλ. ② 当01=λ时,解方程0=Ax ,由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=000110321633312321~A 得基础解系⎪⎪⎪⎭⎫⎝⎛--=1111P 故)0(111≠k P k 是对应于01=λ的全部特征值向量. 当12-=λ时,解方程0)(=+x E A ,由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+000100322733322322~E A 得基础解系⎪⎪⎪⎭⎫⎝⎛-=0112P 故)0(222≠k P k 是对应于12-=λ的全部特征值向量 当93=λ时,解方程0)9(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A 得基础解系⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=121213P故)0(333≠k P k 是对应于93=λ的全部特征值向量.③ 0011)1,1,1(],[2121=⎪⎪⎪⎭⎫ ⎝⎛---==P P P P T,012121)0,1,1(],[3232=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==P P P P T ,012121)1,1,1(],[3131=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==P P P P T , 所以321,,P P P 两两正交.8. 设A 2-3A +2E =O , 证明A 的特征值只能取1或2.证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则 (A 2-3A +2E )x =λ2x -3λx +2x =(λ2-3λ+2)x =0.因为x ≠0, 所以λ2-3λ+2=0, 即λ是方程λ2-3λ+2=0的根, 也就是说λ=1或λ=2. 9. 设A 为正交阵, 且|A |=-1, 证明λ=-1是A 的特征值. 证明 因为A 为正交矩阵, 所以A 的特征值为-1或1.因为|A |等于所有特征值之积, 又|A |=-1, 所以必有奇数个特征值为-1, 即λ=-1是A 的特征值.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1, 2, 2)T , 单位化得T )32 ,32 ,31(1=p . 对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x , 得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p . 对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4). (2)⎪⎪⎭⎫⎝⎛----542452222.解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得 T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x , 得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).16.试求一个正交的相似变换矩阵,将下列对称矩阵化为对角矩阵:(1)⎪⎪⎪⎭⎫⎝⎛----020212022; (2)⎪⎪⎪⎭⎫ ⎝⎛----542452222. 解 (1) λλλλ-------=-20212022E A )2)(4)(1(+--=λλλ 故得特征值为4,1,2321==-=λλλ. 当21-=λ时,由0220232024321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----x x x 解得⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛2211321k x x x 单位特征向量可取:⎪⎪⎪⎭⎫⎝⎛=3232311P 当12=λ时,由0120202021321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----x x x 解得⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛2122321k x x x单位特征向量可取: ⎪⎪⎪⎭⎫ ⎝⎛-=3231322P当43=λ时,由0420232022321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------x x x 解得⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1223321k x x x . 