雨量预报方法的评价模型(全国获奖论文)
全国大学生数学建模竞赛优秀论文选之雨量预报方法的评价2

雨量预报方法的评价摘要本文首先对两种雨量预报方法做出准确性的评价。
对位于东经120度、北纬32度附近的整个研究区域以及产生雨量的各种因素进行仔细分析之后,利用已知网格点降雨量的预报数据,进行合理的二维插值计算,从理论上得出非网格点降雨量的预报值;然后将这些理论值和各个观测点降雨量的准确值,经过求解得出两个方案在各个预报时段的偏差;在得到了偏差之后,利用偏差的平方和描述总的偏离程度,对每个时段进行权值的比较,再对两个方案进行多层次分析,从而做出权重的比较,最后利用MALTAB 等数学软件,得出两个方案的总偏差分别为:.0;方案一:928523.0;方案二:998061由此说明,就气象部门对该地区雨量预报的准确度来说,方案一优于方案二。
在此基础上,我们又加入公众对雨量分级预报的感受度等因素,把对该地区降雨量的研究从定量的方法转换成定性的方法。
对各个观测点实测的降雨量和理论降雨量相互对比,得到了各个观测点在每个时段的预报准确度,再利用多层次分析法得到了两个预报方案各自总的准确度为:.0;方案一:940791.0;方案二:997773由此说明,加入公众对雨量分级预报的感受度等因素之后,雨量预报方案二的准确度大于方案一的准确度。
因为在每个公众的心里,对各个时段预报的准确度有着不一样的权重,因此就需要对各个时段预报等级的准确度有不一样的预报要求。
我们在模型求解中提出了漏报率、空报率、错报率以及恶劣天气错报率,从而计算出两个预报方案各自对公众生产和生活的影响,综合得出它们的两个方案各自失误指数:方案一的综合失误指数:0.00060521;方案二的综合失误指数:0.000487213由此可以知道两种预报方法在失误方面差别不大,说明他们都具有良好的科学性,只是相对而言,第二种预报方法的失误方面稍微小一点。
关键词准确度多层次分析漏报率空报率恶报率一、问题的重述雨量预报对农业生产、城市工作和生活都有重要作用,但准确、及时地对雨量作出预报是一个十分困难的问题,广受世界各国关注。
数学建模C题论文

191])()([),(20200y y x x r z y x z -+--=c y b x a y x y x z +⋅+⋅++=22),(4753⨯41i D i D 20.000160.001162021421339915152112032534791410.1 6660.1 2.5 2.666.11212.12525.16060.1/mcm05/probX 53⨯47Y 53⨯47k n m Z ⨯53⨯47 k n m Z ⨯~53⨯47i n m k H ⨯m m n k n 21n +120i n m k S ⨯i D126 18319719141164512X Y⎪⎪⎪⎭⎫ ⎝⎛=⨯⨯⨯⨯⨯⨯47532531534712111..................x x x x x x X ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................y y y y y y),(y x Z =mnk ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯),(...),,(),,(............),(...),,(),,(4753475325325315315347147121211111y x f y x f y x f y x f y x f y x f ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................Z Z Z Z Z Z 1=imnk Z ~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~Z Z Z Z Z Z i imnkH ∆mnk Z i mnk Z ~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯ii i i i i h h h h h h 47532531534712111............... (2)i mnkS∆∑∑=⨯=⨯4712531)(47531j i ji i hi D ∆∑=16411641i mnk S 4i i imnk H 5347imnk S mnk H i D 41 2),(y x Z = ),(y x Z =i D nk m ⨯ i mnk H mnk Z i mnk Z ~1~mnk Z 2~mnk Z 1mnk H 2mnk H imnkS∆∑∑=⨯=⨯4712531)(47531j ij i i h1mnk S 2mnk S⑤ 用i D ∆∑=16411641i mnk S 计算出1D 与2D ,则1D 和2D 的值较小者为最优方案.3 主要程序及结论通过数据处理与分析我们认为预测方法一比预测方法二好.所得计算结果值分别为:(1)不同时段的两种方法的实测与预测值的均方差:1mnkS =[0.9247218269e-1, .165797962696, 0.9247218269e-1,0.9247218269e-1, .2586806182, .2586806182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174, .2715902174182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174]2mnkS := [0.921412432e-1, .1098068392, 0.2234955063e-1,0.1592933205e-1, .2851304286, .2851304286, .2851304286, 2.792910527, .2612701098, .2381007694, .2613774987, 0.5183032655e-1,.2851304286,2.792810527, .2612701098, .2381007694, .2613774987] (2) 方法一的均方差为:1D := .8311398371方案二的均方差: 2D = .8417760978得1D <2D .主要程序与运行结果为: (1) 局域曲面拟合程序> solve({0.3=0.6-r*(0.045^2+0.042^2)},{r});> z1:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z2:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z3:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z4:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> solve({0.15=0.3-r*(0.045^2+0.042^2)},{r});> z4:=0.3-39.58828187*[(x-118.1833)^2+(y-31.0833)^2];> solve({5.1=10.2-r*(0.045^2+0.042^2)},{r});> z1:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z2:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z3:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z4:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> solve({0.1=0.2-r*(0.045^2+0.042^2)},{r});> z4:=0.2-26.39218791*[(x-118.4000)^2+(y-30.6833)^2];>z4:=solve({118.9833^2+30.6167^2+a*118.9833+b*30.6167+c=0.7000,118.5833^ 2+30.0833^2+a*118.5833+b*30.0833+c=1.8000,119.4167^2+30.8833^2+a*119.41 67+b*30.8833+c=0.5});> solve({0.05=0.1-r*(0.045^2+0.042^2)},{r});> z1:=0.1-13.19609396*[(x-119.4167)^2+(y-30.8833)^2];>> solve({2.9=5.8-r*(0.045^2+0.042^2)},{r});> z4:=0.1-765.3734495*[(x-118.2833)^2+(y-29.7167)^2];(2)均方差求值程序:>sq1:=[0.09247218269,0.165797962696,0.09247218269,0.09247218269,0.258680 6182,0.2586806182,0.2586806182,2.791713932,0.2474029514,0.2539943168,0. 