复杂网络上的博弈演化-精品共60页文档
复杂系统中演化博弈研究背景介绍

复杂系统中演化博弈研究 背景介绍
姜罗罗 中国科学技术大学
提纲 演化博弈理论简介 • 经典博弈理论 • 演化博弈理论
1、博弈理论简介
• 博弈论(Game Theory):研究具有斗争或竞争性质现象的 理论和方法。 三要素:参与者(players)集合,策略(strategies)集合和收益 (payoffs)集 分类:合作博弈、非合作博弈; 静态博弈、动态博弈; 完全信息博弈、不完全信息博弈; • 研究博弈论的意义:理解人类的经济行为;理解社会和生 态物种系统中的合作行为以及自自组织斑图。
如何分配才是合理的呢?
按可以票力分配,a50万、b40万、c10万;c向a提出:a70万、b0、c30 万b向a提出:a80万、b20万、c0…… 权力指数:每个决策者在决策时的权力体现在他在形成的获胜联盟中的 “关键加入者”的个数,这个“关键加入者”的个数就被称为权利指数。 夏普里值:在各种可能的联盟次序下,参与者对联盟的边际贡献之和除 以各种可能的联盟组合。
生态博弈
非合作博弈强调个体理性
(individual rationality),就是从个 体的角度考虑策略选择,使得个体 收益最大。所以非合作博弈研究的 是参与者在利益相互影响的情况下 如何选策略使自己的收益最大,即 策略选择问题。
约翰· 纳什 (J. Nash)
纳什均衡(Nash Equilibrium):所有参与人最优策略的
争当少数者博弈
智猪博弈
小猪和大猪住在猪圈的一边(食槽在这里),开启食物的 开关在另一头,谁去踩,谁丧失先机。如何小猪去踩开关, 等小猪回来的时候大猪已经把大部分食物吃完。如果大猪 去踩开关,等大猪回来的时候小猪已经把一半的食物吃完。 对于小猪来说,最佳策略是等待大猪去踩开关,然后“搭 便车”获得小部分食物。然而,当大猪不去踩开关的时候, 小猪也要冒风险去踩开关。例如腾讯毫无顾忌地跟风,做 QQ旋风,做拍拍,做滔滔。因为不甘心的小猪早早把新技 术研发的前期搞定了,大猪们只需要悄悄跟随,适当的时 候踢开挡路的,就可以了。
复杂网络上的合作演化和博弈动力学研究

复杂网络上的合作演化和博弈动力学研究近年来,随着互联网的迅速发展,复杂网络的研究成为了科学界和社会学界的热门话题之一。
复杂网络是由大量节点和连接它们的边构成的网络结构,可以用来研究各种复杂系统,如社交网络、生物网络和交通网络等。
在复杂网络中,节点之间的合作行为是一种重要的现象。
合作对于维持社会秩序、推动社会进步具有重要意义。
然而,在现实世界中,个体之间的合作行为往往是基于一系列的考虑和动机。
博弈论是研究个体决策的数学工具,可以用来描述和分析合作和竞争的策略。
合作演化和博弈动力学是研究复杂网络中节点合作行为的重要方法。
合作演化研究的是节点之间如何通过相互影响来改变其合作策略的过程。
博弈动力学研究的是在复杂网络中,节点如何根据自身利益和环境反馈来选择最优的合作策略。
在复杂网络中,合作演化和博弈动力学相互作用,共同影响节点的合作行为。
合作演化可以通过节点之间的相互影响来促进合作的形成和传播。
博弈动力学则可以帮助节点根据自身利益来选择合作的策略。
这两者的相互作用使得复杂网络中的合作行为具有了一定的动态性和复杂性。
研究发现,复杂网络中的节点合作行为往往呈现出自组织和集群现象。
这些现象是由节点之间的相互作用和动态演化所引起的。
研究者通过建立数学模型和计算模拟,揭示了复杂网络中合作演化和博弈动力学的基本规律和机制。
对于复杂网络上的合作演化和博弈动力学的研究,不仅可以深化我们对合作行为的理解,还可以为社会管理和决策提供一定的参考和指导。
例如,在社交网络中,通过研究节点的合作行为,可以预测和干预社会事件的发生和发展。
在生物网络中,研究合作演化和博弈动力学可以帮助我们理解生物系统的进化和适应性。
总之,复杂网络上的合作演化和博弈动力学的研究在多个学科领域具有重要意义。
它不仅可以增进我们对复杂网络的认识,还可以为社会科学和生物科学的发展提供新的视角和方法。
未来,我们可以进一步深入研究复杂网络中合作演化和博弈动力学的机制,为构建和谐社会和可持续发展提供更有效的方法和策略。
复杂网络中的博弈