单位特征向量可取: ⎪⎪⎪⎭⎫⎝⎛-=3132323P得正交阵⎪⎪⎪⎭⎫⎝⎛--==12221222131),,(321P P P P⎪⎪⎪⎭⎫ ⎝⎛-=-4000100021AP P(2)⎪⎪⎪⎭⎫⎝⎛-------=-λλλλ542452222E A )10()1(2---=λλ, 故得特征值为10,1321===λλλ 当121==λλ时,由⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----000442442221321x x x 解得⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10201221321k k x x x 此二个向量正交,单位化后,得两个单位正交的特征向量⎪⎪⎪⎭⎫⎝⎛-=012511P⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=*15452012540122P 单位化得⎪⎪⎪⎭⎫ ⎝⎛=15452352P当103=λ时,由⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x 解得⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛2213321k x x x 单位化⎪⎪⎪⎭⎫⎝⎛--=221313P :得正交阵),,(321P P P⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=323503215545131155252⎪⎪⎪⎭⎫⎝⎛=-1000100011AP P .18.设3阶方阵A 的特征值为1,0,1321-===λλλ;对应的特征向量依 次为⎪⎪⎪⎭⎫ ⎝⎛=2211P ,⎪⎪⎪⎭⎫⎝⎛-=1222P ,⎪⎪⎪⎭⎫ ⎝⎛--=2123P 求A .解 根据特征向量的性质知),,(321P P P 可逆,得:⎪⎪⎪⎭⎫⎝⎛=-3213211321),,(),,(λλλP P P A P P P 可得1321321321),,(),,(-⎪⎪⎪⎭⎫⎝⎛=P P P P P P A λλλ 得⎪⎪⎪⎭⎫⎝⎛-=022********A19.设3阶对称矩阵A 的特征值6,3,3,与特征值6对应的特征向量为)1,1,1(1TP =,求A .解 设⎪⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A 由⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1116111A ,知①⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x3是A 的二重特征值,根据实对称矩阵的性质定理知E A 3-的秩为1,故利用①可推出⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛---33111333653542653542321~x x x x x x x x x x x x x x x 秩为1.则存在实的b a ,使得②⎩⎨⎧-=-=)3,,()1,1,1(),3,()1,1,1(653542x x x b x x x a 成立.由①②解得1,4,1564132======x x x x x x .得⎪⎪⎪⎭⎫ ⎝⎛=411141114A .22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A 100.解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1.因为Λ100=diag(1, 5100, 5100),⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P ,所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A ⎪⎪⎭⎫⎝⎛-=1001001005000501501.24.(1) 设⎪⎪⎭⎫ ⎝⎛--=3223A ,求9105)(A A A -=ϕ; 解 (1) ⎪⎪⎭⎫⎝⎛-=3223A 是实对称矩阵.故可找到正交相似变换矩阵⎪⎪⎪⎪⎭⎫⎝⎛-=21212121P 使得Λ=⎪⎪⎭⎫ ⎝⎛=-50011AP P从而11,--Λ=Λ=P P A P P A k k因此1911091055)(--Λ-Λ=-=P P P P A A A ϕ11011050055001--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=P P P P 10004-⎪⎪⎭⎫ ⎝⎛-=P P ⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1111210004111121 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛----=111122222.。
北京大学数学系《高等代数》(第3版)课后习题-第一章至第三章(上册)【圣才出品】

4.把 f(x)表成 x-x0 的方幂和,即表成 c0+c1(x-x0)+c2(x-x0)2+…的形式. (1)f(x)=x5,x0=1;
2 / 108
圣才电子书 十万种考研考证电子书、题库视频学习平台
6.求 u(x),v(x)使 u(x)f(x)+v(x)g(x)=(f(x),g(x)): (1)f(x)=x4+2x3-x2-4x-2,g(x)=x4+x3-x2-2x-2. (2)f(x)=4x4-2x3-16x2+5x+9,g(x)=2x3-x2-5x+4. (3)f(x)=x4-x3-4x2+4x+1,g(x)=x2-x-1. 解:(1)用辗转相除法进行计算.
所以 x5=(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1.
3 / 108
圣才电子书
(2)应用综合除法
十万种考研考证电子书、题库视频学习平台
所以 f(x)=(x+2)4-8(x+2)3+22(x+2)2-24(x+2)+11. (3)f(x)=(x+i)4-2i(x+i)3-(1+i)(x+i)2-5(x+i)+7+5i. 5.求 f(x)与 g(x)的最大公因式: (1)f(x)=x4+x3-3x2-4x-1,g(x)=x3+x2-x-1. (2)f(x)=x4-4x3+1,g(x)=x3-3x2+1.