2715902174,0.2715902174182,0.2586806182,2.791713932,0.2474029514,0.2539 943168,0.2715902174];> sum1:=add(i,i=sq1);> ave1:=sum1/17;>ve1:=[.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222 900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.522 2900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.52 22900020];>sq2:=[0.0921412432,0.1098068392,0.022********,0.01592933205,0.285130428 6,0.2851304286,0.2851304286,2.792910527,0.2612701098,0.2381007694,0.261 3774987,0.0518*******,0.2851304286,2.792810527,0.2612701098,0.238100769 4,0.2613774987];(2)数据模拟图程序:> with(linalg):> l:=matrix(91,7,[58138,32.9833,118.5167, 0.0000, 5.0000, 0.2000, 0.0000, 58139, 33.3000,118.8500, 0.0000, 3.9000, 0.0000, 0.0000,58141, 33.6667,119.2667, 0.0000, 0.0000, 0.0000, 0.0000,58143, 33.8000,119.8000, 0.0000, 0.0000, 0.0000, 0.0000,58146, 33.4833,119.8167, 0.0000, 0.0000, 0.0000, 0.0000,58147, 33.0333,119.0333, 0.0000, 6.0000, 1.4000, 0.0000,58148, 33.2333,119.3000, 0.0000, 1.1000, 0.3000, 0.0000,58150, 33.7667,120.2500, 0.0000, 0.0000, 0.0000, 0.1000,58154, 33.3833,120.1500, 0.0000, 0.0000, 0.0000, 0.0000,58158, 33.2000,120.4833, 0.0000, 0.0000, 0.0000, 0.0000,58230, 32.1000,118.2667, 3.3000,20.7000, 6.6000, 0.0000,58236, 32.3000,118.3000, 0.0000, 8.2000, 3.6000, 1.4000,58238, 32.0000,118.8000, 0.0000, 0.0000, 0.0000, 0.0000,58240, 32.6833,119.0167, 0.0000, 3.0000, 1.4000, 0.0000,58241, 32.8000,119.4500, 0.1000, 1.4000, 1.5000, 0.1000,58243, 32.9333,119.8333, 0.0000, 0.7000, 0.4000, 0.0000,58245, 32.4167,119.4167, 0.3000, 2.7000, 3.8000, 0.0000,58246, 32.3333,119.9333, 7.9000, 2.7000, 0.1000, 0.0000,58249, 32.2000,120.0000,12.3000, 2.4000, 5.6000, 0.0000,58251, 32.8667,120.3167, 5.2000, 0.1000, 0.0000, 0.0000, 58252, 32.1833,119.4667, 0.4000, 3.2000, 4.8000, 0.0000, 58254, 32.5333,120.4500, 0.0000, 0.0000, 0.0000, 0.0000, 58255, 32.3833,120.5667, 1.1000,18.5000, 0.5000, 0.0000, 58264, 32.3333,121.1833,35.4000, 0.1000, 0.2000, 0.0000, 58265, 32.0667,121.6000, 0.0000, 0.0000, 0.0000, 0.0000, 58269, 31.8000,121.6667,31.3000, 0.7000, 2.8000, 0.1000, 58333, 31.9500,118.8500, 8.2000, 8.5000,16.9000, 0.1000, 58334, 31.3333,118.3833, 4.9000,58.1000, 9.0000, 0.1000, 58335, 31.5667,118.5000, 5.4000,26.0000,11.0000, 0.8000, 58336, 31.7000,118.5167, 3.6000,27.8000,15.3000, 0.6000, 58337, 31.0833,118.1833, 7.0000, 6.4000,15.3000, 0.2000, 58341, 31.9833,119.5833,11.5000, 5.4000,16.1000, 0.0000, 58342, 31.7500,119.5500,32.6000,37.9000, 5.8000, 0.0000, 58343, 31.7667,119.9333,20.7000,24.3000, 5.3000, 0.0000, 58344, 31.9500,119.1667,12.4000, 5.9000,16.3000, 0.0000, 58345, 31.4333,119.4833,21.8000,18.1000, 9.8000, 0.1000, 58346, 31.3667,119.8167, 0.1000,12.7000, 5.1000, 0.2000, 58349, 31.2667,120.6333, 1.1000, 5.1000, 0.0000, 0.0000, 58351, 31.8833,120.2667,22.9000,15.5000, 6.2000, 0.0000, 58352, 31.6500,120.7333,15.1000, 5.4000, 2.4000, 0.0000, 58354, 31.5833,120.3167, 0.1000,12.5000, 2.4000, 0.0000, 58356, 31.4167,120.9500, 5.1000, 4.9000, 0.4000, 0.0000, 58358, 31.0667,120.4333, 2.4000, 3.4000, 0.0000, 0.8000, 58359, 31.1500,120.6333, 1.5000, 3.8000, 0.5000, 0.1000, 58360, 31.9000,121.2000, 5.6000, 3.2000, 2.9000, 