2. 小世界网络上的囚徒窘境博弈
2001 年Abramson 和Kuperman 在期刊Physical Review E 第63 卷首先研究了WS 小世界网络上的囚徒窘境博 弈。在他们的模型中,个体采用确定性策略更新规则 :每个个体采用邻居中收益最高者的策略。底层的交 互网络是一个由一维规则环进行断开重连得到的WS 小世界网络。
第八章 复杂网络中的博弈
目录
8.1 引言 8.2 博弈论概述 8.3 复杂网络中的演化博弈 8.4 复杂网络的抗毁性分析 8.5 复杂网络的抗毁性优化和修复策略
8.1 引言
广义上讲,复杂网络中的博弈问题包括:网络的攻击 和安全防护(包括抗毁性分析和优化)、网络中的流 行病(病毒、谣言)传播和抑制、网络的同步和牵制 控制、网络的拥塞和拥塞控制、网络的级联故障和故 障预防控制、网络中个体的合作和竞争
这种情况下达到的精炼贝叶斯纳什均衡解及其求解过 程一般也比较繁难,因此在此不做过多介绍。
8.3 复杂网络的演化博弈
8.3.1 演化博弈简介 8.3.2 演化网络博弈概述 8.3.3 基于囚徒窘境博弈模型的演化网络博弈 8.3.4 基于铲雪博弈模型的演化网络博弈
8.3.1 演化博弈简介
1973 年生态学家Smith 和Price 结合生物进化论与经 典博弈论在研究生态演化的基础上提出演化博弈论的 基本均衡概念—演化稳定策略(evolutionarily stablestragegy,ESS),标志着演化博弈理论的诞生。 此后,演化博弈理论逐渐被广泛地用于生态学、社会 学和经济学等领域。
如果参与博弈的局中人不能或者不被允许达成有约束 力的合作协议,或者虽达成协议但不被遵守,则把这 种博弈称为非合作博弈。
1. 合作博弈与非合作博弈
复杂网络演化博弈理论研究综述

复杂网络演化博弈理论研究综述一、本文概述Overview of this article随着信息技术的飞速发展,复杂网络作为一种描述现实世界中各种复杂系统的有效工具,已经引起了广泛关注。
而在复杂网络中,演化博弈理论则为我们提供了一种深入理解和分析网络动态行为的重要视角。
本文旨在全面综述复杂网络演化博弈理论的研究现状和发展趋势,以期能为相关领域的学者和研究人员提供有益的参考和启示。
With the rapid development of information technology, complex networks have attracted widespread attention as an effective tool for describing various complex systems in the real world. In complex networks, evolutionary game theory provides us with an important perspective to deeply understand and analyze the dynamic behavior of networks. This article aims to comprehensively review the research status and development trends of complex network evolutionary game theory, in order to provide useful reference and inspiration for scholars and researchers in related fields.本文首先回顾了复杂网络和演化博弈理论的基本概念和研究背景,阐述了两者结合的必要性和重要性。
接着,文章从网络结构、博弈规则、动态演化等多个方面对复杂网络演化博弈理论进行了深入的分析和讨论。
复杂网络上的演化博弈

t e n t e e o u i n rl t b es r t g n e l a o y a c s e t b ih d w e h v l t a i s a l t a e y a d r p i t rd n mi si s a l e .Th n,t e s o h s i v l - o y c s e h t c a t e o u c
ton r y m is o i ie we lmi d po l to nd t i e a i s p t he de e m i i tc r p i a o — i a y d na c ffn t l— xe pu a i ns a her r l ton hi O t t r n s i e lc t r dy— ‘ n m is a epr s n e a c r e e t d.So er s lson fx d pr ba iiy a d tm ea e a s v n m e u t i e o b lt n i r lo gi e .Fu t r r ,s me r c n r he mo e o e e t r s ls o v l i na y g me n c e u t fe o uto r a s o ompl x n t e e wor uc s s l— rd a c l- r e ne wo ks a ei r - kss h a ma lwo l nd s a e fe t r r nt o du e c d.Fi a l n ly,un e ol e e r l ms,f t e r s a c ie to , a os i e a pl a i r a or r s v d op n p ob e u ur e e r h d r c i ns nd p sbl p i ton a e s f c e o uton r a s O omplx ne wo k r i t d o . v l i a y g me n c e t r s a e po n e ut Ke wo d : v l ton r m e;r p ia o y mi s v l ton rl t b e s r t g y r s e o u i a y ga e lc t r d na c ;e o u i a iy s a l ta e y;c m plx ne wor ;f- o e t ks i
演化博弈