圣才电子书
十万种考研考证电子书、题库视频学习平台
第二部分 课后习题
第 1 章 多项式
1.用 g(x)除 f(x),求商 q(x)与余式 r(x): (1)f(x)=x3-3x2-x-1,g(x)=3x2-2x+1; (2)f(x)=x4-2x+5,g(x)=x2-x+2. 解:(1)用分离系数的竖式进行计算
高等代数答案-第三章

第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=ìï++-+=-ïï-+--=íï-++-=ïï++-+=-î 124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=ìï--+-=ïí-+-+=ïï-+-+=î 1234234124234234433)31733x x x x x x x x x x x x x -+-=ìï-+=-ïí+++=ïï-++=-î 123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=ïï-++=-î 123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=-ïï-+-=î 12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=ìï++-=ïï+++=íï++-=ïï++=î解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--éùéùêúêú----êúêúêúêú®------êúêú-----êúêúêúêú-----ëûëû102101100101003212000212002000002000000000000000011100010000--éùéùêúêú---êúêúêúêú®®--êúêúêúêúêúêú---ëûëû因为()()45rank A rank B ==<所以方程组有无穷多解,其同解方程组为1415324122200x x x x x x x -=ìï+=-ïí-=ïï-+=î 解得123451022x k x k x x k x k=+ìï=ïï=íï=ïï=--î 其中k 为任意常数.2)对方程组德增广矩阵作行初等变换,有120321120321113132033451234527074125996162250276111616--éùéùêúêú------êúêú®êúêú----êúêú---ëûëû 120321120321033451033451252982529800110011333333003325297000001--éùéùêúêú------êúêú®®êúêú--êúêúêúêú--êúêúëûëû因为()4()3rank A rank A =>=所以原方程无解.3)对方程组德增广矩阵作行初等变换,有1234412344011130111313011053530731307313----éùéùêúêú----êúêú®êúêú--êúêú----ëûëû1012210008011130100300201200201200482400080---éùéùêúêú--êúêú®®êúêúêúêú--ëûëû因为(()4rank A rank A ==所以方程组有惟一解,且其解为12348360x x x x =-ìï=ïí=ïï=î 4)对方程组的增广矩阵作行初等变换,有34571789233223324111316411131672137213--éùéùêúêú----êúêú®êúêú--êúêú--ëûëû 17891789017192001719200171920000003438400000--éùéùêúêú----êúêú®®êúêú-êúêú--ëûëû即原方程组德同解方程组为123423478901719200x x x x x x x +-+=ìí-+-=î由此可解得1122123142313171719201717x k k x k k x k x k ì=-ïïï=-íï=ïï=î 其中12,k k 是任意常数g5)对方程组的增广矩阵作行初等变换,有2111121111322327001451121300122113440025--éùéùêúêú---êúêú®êúêú---êúêú---ëûëû 21111211117001470014100002100002100300001--éùéùêúêú--êúêú®®êúêúêúêú---ëûëû 因为()4()3rank A rank A =¹=所以原方程组无解.6)对方程组的增广矩阵作行初等变换,有12311354023211125202231112311122211453025520255202éùéùêúêú-êúêúêúêú®êúêú-êúêúêúêúëûëû2020000000552020570211611010015555101001010000000-éùéùêúêúêúêúêúêú®®-----êúêúêúêú--êúêúêúêúëûëû即原方程组的同解方程组为23341357261550x x x x x x +=ìïï-+=-íï-+=ïî 解之得123427551655x k x k x k x k =ìïï=-ïí=ïï=-+ïî其中k 是任意常数.2.