0.1000, 58361, 31.1000,121.3667, 3.5000, 0.6000, 0.2000, 0.7000, 58362, 31.4000,121.4833,33.0000, 4.1000, 0.9000, 0.0000, 58365, 31.3667,121.2500,17.7000, 2.2000, 0.1000, 0.0000, 58366, 31.6167,121.4500,75.2000, 0.4000, 1.5000, 0.0000, 58367, 31.2000,121.4333, 7.2000, 2.8000, 0.2000, 0.2000, 58369, 31.0500,121.7833, 3.2000, 0.3000, 0.0000, 0.3000, 58370, 31.2333,121.5333, 7.0000, 3.4000, 0.2000, 0.2000, 58377, 31.4667,121.1000, 7.8000, 7.2000, 0.3000, 0.0000, 58426, 30.3000,118.1333, 0.0000, 0.0000,17.6000, 6.2000, 58431, 30.8500,118.3167, 5.1000, 2.3000,16.5000, 0.1000, 58432, 30.6833,118.4000, 3.6000, 1.4000,20.5000, 0.2000, 58433, 30.9333,118.7500, 2.1000, 3.4000, 8.5000, 0.2000, 58435, 30.3000,118.5333, 0.0000, 0.0000,13.6000, 8.5000, 58436, 30.6167,118.9833, 0.0000, 0.0000, 5.3000, 0.5000, 58438, 30.0833,118.5833, 0.0000, 0.0000,27.6000,21.8000, 58441, 30.8833,119.4167, 0.1000, 1.6000, 1.6000, 1.0000, 58442, 31.1333,119.1833, 3.0000, 8.8000, 5.4000, 0.2000, 58443, 30.9833,119.8833, 0.1000, 2.7000, 0.1000, 0.9000,58446, 30.9667,119.6833, 0.0000, 0.1000, 5.1000, 2.5000, 58448, 30.2333,119.7000, 0.0000, 0.0000,15.1000, 6.9000, 58449, 30.0500,119.9500, 0.0000, 0.0000,23.5000, 8.2000, 58450, 30.8500,120.0833, 0.0000, 0.7000, 0.0000, 4.1000, 58451, 30.8500,120.9000, 0.5000, 0.1000, 0.0000, 3.8000, 58452, 30.7833,120.7333, 0.3000, 0.0000, 0.0000, 3.0000, 58453, 30.0000,120.6333, 0.0000, 0.0000, 0.0000,18.2000, 58454, 30.5333,120.0667, 0.0000, 0.0000, 0.5000, 4.9000, 58455, 30.5167,120.6833, 0.0000, 0.0000, 0.0000, 4.6000, 58456, 30.6333,120.5333, 0.0000, 0.0000, 0.0000, 4.2000, 58457, 30.2333,120.1667, 0.0000, 0.0000, 2.0000,12.6000, 58459, 30.2000,120.3167, 0.0000, 0.0000, 0.0000,15.0000, 58460, 30.8833,121.1667, 1.2000, 0.1000, 0.0000, 2.3000, 58461, 31.1333,121.1167, 4.0000, 1.4000, 0.4000, 0.2000, 58462, 31.0000,121.2500, 2.7000, 0.3000, 0.4000, 1.7000, 58463, 30.9333,121.4833, 1.7000, 0.1000, 0.0000, 0.8000, 58464, 30.6167,121.0833, 0.0000, 0.0000, 0.0000, 3.6000, 58467, 30.2667,121.2167, 0.0000, 0.0000, 0.0000, 1.8000, 58468, 30.0667,121.1500, 0.0000, 0.1000, 5.1000, 2.5000, 58472, 30.7333,122.4500, 0.3000, 0.6000, 0.0000, 4.9000, 58477, 30.0333,122.1000, 0.0000, 0.0000, 0.0000, 0.0000, 58484, 30.2500,122.1833, 0.0000, 0.0000, 0.0000, 0.0000, 58530, 29.8667,118.4333, 0.0000, 0.0000,27.5000,23.6000, 58531, 29.7167,118.2833, 0.0000, 0.0000, 3.7000,11.5000, 58534, 29.7833,118.1833, 0.0000, 0.0000, 9.3000, 6.5000, 58542, 29.8167,119.6833, 0.0000, 0.0000, 0.0000,27.6000, 58550, 29.7000,120.2500, 0.0000, 0.0000, 0.0000, 4.9000, 58562, 29.9667,121.7500, 0.0000, 0.0000, 0.0000, 0.9000]);> lat:=col(l,2);> lon:=col(l,3); > sd1:=col(l,4);> sd2:=col(l,5); > sd3:=col(l,6); > sd4:=col(l,7);> abc1:=seq([lat[i],lon[i],sd1[i]],i=1..91);> abc2:=seq([lat[i],lon[i],sd2[i]],i=1..91);> abc3:=seq([lat[i],lon[i],sd3[i]],i=1..91);> abc4:=seq([lat[i],lon[i],sd4[i]],i=1..91);> with(plots):> pointplot3d([abc1],color=green,axes=boxed);> surfdata([abc1],labels=["x","y","z"],axes=boxed);> with(stats):> with(fit):> with(plots):fx1:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc1]);> plot3d(fx1,x=25..35,y=119..135);> pointplot3d([abc2],color=blue,axes=boxed);> surfdata([abc2],labels=["x","y","z"],axes=boxed);>fx2:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc2]);> plot3d(fx2,x=25..35,y=119..135);> pointplot3d([abc3],color=red,axes=boxed)> surfdata([abc3],labels=["x","y","z"],axes=boxed);>fx3:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc3]);> surfdata([abc4],labels=["x","y","z"],axes=boxed);>fx4:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc4]);五.