基于历史记忆的雪堆博弈
1、模型规则 将N个个体放置与某种网络的节点上 每一轮相互连接的个体同时博弈 个体的总收益是根据收益矩阵与所有邻居
博弈收益之和 一轮博弈结束后个体选择最佳策略更新 个体对于最佳策略具有记忆性,选择某个
策略取决于该策略在记忆中的数量
假设个体的记忆长度有限,长度为M,即上 一时刻到M时刻以前的历史最佳策略,个体 依据自身的历史记忆进行决策:
其中,pc为选择策略c的概率,NC和ND分别为策略C和D的数量 个体不断更新记忆,不断重复博弈,整个系统就会演化下去。
2、二维网格上的演化博弈
(1)主要研究变量
合作频率 fc
记忆长度M 收益参数r
(2)二维网格模拟
网络规模为1000,初始策略C和D各占50%, 并且在网络中随机分配
每个个体的初始记忆随机分配,并且个体 记忆对系统最终稳定行为没有任何影响
2、雪堆博弈
假设铲雪的代价为c, 每个人的好处量化为b,b>c,那么双 方收益矩阵为:
合作
B 背叛
合作 A
背叛
b-c/2, b-c/2 b-c ,b
b ,b-堆博弈中,遇到背叛时选择合作的收益大于 双方都背叛的收益,遇到背叛则选择合作; 个体的最佳策略取决于对手的策略; 相比囚徒困境,合作在雪堆博弈中更容易涌现。
复杂网络上的演化博弈
主要内容
1、群体博弈简介 2、基于历史记忆的雪堆博弈 3、演化博弈动力学与网络结构的共同演化
群体博弈简介
1、囚徒困境
囚徒的选择策略有:合作(坦白)、欺骗(抵赖)
我们可以得到的博弈矩阵为:
囚徒b
T>R>P>S
合作
欺骗
2R>T+S合作
随机演化博弈的算法研究及其在复杂网络中的应用

A12 ( )
A02 ( ) A2M 2 ( ) A1M 2 ( ) A2M 1 ( ) A0M 2 ( ) A1M 1 ( ) A2M ( )
. A0M 1 ( ) A1M ( )
标准式博弈
• 标准式博弈由三种元素组成:参与人、纯策略、收益函数
纯策略; 混合策略是在纯策略上的概率分布。
纳什均衡:如果博弈中的任意一个参与人选择的纯策略,都是对其他人 选择的纯策略的最优反应,那么这样的纯策略组合为一个标准式博弈的 纯策略纳什均衡:
* * si si* , ui (si* , s ) u ( s , s i i i i ).
• 演化博弈研究具有普遍意义的有限理性的参与人:惰性、近 视、遗传、突变、变异。Kandori, Mailath和Rob (1993) • 演化博弈不仅关注博弈的稳定结构,还通过引入不同的动态 机制研究博弈系统的稳定结构和演化过程之间的关系; • 演化博弈模型可以和个人学习机制相结合,可以探讨微观层 面上参与人的互动和宏观层面上群体的均衡现象之间的关系; • 演化博弈的假设条件与建模方法更加有利于进行模拟实验来 获得实证数据。
为了解决经典博弈论的以上三种缺陷, 从二十世纪九十年代发展了演化博弈 论的研究工作。
方法缺陷
假设缺陷
演化博弈论的产生背景
• 假设缺陷:完全理性假设,即假定参与人完全了解其对手 的策略集合以及使用每个策略的概率,同时也了解博弈规 则与收益结构。参与人也具有通过精确计算推理得到最优 策略的能力。但现实中的参与人只具有有限理性(Bounded Rationality)。
其中:
第12讲复杂网络上的博弈演化

演化博弈论着重研究是在一个动态过程中有限理性的个
体如何在重复博弈过程中,通过自适应学习来实现自身收益 最大化的问题。它把均衡看作是过程调整的结果。
经典博弈论到演化博弈论的3个关键概念的内涵式改变 (演化博弈论与经典博弈论的区别): (1)策略内涵的不同:不同行为 到生物系统中的不同类
型物种本身,策略由物种的不同表现型来体现;
(2)均衡意义的不同:纳什均衡到演化稳定策略(ESS); (3)个体互相作用方式的不同(博弈个体与博弈次数)
二、复杂网络上的演化博弈
在传统的演化博弈理论中通常假设个体间以均匀混合的 方式交互,即所有个体全部相互接触,然而,现实情况中个 体间的接触总是有限的,个体仅与周围的少数其他个体接触 .这样我们就可以在博弈理论中引入网络拓扑的概念。
个体的策略演化会趋向于一个均衡态,在此均衡态下所
有的个体会同时采取“纳什均衡策略”。 Nash认为,博弈问题的解应该是这样的一组策略,在这组
策略中,每一个参与者都无法通过单独改变自己的策略而
获得更多的收益。这样的状态就被称作纳什均衡态. 实际上纳什均衡态对所有的参与者来说,不一定是最好的结局。
经典博弈模型
更新规则、网络结构等。
虽然使用的博弈模型和具体的模拟细节各不相同,但基 本的模拟过程是类似的,这个模拟过程是分回合进行的,每 个回合包含两步: (l)网络中所有的参与者与其网络上的邻居进行博弈,并 获得收益。每个参与者的收益为与其所有邻居发生博弈得到 收益的总和。 (2)然后参与者将他的收益与他在网络上邻居的收益进 行比较,按照一定规则改变自己的策略。
性的个体最终会处于相互背叛的状态(注意到此时的集体收
益低于两人同时选择合作时的情况). 这种相互背叛的状态 (D,D)就是系统的纳什均衡态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
复杂网络上的博弈演化-精品
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子