把向量b 表成1234,,,a a a a 的线性组合.12341)(1,2,1,1)(1,1,1,1),(1,1,1,1)(1,1,1,1),(1,1,1,1)b a a a a ===--=--=--12342)(0,0,0,1)(1,1,0,1),(2,1,3,1)(1,1,0,0),(0,1,1,1)b a a a a =====--解 1)设有线性关系11223344k k k k b a a a a =+++代入所给向量,可得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=ìï+--=ïí-+-=ïï--+=î 解之,得15,4k = 21,4k = 31,4k =- 414k =-因此123451114444b a a a a =+--2)同理可得13b a a =-3.证明:如果向量组12,,,r a a a L 线性无关,而12,,,,r a a a b L 线性相关,则向量可由12,,,r a a a L 线性表出.证 由题设,可以找到不全为零的数121,,,r k k k +L 使112210r r r k k k k a a a b +++++=L显然10r k +¹.事实上,若10r k +=,而12,,,r k k k L 不全为零,使11220r r k k k a a a +++=L成立,这与12,,,r a a a L 线性无关的假设矛盾,即证10r k +¹.故11rii i r k k b a =+=-å即向量b 可由12,,,r a a a L 线性表出.4.12(,,,)(1,2,,)i i i in i n a a a a ==L L ,证明:如果0ij a ¹,那么12,,,n a a a L 线性无关.证 设有线性关系11220n n k k k a a a +++=L代入分量,可得方程组111212112122221122000n n n nn n nn n k k k k k k k k k a a a a a a a a a +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L L 由于0ij a ¹,故齐次线性方程组只有零解,从而12,,,n a a a L 线性无关.5.设12,,,r t t t L 是互不相同的数,r n £.证明:1(1,,,)(1,2,,)n i i i t t i r a -==L L是线性无关的.证 设有线性关系11220r r k k k a a a +++=L则1211221111122000r r rn n n r rk k k t k t k t k t k t k t k ---+++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 1)当r n =时,方程组中的未知量个数与方程个数相同,且系数行列式为一个范德蒙行列式,即122221211112111()0nn j i i jn n n nt t t t t t t t t t t <---=-¹ÕL LL M M O M L所以方程组有惟一的零解,这就是说12,,,r a a a L 线性无关.2)当r n <时,令21111121222221(1,,,,)(1,,,,)(1,,,,)r r r r r r rt t t t t t t t t b b b ---ì=ï=ïíïï=îL L L L L L L L L L L 则由上面1)的证明可知12,,,r b b b L 是线性无关的.而12,,,r a a a L 是12,,,r b b b L 延长的向量,所以12,,,r a a a L 也线性无关.6.设123,,a a a 线性无关,证明122331,,a a a a a a +++也线性无关. 证 设由线性关系112223331()()()0k k k a a a a a a +++++=则131122233()()()0k k k k k k a a a +++++=再由题设知123,,a a a 线性无关,所以13122300k k k k k k +=ìï+=íï+=î 解得1230k k k ===所以122331,,a a a a a a +++线性无关.7.已知12,,,s a a a L 的秩为r ,证明:12,,,s a a a L 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12,,,i i ir a a a L 是12,,,s a a a L 中任意r 个线性无关向量组,如果能够证明任意一个向量(1,2,,)j j s a =L 都可由12,,,i i ir a a a L 线性表出就可以了.事实上,向量组12,,,,i i ir j a a a a L 是线性相关的,否则原向量组的秩大于r ,矛盾.这说明j a 可由12,,,i i ir a a a L 线性表出,再由j a 的任意性,即证.8.设12,,,s a a a L 的秩为r ,12,,,r i i i a a a L 是12,,,s a a a L 中的r 个向量,使得12,,,s a a a L 中每个向量都可被它们线性表出,证明:12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.证 由题设知12,,,r i i i a a a L 与12,,,s a a a L 等价,所以12,,,r i i i a a a L 的秩与12,,,s a a a L 的秩相等,且等于r .又因为12,,,r i i i a a a L 线性无关,故而12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.9.证明:一个向量组的任何一个线性无关组都可以扩充成一线性无关组.证 将所给向量组用(Ⅰ)表示,它的一个线性无关向量组用(Ⅱ)表示.若向量组(Ⅰ)中每一个向量都可由向量组(Ⅱ)线性表出,那么向量组(Ⅱ)就是向量组(Ⅰ)的极大线性无关组.