如何在评价方法中考虑公众感受的数学模型建立.1660.1 2.5 2.666.11212.12525.16060.1z } 1.00 {0≤≤=z z R } 5.21.0 {1≤≤=z z R } 66.2 {2≤≤=z z R } 121.6 {3≤≤=z z R } 251.12 {4≤≤=z z R } 601.25 {5≤≤=z z R } 1.60 {6≥=z z R 0ˆR 1ˆR 2ˆR 3ˆR 4ˆR 5ˆR 6ˆR } 1)( {ˆ000R z z z R ∈≤=,μ} 1)( {ˆ111R z z z R ∈≤=,μ} 1)( {ˆ222R z z z R ∈≤=,μ } 1)( {ˆ333R z z z R ∈≤=,μ} 1)( {ˆ444R z z z R ∈≤=,μ} 1)( {ˆ555R z z z R ∈≤=,μ } 1)( {ˆ666R z z z R ∈≤=,μ)(z i μ i 1z ∈i R i R )(z i μ i 16i R ˆ i 1 2)(z i μ i 1⎩⎨⎧≤<+-≤≤=1.006.0 , 5.22506.00, 1)(0z z z z μ)(1z μ] 2369277587.0e [2369277587.0112)3.1(----z 5.21.0≤≤z )(2z μ] 20555762126.0e [20555762126.0112)3.4(----z 66.2≤≤z)(3z μ] 2287787270.0e [2287787270.0119.5)05.9(2----z 121.6≤≤z )(4z μ] 70397557815.0e[70397557815.0119.12)55.18(2----z 251.12≤≤z)(5z μ] 00475951221.0e[00475951221.011100)55.42(2----z 601.25≤≤z)(6z μ2)]5.60(5 [11--+z 1.60≥z 74)(z i μ及iR ˆ i =0,1,…,6合并可得} 0 {≥=z z R 上的模糊集合} , 1)( {ˆR z z z R∈≤=μ.其中R 是论域,)(z μ是模糊集合R ˆ的隶属函数,由)(z i μ分段合)(z μ小雨的隶属函数图特大暴雨隶属函数图大暴雨隶属函数图暴雨隶属函数图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>≤<≤<≤<≤<≤<≤≤=60)(6025)(2512)(126)(65.2)(5.21.0)(1.00)()(6543210z z z z z z z z z z z z z z t μμμμμμμμ 5 353⨯47imnkZ ~)(z μ53⨯47=M mnk⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................μμμμμμ=M imnk~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~μμμμμμi ),(y x Z =i mnk ∏∆mnk M =M i mnk~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯i i i i i i 47532531534712111..................λλλλλλ 6imnkΓ∆∑∑=⨯=⨯4712531)(47531j i j i i λ i Ω∆∑=16411641i imnkΓ 8 i 2i i i mnk ∏5347imnk Γi mnk ∏i Ω411Ω2Ω 1Ω2Ω1D 2D19811999。
雨量预报方法的评价模型(全国获奖论文)

雨量预报方法的评价模型摘要本文建立了一个关于雨量预报方法的评估模型。
首先,通过对给定的大量数据(预报数据和实测数据)进行统计画图分析,得出了散点图。
然后分别对两种不同方法预报的41天中每天4个时段各等距网格点的雨量数据进行处理和分析。
在可接受的度数差范围内搜索与各个观测站点距离最近的网格点,按从小到大排序后取其最小的4个网格点,再根据欧氏距离倒数加权的方法对它们赋权重,取出4个网格点对应的雨量,分别与各自的权重相乘,累加得到的值来预测相对应观测站点的雨量。
对得到的观测站点的预测雨量进行两种方法的分析,方法一:将预测雨量与实测雨量求偏差率,并对所有偏差率求出一个偏差率的算术平方根,作为评价准确性的指数,从而得到第一种雨量预报方法的准确性的指数为102.8755,第二种雨量预报方法的准确性的指数为726.6841;方法二:将预测雨量与实测雨量分别转化为对应的级别(如雨量在区间0.1——2.5为1级),用同级率比较法将它们作比较,从而得到第一种雨量预报方法的同级率为73.9346% ,第二种雨量预报方法的同级率为70.9662% 。
本文利用数学软件Matlab很好地实现了编程模拟计算,并结合实际测得的数据得出了雨量预报方法的同级率,很好地指导了人们的生活与工作。
关键词:(预报、实测、网格点、同级率)(一)问题的重述与分析1、问题的重述随着气象事业现代化建设的快速发展,雨量预报对指导农业生产和城市工作和生活有重要作用,但如何准确、及时地对雨量作出预报是一个十分困难的问题,近年来,随着社会经济的不断发展,预报方法对于提高气象服务水平,增强防灾减灾能力具有重要意义,因此,广受世界各国关注。
我国某地气象台和气象研究所正在研究6小时雨量预报方法,即每天晚上20点预报从21点开始的4个时段(21点至次日3点,次日3点至9点,9点至15点,15点至21点)在某些位置的雨量,这些位置位于东经120度、北纬32度附近的53×47的等距网格点上。
降雨量预测的简单方法---数学建模论文

摘要首先,本文运用SAS和Excel两种软件工具对两种方法预测到的数据进行定量分析比较,采用绝对误差法让每一天每一个站点每一个时段预测到的数据与相应的实际的数据作差,求绝对值,再加总总的绝对值误差,建立了模型(1),得出了数据预测的方法一比方法二效果较好的结论。
其次,考虑到绝对误差法的局限性,进一步采用相对误差法对模型(1)进行改进,让每一天每一个站点每一个时段预测到的数据与相应的实际的数据作差的绝对值除于相对应的真实时段的数据,建立了模型(2);由于有些数据为0的缘故,对模型(2)进一步改进得到模型(3),仍然得出方法一优于方法二的结论。
最后,本文对模型进行了评价。
关键词:绝对误差法相对误差法SAS Excel一、问题重述FORECAST中的文件名为<f日期i>_dis1和<f日期i>_dis2,例如f6181_dis1中包含2002年6月18日采用第一种方法预测的第一时段数据(其2491个数据为该时段各网格点的数据),而f6183_dis2中包含2002年6月18日采用第二种方法预测的第三时段数据。
MEASURING中包含了41个名为<日期>.SIX的文件,如020618.SIX表示2002年6月18日晚上21点开始的连续4个时段各站点的实测数据,这些文件的数据格式是:站号纬度经度第1段第2段第3段第4段58138 32.9833 118.5167 0.0000 0.2000 10.1000 3.1000 58139 33.3000 118.8500 0.0000 0.0000 4.6000 7.4000 58141 33.6667 119.2667 0.0000 0.0000 1.1000 1.4000 58143 33.8000 119.8000 0.0000 0.0000 0.0000 1.8000 58146 33.4833 119.8167 0.0000 0.0000 1.5000 1.9000……根据已有的数据用模型判断这两种预测方法的优劣。
雨量预报方法评价模型

雨量预报方法评价模型
胡克满;王平尧;宣平
【期刊名称】《宁波职业技术学院学报》
【年(卷),期】2006(10)2
【摘要】针对评价两种6 h雨量预报方法的准确性建立数学模型.运用了数据拟合与插值法,其优点是数据结构紧凑、冗余度低,有利于网络和检索分析,图形比较直观、精度高,而且还可以通过权重调整空间插值等值线的结构.并进行了对模型的讨论与
求解.
【总页数】3页(P81-83)
【作者】胡克满;王平尧;宣平
【作者单位】宁波职业技术学院,浙江,宁波,315800;宁波职业技术学院,浙江,宁
波,315800;宁波职业技术学院,浙江,宁波,315800
【正文语种】中文
【中图分类】O13
【相关文献】
1.雨量预报方法的评价模型 [J], 詹晓琳;桂胜华
2.雨量预报方法的评价模型 [J], 雒征;蒋昕昊
3.雨量预报方法的评价模型 [J], 皮杰
4.对雨量预报方法的评价模型的评述 [J], 周密
5.雨量预报方法的模糊评价模型--2005高教社杯全国大学生数学建模竞赛题目之
一 [J], 杨金山;耿玉菊;马小女
因版权原因,仅展示原文概要,查看原文内容请购买。
论文较完整的解决了雨量预测方法的评估问题

论文较完整的解决了雨量预测方法的评估问题。
论文合理的选用了与距离有关的插值函数,得到了观测站处的预报值,给出了评价两种预报方法优劣的指标。
特别是论文不仅考虑了预报值与测量值之间误差的大小,还考虑了预报的稳定性,使评价指标更加完善。
不过,该论文的第二问稍显单薄,未能考虑不同等级雨量的误报对公众的不同影响。
摘要:本文建立了“最邻近点插值法”、“反距离加权平均法”等两个降雨量预报算法模型。
给出各观测站的雨量预报值,并H用三项指标对两种雨量预报准确性进行了评价。
对于问题二,给出了满意度函数用来评价公众满意程度。
结果表明两种预报方法公众的满意度都在95%以上关键词:最邻近点插值法;反距离加权平均法;满意度函数分类号:AMS(2000)65D17 中图分类号:029;P456 文献标识码:A1 模型的基本假设1) 假设所有预报数据和实测数据及预报点和观测站的经纬度坐标值均有效,即不考虑人为因素造成的无效数据。
2) 假设当两地距离大于某给定 >0时,两地之间的降雨量没有必然联系。
2 符号说明Ai=(a ,bi):表示91个观测站的经纬度坐标(i=1,2,⋯,91)。
( , ):表示53 x47个等距网格点上第J行、第k列的经纬度坐标( =1,2,-一,53;k;1,2,·一,47)。
l( ,k,d,£),z2(j,k,d,£):分别表示第一、二种预报方法对预报点(xjk, )第d天第t时段的降雨量预报值(d=1,2,⋯,41;t=1,2,3,4)。
(i,d,t);表示观测站 i第d天第t时段的降雨量实测值。
乏l( ,d,t),乏2( ,d,£):分别表示两种预报方法对观测站A 第d天第t时段的降雨量预报值。
rijk:表示观测站 t与预报点(xjk, )之间的距离。
您可能感兴趣的文档·高速公路建设管理·仓储业务标准操作程序·物流管理信息系统的软件实现·沉箱预制施工组织设计·竖向加固体复合地基的固结机理与应用·集装箱码头物流系统模拟·运输公司GPS 项目建议书·病情诊断·中国道路交通信息系统·《化工原理课程设计》报告·售后服务数据的应用·基于抗裂性的沥青路面基层和应力吸收层材料设计·私家车保有量增长及调控问题·带硬时间窗车El( ,d,t),C2( ,d,£):表示两种预报方法对观测站 t预报值的绝对误差。
雨量预报方法的评价模型5

雨量预报方法的评价模型吴 钢,余思维,唐碧艳(中央民族大学经济学院,北京 100081)摘 要: 本文利用夹角余弦计算客观性权重,用线性加权公式计算总评价值,建立了雨量预测方法优劣的评价模型,并对两种雨量预测方案进行了综合评价.关键词: 夹角余弦;线性加权;损失度;Matlab中图分类号:O242;O29 文献标识码:A 文章编号:100528036(2006)0420346205收稿日期:2005211201作者简介:吴钢(1985-),男(苗族),湖南怀化人.中央民族大学经济学院国际经济与贸易系2003级本科生.该论文获得2005年全国大学生数学建模与计算机应用竞赛乙组全国二等奖,由数学与计算机科学学院教师培训和指导.1 问题的提出与分析 雨量预报对农业生产和城市工作和生活有重要作用,但准确、及时地对雨量做出预报是一个十分困难的问题,备受世界各国关注.我国某地气象台和气象研究所研究了6小时雨量预报方法,即每天晚上20点预报从21点开始的4个时段(21点到次日3点,次日3点到9点,9点到15点,15点至21点)在某些位置的雨量,这些位置位于东经120度,北纬32度附近的53347的等距网格点上同时设立91个不均匀的观测站点实测这些时段的实际雨量.气象部门提供了用两种不同方法的预报数据和相应的实测数据.根据要求,我们对雨量预测的两种不同方法建立数学模型,具体要求如下:(1)建立数学模型评价两种6小时雨量预报方法的准确性;(2)气象部门将6小时降雨量分为6等:011-215毫米为小雨,216-6毫米为中雨,611-12毫米为大雨,1211-25毫米为暴雨,2511-60毫米为大暴雨,大于6011毫米为特大暴雨.若按此分级向公众预报,如何在评价方法中考虑公众的感受?根据气象部门提供的网格点和站点位置的经纬度,可知该地区大致位于我国浙江杭州到江苏盐城,安徽合肥到上海沿海的区域内[1~2](如图1),时间为6月中旬至7月底,正值该地区的梅雨时期.我们根据站点(星号)与网格点(蓝点)的经纬度用MAT LAB 软件算出各点二维平面图(图2),不难看,出该地区的地形因素是造成站点设置不均匀的主要原因.算出对于各站点的两种不同方法的预测数据的综合评价指标,使得网格点的数据和各站点的数据能够比较,对于两者的精确度,可以进行模拟投票,比较出两种方法的优劣;对于问题(2),我们对降雨量的七个等级进行数值转换,即晴天为0,小雨为1,中雨为2,以此类推,相应的也将各预测数据和预报数据进行数值转化,并引入损失度,再将二者进行比较,得出优劣度.2006年11月第15卷 第4期中央民族大学学报(自然科学版)Journal of the CUN (Natural Sciences Edition )N ov.2006V ol.15 N o.4图1 预报目标区域图Fig.1 The observed Area2 基本假设211 为建立模型所做的基本假设(1)各个站点所得的实际数据都是精确的;(2)各点间的地理距离理想化为在二维平面距离;图2 站点与网格点二维平面图Fig.2 Ichnograph of the position and grid(3)纬度相差一单位的距离与经度相差一单位的距离在二维平面上相等212 数学符号说明W c 代表某站点的有效范围内各网格点的综合测量值与实际值之间的误差Z c 代表各网格点的预测降雨量Zs 各站点的实测雨量X c 网格点的横坐标Xs 站点的横坐标yc 网格点的纵坐标ys 站点的纵坐标pc 站点预测与实测差距给公众带来的综合损失度f 预测方法最后的评价结果743 第4期吴钢等:雨量预报方法的评价模型q 各网格点对站点的权重3 问题1的模型建立与求解311 有效站点的确定本文定义有效范围是实测站点能够有效地测定的范围.