否则,向量组(Ⅰ)至少有一个向量a 不能由向量组(Ⅱ)线性表出,此时将a 添加到向量组(Ⅱ)中去,得到向量组(Ⅲ),且向量组(Ⅲ)是线性无关的.进而,再检查向量组(Ⅰ)中向量是否皆可由向量组(Ⅲ)线性表出.若还不能,再把不能由向量组(Ⅲ)线性表出的向量添加到向量组(Ⅲ)中去,得到向量组(Ⅳ).继续这样下去,因为向量组(Ⅰ)的秩有限,所以只需经过有限步后,即可得到向量组(Ⅰ)的一个极大线性无关组.10.设向量组为1(1,1,2,4)a =-,2(0,3,1,2)a =,3(3,0,7,14)a =4(1,1,2,0)a =-,5(2,1,5,6)a =1) 证明:12,a a 线性无关.2) 把12,a a 扩充成一极大线性无关组.证 1)由于12,a a 的对应分量不成比例,因而12,a a 线性无关. 2)因为3123a a a =+,且由1122440k k k a a a ++=可解得1240k k k ===所以124,,a a a 线性无关.再令112244550k k k k a a a a +++=代入已知向量后,由于相应的齐次线性方程组的系数行列式为0,因而该齐次线性方程组存在非零解,即1245,,,a a a a 线性相关,所以5a 可由124,,a a a 线性表出.这意味着124,,a a a 就是原向量组的一个极大线性无关组.注 此题也可将1245,,,a a a a 排成54´的矩阵,再通过列初等变换化为行阶梯形或行最简形,然后得到相应结论.11.用消元法求下列向量组的极大线性无关组与秩:12341)(6,4,1,2),(1,0,2,3,4)(1,4,9,16,22),(7,1,0,1,3)a a a a =-=-=--=-,123452)(1,1,2,4),(0,3,1,2)(3,0,7,14),(1,1,2,0)(2,1,5,6)a a a a a =-===-=解 1)设12346411210234149162271013A a a a a -éùéùêúêú-êúêú==êúêú--êúêú-êúëûëû 对矩阵A 作行初等变换,可得0411192600102341023404111926004569980114223101142231A --éùéùêúêú-êúêú®®êúêú---êúêú----ëûëû 所以1234,,,a a a a 的秩为3,且234,,a a a 即为所求极大线性无关组.3) 同理可得124,,a a a 为所求极大线性无关组,且向量组的秩为3. 12.证明:如果向量组(Ⅰ)可以由向量组(Ⅱ)线性表出,那么(Ⅰ) 的秩不超过(Ⅱ)的秩.证 由题设,向量组(Ⅰ)的极大线性无关组也可由向量组(Ⅱ)的极大线性无关组线性表出,即证向量组(Ⅰ)的秩不超过向量组(Ⅱ)的秩.13.设12,,,n a a a L 是一组维向量,已知单位向量12,,,n e e e L 可被它们线性表出,证明:12,,,n a a a L 线性无关.证 设12,,,n a a a L 的秩为r n £,而12,,,n e e e L 的秩为n . 由题设及上题结果知n r £从而r n =.故12,,,n a a a L 线性无关.14.设12,,,n a a a L 是一组n 维向量,证明:12,,,n a a a L 线性无关的充分必要条件是任一n 维向量都可被它们线性表出.证 必要性.设12,,,n a a a L 线性无关,但是1n +个n 维向量12,,,,n a a a b L 必线性相关,于是对任意n 维向量b ,它必可由12,,,n a a a L 线性表出.充分性.任意n 维向量可由12,,,n a a a L 线性表出,特别单位向量12,,,n e e e L 可由12,,,n a a a L 线性表出,于是由上题结果,即证12,,,n a a a L 线性无关.15.证明:方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 对任何12,,,n b b b L 都有解的充分必要条件是系数行列式0ij a ¹.证 充分性.由克拉默来姆法则即证.下证必要性.记1212(,,,)(1,2,,)(,,,)i i i ni n i n b b b a a a a b ===L L L则原方程组可表示为1122n n x x x b a a a =+++L由题设知,任意向量b 都可由线性12,,,n a a a L 表出,因此由上题结果可知12,,,n a a a L 线性无关.进而,下述线性关系12220n n k k k a a a +++=L仅有惟一零解,故必须有0ij A a =¹,即证.16.已知12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,证明: 与121,,,,,,r r s a a a a a +L L 等价.证 由于12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,因此它们的极大线性无关组所含向量个数必定相等.这样12,,,r a a a L 的极大线性无关组也必为121,,,,,,r r s a a a a a +L L 的极大线性无关组,从而它们有相同的极大线性无关组.另一方面,因为它们分别与极大线性无关组等价,所以它们一定等价. 17.设123213,,,r r b a a a b a a a =+++=+++L L L 121r r b a a a -=+++L证明:12,,,r b b b L 与12,,,r a a a L 具有相同的秩.证 只要证明两向量组等价即可.由题设,知12,,,r b b b L 可由12,,,r a a a L 线性表出.