确定站点有效影响范围,找到该范围内的网格点.有效范围是以该站点为中心以r 为半径的圆,其中r 的计算公式为:r =dmin +012其中dmin 表示与该站点最近的网格点到该站点的距离;用dmin 加一个数是为了保证该站点有效范围内有网格点;012是全部网格点间的最小距离和最大距离的平方和的开方(小数点后取一位有效数字),加上这样一个数可保证有效范围内网格点数量比较均匀.312 站点雨量预测值的确定处理该范围内网格点的预测数据,将其与该站点的实测数据进行比较,可以得到一个站点雨量预测的误差.考虑到该站点有效影响范围内网格点的个数不同且到该站点的距离也不同,我们通过各网格点到站点的距离计算出其对站点的权重,使距离越近的点权重越大,其计算公式为:q k =1(x ck -x s )2+(y ck -y s )2+01001∑n k =11(x ck -x s )2+(y ck -y s )2+01001这里∑n k -=1q k =1;在此基础上,求出该站点有效范围内网格点的预测数据与站点相应的实测数据的综合误差:w =∑nk =1|Z ck -Z s |×q k 其中n 表示该站点有效范围内网格点的个数.313 雨量预测方法综合评价模型的建立和求解31311 构造误差矩阵通过一天的4时段91站点的有效范围内网格点的预测数据与站点相应的实测数据的综合误差构成矩阵W =(w ij )94×4,w ij 为一天中第i 个站点第j 个时段的w 值.31312 确定该天各站点的两个相对偏差矩阵U =(u ij )91×4;V =(v ij )91×4;其中u ij =max j w ij -w ijmax j w ij -min j w ij;v ij =w ij -min j w ijmax j w ij -min jw ij 31313 计算U ,V 的对应列向量的夹角余弦得出初始权重(即未归一化的权重).归一化后得到客观性权重qz 1×4,它表示该天4个时段的客观性权重.31314 建立成本型矩阵F =B 3qz TB =(b ij )94×4;b ij =w ij Πmax w ij j31315 算出综合评价值f =∑F843中央民族大学学报(自然科学版)第15卷 我们对6月的数据(6月18日到6月28日)进行计算,结果可用Matlab 求得.f 1=7611679; f 2=771371; f 1<f 2,所以认为第一种预报6小时雨量的方法更为准确;31316 模型检验本文采用虚拟投票法对模型结果进行检验,虚拟各站点每天每时段都有工作人员根据站点实测数据与有效影响范围内网格点的预测数据对两方法进行投票,投票遵循的原则是投数据最接近的方法,如两者一样则对两方法都投票.用Matlab 进行模拟[3]6月(6月18日到6月28日)的情况,结果是: 方法一 2079票 方法二 1925票可见方法一的确比方法二更优,问题一种的综合评价指标是合理的符合实际的.4 问题2的模型建立与求解411 原始数据转换与等级比较按照气象部门的降雨量等级划分,将原始数据都转换为相应的等级;转换遵循的原则为:Z =0z <011;1011≤z <216;2216≤z <6.1;3 6.1≤z <1211;41211≤z <25.1;525.1≤z <25.1;6z ≥6011; 在问题一模型的基础上,处理有效范围内网格点的预测等级,将其与该站点实等级进行比较,结果为:p =Z c -Z S412 损失度的计算引入气象预报错会给公众带来的损失度作为评价标准来考虑公众的感受,为此将p 值转换为损失度,转换原则如下:p =-2pp <0p p >=0 该站点预测与实测差距给公众带来的综合损失度:pc =∑nk =1p k ×1(x ck -x s )2+(y ck -y s )2+01001∑nk =11(x ck -x s )2+(y ck -y s )2+01001413 评价模型的确定直接引入问题一模型中各天时段的权重qz ,通过某一天的4时段91站点的有效范围内网格点的预测等级与站点相应的实测等级的综合损失度构成的矩阵PC =(pc ij )94×4可直接建立成本型矩阵并算出综合评价值,F =B 3qz T其中B =(b ij )94×4;b ij =pc ij Πmax pc ij j ;f =∑F943 第4期吴钢等:雨量预报方法的评价模型053中央民族大学学报(自然科学版)第15卷 我们对6月的数据(6月18日到6月28日)进行计算,结果可用Matlab[4]求得:f1=9715925;f2=99911504;f1<f2,所以认为第一种预报6小时雨量的方法更为准确:414 模型检验虚拟各站点每天每时段都有公众根据站点实测等级与有效影响范围内网格点的预测等级对两方法进行投票,投票遵循的原则是采取选投损失度最小的方法,如两者一样则弃权.用Matlab进行模拟6月(6月18日到6月28日)的情况,结果是: 方法一 613票 方法二 526票可见方法一的确比方法二更优,在考虑公众感受的情况下,用我们的模型依旧可以保证其稳定有效性.5 小 结 (1)在模型的建立过程中,我们参考了大量有关地理知识的书籍和网站,因此我们的信息更广泛更准确;在对大量数据的处理方面,我们编写的程序简单,同时借助Matlab软件,因此程序运行速度快,可操作性强,能处理庞大的数据,模型易推广.(2)在模型假设中,我们假设各站点与被测点之间的地理距离理想化为在二维平面坐标图上的距离,且纬度相差一单位的实际距离与经度相差一单位的实际距离相等,虽然与实际情况有所差别,可能使结果不够精确,但并不影响评价结果.参考文献:[1] 王建国.中国地图册[M].成都:成都地图出版社,20031[2] 互联网三维地图[DBΠO L].http:ΠΠw w w1mapok1com,2005-09-161[3] 胡守信,李伯年.基于M AT LAB的数学实验[M].北京:科学出版社,20041[4] 帕特-安纳德,斯尤泊格.The M AT LAB5Handbook[M].北京:机械工业出版社,20001The Evaluation Model of the R ainfall Forecast MethodsWU G ang,Y U Si-wei,T ANG Bi-yan(Economic College,Central Univer sity for Nationalities,Beijing100081,China)Abstract:This paper uses the Cape cosine to calculate the objective weight,then uses Linear weighted formula to com pute the total evaluation value.The evaluation m odel of the rainfall forecast methods is established,s o we can obtain tw o rain fall forecasts for the integrated program evaluation.K ey w ords:clip the cape cosine;linear weighted;loss degree;Matlab[责任编辑:杨 玉]。