现在把这些等式统统加起来,可得12121()1r r r b b b a a a +++=+++-L L 于是121111(1)1111i i r r r r r a b b b b =+++-++----L L (1,2,,)i r =L即证12,,,r a a a L 也可由12,,,r b b b L 线性表出,从而向量组12,,,r b b b L 与12,,,r a a a L 等价.18.计算下列矩阵的秩:1)01112022200111111011-éùêú--êúêú--êú-ëû 2)11210224203061103001-éùêú--êúêú-êúëû3)141268261042191776341353015205éùêúêúêúêúëû 4)10014010250013612314324563277éùêúêúêúêúêúêúëû5)1010011000011000011001011éùêúêúêúêúêúêúëû解 1)秩为4.2)秩为3. 3)秩为2. 4)秩为3. 5)秩为5.19.讨论,,a b l 取什么值时,下列方程有解,并求解.1)12212321231x x x x x x x x x l l l l lì++=ï++=íï++=î 2)122123123(3)(1)23(1)(3)3x x x x x x x x x l l l l l l l l +++=ìï+-+=íï++++=î3)1221231234324ax x x x bx x x bx x ++=ìï++=íï++=î解 1)因为方程组的系数行列式21111(1)(2)11D l l l l l==-+所以当1l =时,原方程组与方程1221x x x ++=同解,故原方程组有无穷多解,且其解为11221321x k k x k x k=--ìï=íï=î 其中12,k k 为任意常数.当2l =-时,原方程组无解.当1l ¹且2l ¹-时,原方程组有惟一解.且12231212(1)2x x x l l l l l +ì=-ï+ïï=í+ïï+=ï=î2)因为方程组的系数行列式231211(1)333D l l l l l l l l +=-=-++所以当0l =时,原方程组的系数矩阵A 与增广矩阵A 的秩分别为2与3,所以无解.当1l =时,A 的秩为2,A 的秩为3,故原方程组也无解. 当0l ¹,且1l ¹时,方程组有唯一解321232232323159(1)129(1)43129(1)x x x l l l l l l l l l l l l l l ì+-+=ï-ïï-+ï=í-ïï--+=ï-ïî3) 因为方程组的系数行列式1111(1)121a Db b a b ==--所以当0D ¹时,即1a ¹且0b ¹时,方程组有惟一解,且为12321(1)1124(1)b x b a x b ab b x b a -ì=ï-ïï=íï+-ï=ï-î当0D =时1o若0b =,这时系数矩阵A 的秩为2,而它的增广矩阵A 的秩为3,故原方程组无解。
高等代数智慧树知到课后章节答案2023年下运城学院

高等代数智慧树知到课后章节答案2023年下运城学院运城学院第一章测试1.在一元多项式环,是其中的多项式,下列说法不正确的是()。
答案:只有才有2.在里能整除任意多项式的多项式是()。
答案:零次多项式3.设是的一个因式,则()。
答案:24.若且,则 ( )。
答案:5.设多项式, 则在有理数域上 ( )。
答案:不可约6.两个数域的并还是一个数域。
()答案:错7.如果是的导数的重因式,那么就是的重因式。
()答案:错8.在数域上,次非零多项式一定有个根。
(重根重复算) ()答案:错9.任意一个非零有理系数多项式都能表示成一个有理数与一个本原多项式之积。
( )答案:对10.奇数次实系数多项式必有实根。
( )答案:对第二章测试1.全排列2541673的逆序数是()。
答案:82.关于n阶行列式,下列叙述错误的是()。
答案:带正号的项比带负号的项多3.的根不包括()。
答案:-14.设, 则下述正确的是( )。
答案:5.设行列式,则第4行各元素的余子式之和的值是( )。
答案:-286.若8个数码的排列为奇排列, 则。
( )答案:对7.行列式就是一个数表。
答案:错8.阶行列式展开式中含的项共有项。
( )答案:对9.其中A、D为方阵。
( )答案:对10.线性方程组有多个解,则它的系数行列式一定为0。
( )答案:对第三章测试1.向量线性无关的充分必要条件是( )。
答案:中任一个向量均不能由其余个向量线性表示2.若齐次线性方程组只有零解,则应满足 ( )。
答案:3.设为矩阵,且非齐次线性方程组有唯一解,则有()。
答案:秩()=4.向量组(1,0,0),(0,1,0),(0,0,1),(1,2,1),(3,0,1)的秩为()。
答案:35.以下结论正确的是()。
答案:其他均不对6.若为阶矩阵, 且, 则齐次线性方程组必有非零解。
()对7.线性方程组与同解.。
( )答案:对8.若向量组的秩为r,则其中任意r+1个向量都线性相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4
1. 例 3.3. a 2. 令 − 1 2 −1 2 a −1 2 a− = a3 − 3 −1 4 2
1 4
=1 (a − 1)(2a + 1)2 = 0 得 a = 1, − 1 . 4 2
−1 a −1 2 2 3. 否. 反例: α1 = (1, 0), α2 = (2, 0), β1 = (1, 1), β2 = (3, 3). 4. 否. 反例: α1 = (1, 0), α2 = (2, 0), β = (−1, 0). 5. 是. 6. 否. 反例: α = (1, 0), β = (0, 1), γ = (1, 1). 7. 例 3.7. 8. 例 3.10. 9. 例 3.12. 10. 例 3.8. 11. 例 3.11.