雨量预报方法的模糊评价模型——2005高教社杯全国大学生数学建模竞赛题目之一

Fuzzy Evaluation Model about Approach to the
Forecast of Rainfall
作者: 杨金山;耿玉菊;马小女
作者机构: 衡水学院数学与计算机科学系,河北衡水053000
出版物刊名: 衡水学院学报
页码: 25-28页
主题词: 模糊评价模型;隶属度函数;距离函数;评价函数;样本选取
摘要:对气象部门来说,准确、及时、有效地预报降雨量,需要有较优秀的预报方法.为此有必要构建一种评价某气象台所使用的2种不同降雨量预测方法精确性的模型,同时也应该在模型中考虑到公众的感受.为此,建立了一种模糊评价模型,并用MATLAB做了仿真.隶属度函数为:μ(x)=e^-a(x-b).而后,创建了一种距离函数来表征预测与实际降雨量之间的差距,最后用距离和的最小作为评价函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雨量预报方法的评价模型摘要本文建立了一个关于雨量预报方法的评估模型。
首先,通过对给定的大量数据(预报数据和实测数据)进行统计画图分析,得出了散点图。
然后分别对两种不同方法预报的41天中每天4个时段各等距网格点的雨量数据进行处理和分析。
在可接受的度数差范围内搜索与各个观测站点距离最近的网格点,按从小到大排序后取其最小的4个网格点,再根据欧氏距离倒数加权的方法对它们赋权重,取出4个网格点对应的雨量,分别与各自的权重相乘,累加得到的值来预测相对应观测站点的雨量。
对得到的观测站点的预测雨量进行两种方法的分析,方法一:将预测雨量与实测雨量求偏差率,并对所有偏差率求出一个偏差率的算术平方根,作为评价准确性的指数,从而得到第一种雨量预报方法的准确性的指数为102.8755,第二种雨量预报方法的准确性的指数为726.6841;方法二:将预测雨量与实测雨量分别转化为对应的级别(如雨量在区间0.1——2.5为1级),用同级率比较法将它们作比较,从而得到第一种雨量预报方法的同级率为73.9346% ,第二种雨量预报方法的同级率为70.9662% 。
本文利用数学软件Matlab很好地实现了编程模拟计算,并结合实际测得的数据得出了雨量预报方法的同级率,很好地指导了人们的生活与工作。
关键词:(预报、实测、网格点、同级率)(一)问题的重述与分析1、问题的重述随着气象事业现代化建设的快速发展,雨量预报对指导农业生产和城市工作和生活有重要作用,但如何准确、及时地对雨量作出预报是一个十分困难的问题,近年来,随着社会经济的不断发展,预报方法对于提高气象服务水平,增强防灾减灾能力具有重要意义,因此,广受世界各国关注。
我国某地气象台和气象研究所正在研究6小时雨量预报方法,即每天晚上20点预报从21点开始的4个时段(21点至次日3点,次日3点至9点,9点至15点,15点至21点)在某些位置的雨量,这些位置位于东经120度、北纬32度附近的53×47的等距网格点上。
同时设立91个分布不均匀的观测站点实测这些时段的实际雨量。
气象部门提供了41天的用两种不同方法的预报数据和相应的实测数据(预报数据在文件夹FORECAST中,实测数据在文件夹MEASURING中)。
现在我们所关心的问题就是:(1)对气象部门提供的大量数据(预报数据和实测数据),怎样进行合理、有效地分析,进而建立数学模型,来评价两种6小时雨量预报方法的准确性;(2)气象部门将6小时降雨量分为6等:0.1—2.5毫米为小雨,2.6—6毫米为中雨,6.1—12毫米为大雨,12.1—25毫米为暴雨,25.1—60毫米为大暴雨,大于60.1毫米为特大暴雨。
所以,若按此分级向公众预报,如何在评价方法中考虑公众的感受?2、问题的分析我们从题目中了解分析到:气象台每天晚上20点预报从21点开始的4个时段(21点至次日3点,次日3点至9点,9点至15点,15点至21点)在某些位置的雨量,这些位置位于东经120度、北纬32度附近的53×47的2491个等距网格点上。
同时设立91个分布不均匀的观测站点实测这些时段的实际雨量。
由于网格点比较多,且每个网格点的位置是以经度和纬度表示处在一定的区域,所以我们把纬度看作x轴,经度看作y轴,采用Matlab图形处理功能的基本绘图命令plot 画出散点图(图一),程序见附录一。
从图中可以分析看出,气象部门提供了在2491个网格点上41天4个时间段的大量预报数据(雨量),并且同样给出了91个观测站点的实测数据(雨量)。
所以我们想通过网格点上的预报数据来预测实测站点的数据。
然而,观测站点集中在所有网格点的中央部分,而四周是大量的距离比较远的网格点。
因此,通过搜索出2491个网格点中对站点影响比较大的几个网格点,再用搜索出来的几个网格点的预测数据加权求出一个预测数据(雨量),进而和该站点实测数据进行比较,来评价两种6小时雨量预报方法的准确性。
在向公众预报时,采取一种合理、准确的预测方法,增加雨量分等级预报的同级率,能对公众起到良好的出行指导作用,使人们对雨量预报有更深的理解,更多的关注。
(二) 模型的基本假设和符号说明1、模型假设(1) 观测站点的设置是不均匀的;(2) 题中网格是等距的正方形网格(所谓“正方形网格”是指每个格子都是正方形的网格;网络点是指纵线和横线的交叉点);(3) 一个x 轴 、y 轴分别为纬度和经度的坐标,通过把点的纬度和经度分别看作横坐标和纵坐标,用欧氏距离计算公式22)()(j i j i b b a a d -+-=来作为两点之间的距离。