3.8
1. 从 {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} 到 {e1 , e2 , e3 , e4 } 的过渡矩阵为
−1 ′ ′ ′ ′ P = (e′ α. 1 e2 e3 e4 ), α 在新基下的坐标为 P 3 (1) (0, − 2 , −1 , 5 ); 2 2
8. 例 3.68. 9. 例 3.69. 10. 例 3.64. 11. 例 3.86 (1). 12. 例 3.88.
3.7
1. 参考例 3.44, 令 a = 1, 可得 α 在新基下的坐标为 A−1 (a1 , a2 , · · · , an )′ = (an , an−1 − an , · · · , a2 − a3 , a1 − a2 ). 2. 例 3.38. 3. 例 3.39. 4. 例 3.40. 5. 例 3.41.
4 (2) (−1, − 1 , 3, − 3 ). 2 2 2. (1) 参考例 3.43. (2) 例 3.43. 3. (1) (1, 0, 0, 1); (1, 0, 0, 0); (2) (−4, −2, 11, 6); (5, 0, −1, 0). 4. 例 3.45.
3.9
1. (1) 是; (2) 否; (3) 是; (4) 是; (5) 否. 2. (1) 2; (2) 2; (3) 2; (4) 1. 3. 取 V1 的一组基, 则它们线性无关, 由定理 3.5.3, 它们也是 V2 的一组基,从而 V1 = V2 . 4. 由它们两两线性无关但全体线性相关可得 ∃!a, b ̸= 0 使得 α3 = aα1 + bα2 . 若 v ∈ L(α1 , α2 ), 则 ∃!c, d 使得 v = cα1 + dα2 , 所以 v = (c −
3.5
1. 例 3.9. 2. 例 3.26. 3. 例 3.27. 4. 例 3.24 (2). 5. 只需证明 {αi }n i=1 线性无关即可. 若它们线性相关, 则它们中必有一个向量可以 表示为其它向量的线性组合, 则表示不唯一, 矛盾. 6. 例 3.28. 7. 例 3.29 (1). 8. 例 3.29 (2). 9. 例 3.31.
8 42. 例 3.93. 43. 例 3.81. 44. 例 3.82. 45. 例 3.83. 46. 例 3.84. 47. 3.3.1 训练题解答题 10. 48. 3.3.1 训练题解答题 11.
7 18. 3.3.1 训练题解答题 12. 19. 例 3.94. 20. 例 3.99. 21. 例 3.100. 22. 例 3.101. 23. 例 3.102. 24. 3.3.1 训练题解答题 15. 25. 例 3.55. 26. 例 3.78. 27. 例 3.80. 28. 例 3.85. 29. 3.3.1 训练题解答题 6. 30. 3.3.1 训练题解答题 7. 31. 例 3.66. 32. (例 3.65 注) 用归纳法. m = 2 时, 由习题 3.6.10 立得. 设 m 时结论成立, 对 m + 1, 令 Am Am+1 = B , 则 A1 A2 · · · B = A1 A2 · · · Am Am+1 , 再由 r(B ) ≥ r(Am ) + r(Am+1 ) − n 及归纳假设, 得 r(A1 ) + r(A2 ) + · · · + r(Am ) + r(Am+1 ) − n ≤r(A1 ) + r(A2 ) + · · · + r(B ) ≤r(A1 A2 · · · B ) + (m − 1)n. 从而 r(A1 ) + r(A2 ) + · · · + r(Am ) + r(Am+1 ) ≤ r(A1 A2 · · · Am Am+1 ) + mn. 33. 例 3.70. 34. 例 3.89. 35. 例 3.97. 36. 例 3.96. 37. 例 3.73. 38. 例 3.74. 39. 例 3.75. 40. 例 3.98. 41. 例 3.72.