(4) 点到观测站点的距离越短,则对观测站点的雨量影响越大;(5) 单个网格点到观测站点距离倒数与所取的4个网格点到观测站点倒数之和的比为它的权值;(6) 雨量用毫米做单位,小于0.1毫米视为无雨;2、符号说明:)2491,,2,1)(,( =i n m X i i i 个第i 网格点及其对应的纬度和经度:)91,,2,1)(,( =i b a P i i i 个第i 观测站点及其对应的纬度和经度:ε 可接受度数差:)4,3,2,1,91,,2,1()(===⨯n i q Q n i in 与个第i 观测站点的距离最小的前4个网格点的对应权矩阵:)4,3,2,1,91,,2,1()(===⨯n i d D n i in 与个第i 观测站点的距离最小的前4个网格点的距离矩阵22)()(j i j i y y x x d -+-= 欧氏距离的计算公式)4,3,2,1,91,...,2,1()(===⨯n i f Y n i in j 个第j 时段里,与个第i 观测站点的距离最小的前4个网格点的预测降雨量矩阵)164,...,2,1,91,...,2,1()(===⨯j i y M j i ij 个第i 观测站点的个第j 时段预测降雨量矩阵 )164,...,2,1,91,...,2,1()(===⨯j i s I j i ij 个第i 观测站点的个第j 时段实测降雨量矩阵 :σ 预报偏差率:S 预报偏差率的算术平方根(准确性指数) 6210,...,,i i i i J J J J 统计种第i 方法的预报数据与实测数据处在同一级别、相差1级、相差2级、、、、相差6级的频数(三)模型的建立及求解一、问题(1)及其求解算法:1.根据题意,气象部门提供了41天用两种不同方法的预报数据和相应的实测数据,每种预报方法都有大量的预测数据。
为了评价两种6小时雨量预报方法的准确性,我们采用网格点上的预报数据来预测观测站点的数据,再来和实际测得的数据相比,判断其准确性。
以坐标),(i i i b a p )91,,2,1( =i 为基准点,给定一个可接受度数差ε(在求解中取25.0=ε,可搜索得到9至19个网格点),对任意的)91,,2,1( =i p i ,搜索其任一个观测站点在纬度和经度都上下增加ε的正方形内的所有等距网格点。
若网格点()n m X ,纬度和经度在同时满足εε+≤≤-i i a m a 和εε+≤≤-i i b n b 时,即认为该网格点是可接受范围内的网格点。
2.找到可接受范围内的网格点后,我们计算网格点和这些观测站点间的距离。
再得到各观测站点和等距网格点之间的距离后,将各观测站点按距离从小到大排序后保存,我们用Matlab 编程求得结果(见附录二)。
3.各观测站点和等距网格点之间的距离从小到大排序后,为了更好地用网格点的预报雨量来预测观测站点的雨量,我们取前4个到观测站点距离最小的等距网格点。
根据欧氏距离的倒数加权的方法,先算出前4个网格点到观测点的距离,再分别对它们求倒,则4个网格点分别到观测站点的权重为它们之间距离的倒数。
权的计算公式为:)4,3,2,1,91,...2,1(,1141===∑=n i d d q j ijin in 其中为了预测各观测站点在某月某日某个时段的雨量值,我们采用距离的倒数加权的方法,取出4个等距网格点分别在某月某日某个时段的雨量值,然后分别乘以它们各自对观测站点的权重,再求和就为预测降雨量。
预测降雨量的计算公式:∑=⨯=41n in in ij f q y每个时段中,每个观测站点对应有4个网格点预测雨量值,可计算出1个观测站点预测雨量值,91个观测站点,164个时段就可计算出一个个第i 观测站点的个第j 时段预测降雨量矩阵)164,...,2,1,91,...,2,1()(===⨯j i y M j i ij这里我们用Matlab 编程求得两个方法对应的预测降雨量矩阵(见附录三)。
4.将两个方法对应的预测降雨量矩阵分别与实测降雨量矩阵进行比较,分析出哪一个的准确性高。
这里我们用计算出预报偏差率的算术平方根作为一个准确性指数,来辨别准确性的高低。
取预测降雨量矩阵)164,...,2,1,91,...,2,1()(===⨯j i y M j i ij 和实测降雨量矩阵)164,...,2,1,91,...,2,1()(===⨯j i s I j i ij 。
则有: 预报偏差率计算公式:)164,...,2,1,91,...,,2,1(==-=j i y s y ij ijij ij σ取()j i ij ⨯σ中的元素,计算预报偏差率的算术平方根()∑∑===91116412i j ijS σ当S 越小,准确性越高。
这里我们用Matlab 编程求得两个方法(见附录四)求得:预报偏差率的算术平方根(即准确性指数):方法一的为:8755.1021=S方法二的为:7522.7262=S所以可以反映出第一种方法比第二种方法准确性高。
二、 问题(2)及其求解由题意可得:气象部门将6小时降雨量分为6等:0.1—2.5毫米为小雨,2.6—6毫米为中雨,6.1—12毫米为大雨,12.1—25毫米为暴雨,25.1—60毫米为大暴雨,大于60.1毫米为特大暴雨。
为了比较91个观测点的预报数据与实测数据之间量级上的差别,分别将降雨量的预报值和实测值按大小划分成7个级别后,分别记为:[0,0.1]——0,[0.1,2.5]——1,[2.6,6]——2,[6.1,12]——3,[12.1,25]——4,[25.1,60]——5,[60.1,]∞——6。
然后分别统计预报数据与实测数据处在同一级别、相差1级、相差2级、相差3级、相差4级、相差5级、相差6级的频数,并计算出对应频率。
把两个方法对应的预测降雨量矩阵(题一中已计算出)与实测降雨量矩阵转化为对应的等级矩阵,将两个方法对应的预测等级矩阵分别与实测等级矩阵进行比较,分别统计预报数据与实测数据处在同一级别、相差1级、相差2级、相差3级、相差4级、相差5级、相差6级的频数。
我们通过Matlab 编程求解(见附录四),得出结果:方法一的为:0,0,2,17,113,3758,1103416151413121110=======J J J J J J J 方法二的为:0,11,19,56,145,4102,1059126252423222120=======J J J J J J J并计算出频率:方法一频数 方法二频数 方法一频率 方法二频率11034 10591 0.73934602 0.709662293758 4102 0.25180917 0.27485929113 145 0.0075717 0.0097158917 56 0.0011391 0.003752352 19 0.00013401 0.001273120 11 0 0.000737070 0 0 0表一由表一中和图二可以看出方法一的报错率低,相对报错等级差小,公众应该更满意使用方法一进行降雨量的预报。