复习题三
1. V1 = {(a, 0)|a ∈ R}, V2 = {(0, b)|b ∈ R}, V3 = {(a, a)|a ∈ R}. 2. 若 v ∈ V2 + V1 ∩ V3 , 则 ∃v2 ∈ V2 , v3 ∈ V1 ∩ V3 , 使得 v = v2 + v3 . 又 V1 ⊇ V2 , 故 v2 ∈ V1 , 因而 v ∈ V1 . 又 v2 ∈ V2 ,v3 ∈ V3 , 所以 v ∈ (V2 + V3 ). 故有 v ∈ V1 ∩ (V2 + V3 ). 若 v ∈ V1 ∩ (V2 + V3 ), 则 v ∈ V1 且 ∃v2 ∈ V2 , v3 ∈ V3 , 使得 v = v2 + v3 . 由 V1 ⊇ V2 有 v2 ∈ V1 , 故 v3 (= v − v2 ) ∈ V1 . 所以 v3 ∈ V1 ∩ V3 . 故有 v ∈ V2 + V1 ∩ V3 . 3. 例 3.51. 4. 例 3.48. 5. 例 3.37. 6. 例 3.49. 7. 例 3.57. 8. 例 3.14. 9. 例 3.17. 10. 例 3.18. 11. 例 3.19 (2). 12. 3.3.1 训练题解答题 5. 13. 例 3.13. 14. 例 3.47. 15. 3.3.1 训练题解答题 13. 16. 3.3.1 训练题解答题 14. 17. 例 3.90.
方程组的全部解为 k1 η1 + k2 η2 . 2. (1) 无解; (2) 方程组的基础解系为 −3 −1 γ = 7 , η = −1 . − 2 0 1 方程组的全部解为 γ + kη ; (3) 方程组的基础解系为 −1 0 2 0 3 0 γ = ,η = . 1 0 4 2 0 1 方程组的全部解为 . (γ + kη) 1 2 3. 是,因为 秩为 2. 1 −1 20 6
3.6
1. 3; 2; 4; 2.
3 2. (1) 2; (2) 3. 3. (1) 否; (2) 是; (3) 否. 4. {α1 , α2 }. (3) 例 3.62. (4) 例 3.63 6. 由习题 3.6.5(1) 立得.
n+1 7. V = Rn+1 , {αi }n i=1 和 {αi }i=2 不等价. 证明见例 3.20.
复旦大学高等代数教材第三章答案
部分习题答案引用自白皮书的例题或训练题.
3.1
1. (1) 不是, 对减法不封闭; (2) 是, 请读者自行验证; (3) 是, 请读者自行验证; (4) 不是, 对乘法不封闭. 2. 请读者自行验证. 3. 参考例 3.31.
3.2
1. (−2, 0, 0, 0); (0, −8, 0, 2). 2. (0, 1 , −2 ). 3 3
5
3.10
1. (1) 方程组的基础解系为 −9 11 −3 η1 = 2 , η2 = −5 . 0 1 0 4 1
方程组的全部解为 k1 η1 + k2 η2 ; (2) 方程组的基础解系为 247 − 10 − 3 3 124 −4 3 3 1 1 η1 = − 3 , η2 = − 3 . 1 0 0 1
6 4. 例 3.4. 5. 例 3.91. 6. 由题意得, A 是方阵. 若 Ax = 0 只有零解, 则 |A| ̸= 0, 故 |Ak | ̸= 0, 所以 Ak x = 0 只有零解. 若 Ax = 0 有非零解, 则 |A| = 0, 故 |Ak | = 0, 所以 Ak x = 0 有 非零解. 7. 例 3.92. 8. 例 3.79. 9. 例 3.76. 10. 例 3.77. 11. 例 3.95. 12. 例 3.103. 13. 例 3.104.
3.3
1. (1) 不是; (2) 是; (3) 是; (4) 是. 2. (1) −(−α) = (−1) · ((−1)α) = (−1 · (−1))α = α;
1
2 (2) −(k α) = (−1)(k α) = (−k )α = k (−1)α = k (−α); (3) k (α − β ) = k (α + (−1)β ) = k α + k (−1)β = k α − k β .
ad )α1 b
+d α . 反之, b 3
若 v ∈ L(α1 , α3 ), 则 ∃!c, d 使得 v = cα1 + dα3 , 所以 v = (c + ad)α1 + bdα2 . 所以 L(α1 , α2 ) = L(α1 , α3 ). 由对称性可知 L(α1 , α2 ) = L(α1 , α3 ) = L(α2 , α3 ). 5. 例 3.50. 6. 例 3.52. 7. 例 3.53. 8. 否, 反例见复习题三 1. 9. 例 3.46. 10. 例 3.32. 11. 例 3.54.