算法大全第28章 灰色系统理论及其应用
灰色系统理论及其应用

灰色系统理论及其应用第一章灰色系统的概念与基本原理1.1灰色系统理论的产生和发展动态1982年,北荷兰出版公司出版的《系统与控制通讯》杂志刊载了我国学者邓聚龙教授的第一篇灰色系统理论论文”灰色系统的控制问题”,同年,《华中工学院学报》发表邓聚龙教授的第一篇中文论文《灰色控制系统》,这两篇论文的发表标志着灰色系统这一学科诞生。
1985灰色系统研究会成立,灰色系统相关研究发展迅速。
1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。
目前,国际、国内300多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。
国际著名检索已检索我国学者的灰色系统论著3000多次。
灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。
1.2几种不确定方法的比较(系统科学---系统理论)概率统计,模糊数学和灰色系统理论是三种最常用的不确定系统研究方法。
其研究对象都具有某种不确定性,是它们共同的特点。
也正是研究对象在不确定性上的区别,才派生了这三种各具特色的不确定学科。
模糊数学着重研究“认识不确定”问题,其研究对象具有“内涵明确,外延不明确”的特点。
比如“年轻人”内涵明确,但要你划定一个确定的范围,在这个范围内是年轻人,范围外不是年轻人,则很难办到了。
概率统计研究的是“随机不确定”现象,考察具有多种可能发生的结果之“随机不确定”现象中每一种结果发生的可能性大小。
要求大样本,并服从某种典型分布。
灰色系统理论着重研究概率统计,模糊数学难以解决的“小样本,贫信息”不确定性问题,着重研究“外延明确,内涵不明确”的对象。
如到2050年,中国要将总人口控制在15亿到16亿之间,这“15亿到16亿之间“是一个灰概念,其外延很清楚,但要知道具体数值,则不清楚。
三种不确定性系统研究方法的比较分析项目灰色系统概率统计模糊数学研究对象贫信息不确定随机不确定认知不确定基础集合灰色朦胧集康托集模糊集方法依据信息覆盖映射映射途径手段灰序列算子频率统计截集数据要求任意分布典型分隶属度可布知侧重点内涵内涵外延认知表达目标现实规律历史统计规律特色小样本大样本凭经验1.3灰色系统理论的基本概念定义1.3.1信息完全明确的系统称为白色系统。
灰色系统理论的应用

灰色系统理论的应用灰色系统理论是一种基于不完全信息、缺乏数据和知识的系统分析方法。
它是由我国著名学者李兴钢教授于上世纪80年代提出的,是一种集数学、统计、经济、管理、环境等多学科为一体的理论体系。
在实际应用中,灰色系统理论可以通过对已有数据的预处理、模型建立、模型检验、模型应用等步骤来解决实际问题。
一、灰色系统理论的优点相比较于其他的统计与预测方法,灰色系统理论的特点主要有以下几个:1. 灰色系统理论可以通过对有限或者不确定的历史数据进行分析,得到一些有用的信息。
2. 灰色系统理论适合处理小样本、非稳态、非线性等情况下的系统分析。
3. 灰色系统理论可以得出相对较为精确但是不需过多历史数据的预测结果,这对于预测风险较高的领域非常有用。
二、灰色系统理论应用的具体场景灰色系统理论在很多领域得到了广泛应用,以下是一些典型的应用场景:1. 企业管理在企业的生产经营中,灰色系统理论可以通过对生产数据、销售数据、库存数据等进行分析,帮助企业管理人员制定合理的生产计划、销售策略和库存控制策略。
同时,灰色系统理论也能较为准确地预测某种商品的需求情况,有助于企业制定产销计划并减少存货积压。
2. 金融风险控制在金融领域,灰色系统理论可以用于控制风险,规避可能出现的金融波动和风险事件。
它可以通过大量的历史数据,去发现其中蕴含的信息和规律,并将其运用到风险控制中。
3. 能源管理对于电力、煤炭、石油等能源行业,灰色系统理论可以用于分析煤炭储量、电力供需情况、石油开采效果等问题。
同时还可以对得到了地下水位与地温的数据,预测天然气的渗透性、储量与分布规律。
4. 医疗领域在医疗领域,灰色系统理论可以用于预测疾病的流行趋势、治疗效果和疾病的概率。
同时,它也可以用于分析不同治疗方式造成的费用差异,并为医疗机构提供合理的方案。
三、灰色系统理论的应用案例以下是几个具体的应用案例:1. 预测手机销售某通讯公司通过调查与分析了解到,在某一段时间内销售的手机数量与之前销售的时间和数量有关系。
灰色系统理论在电子设计中的应用

灰色系统理论在电子设计中的应用灰色系统理论是20世纪80年代提出的一种新的系统分析和预测方法,它是一种将事物内部联系分析和系统研究相结合的理论方法。
在电子设计领域,灰色系统理论具有重要的应用价值,可以帮助工程师解决各种设计问题,提高系统的可靠性和性能。
首先,灰色系统理论可以用于系统建模和预测。
在电子设计中,系统建模是非常重要的一步,通过建立系统模型可以帮助工程师更好地理解系统的运行机理。
而灰色系统理论可以对系统的信息进行不完全、不准确地描述,通过灰色关联度和灰色预测模型可以对系统进行准确的预测,为设计提供有力的支持。
其次,灰色系统理论可以用于系统优化设计。
在电子设计中,我们通常会面对多个设计指标之间的矛盾和冲突,如性能与成本、功耗与速度等。
灰色系统理论可以通过建立多目标的灰色优化模型,综合考虑各种设计指标的影响,找到最优解,实现设计的全面优化。
此外,灰色系统理论还可以应用于系统故障诊断和预防。
在电子系统设计中,故障是不可避免的,如何准确、快速地诊断和预防系统故障对于系统的可靠性至关重要。
灰色系统理论可以通过灰色关联度分析,找出系统各个部件之间的关联性,从而有效地诊断出故障原因,并采取有效的预防措施,提高系统的稳定性和可靠性。
此外,还可以应用于电子系统的噪声抑制。
在电子设计中,噪声是一个常见的问题,会影响系统的性能和稳定性。
灰色系统理论可以通过灰色关联度分析,准确识别系统中的主要噪声源,并采取相应的抑制措施,降低系统的噪声水平,提高系统的性能和质量。
综上所述,灰色系统理论在电子设计中具有广泛的应用前景,可以帮助工程师解决各种设计问题,提高系统的可靠性和性能。
希望工程师们能够深入学习灰色系统理论,并将其灵活应用于实际工程设计中,不断推动电子设计领域的创新和发展。
《灰色系统理论及其应用》——读书笔记

第一章灰色系统的概念与基本原理1.1 灰色系统理论的产生于发展动态1.1.1 灰色系统理论产生的科学背景1、在系统研究中,由于内外扰动的存在和认识水平的局限,人们得到的信息往往带有某种不确定性。
随着科学技术的发展和人类社会的进步,人们对各类系统不确定性的认识逐步深化,对不确定性系统的研究也日益深入。
邓聚龙于80年代创立的灰色系统理论。
2、中国学者邓聚龙在1982年创立的灰色系统理论,是一种研究少数据、贫信息不确定性问题的新方法。
3、灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统为研究对象,主要通过对“部分”已知信息的生成、开发,提取有价值的信息,实现对系统运行行为、演化规律的正确描述和有效监控。
1.1.2 灰色系统理论的产生与发展动态1、灰色系统理论的产生——1982年,北荷兰出版公司的《系统与控制通讯》(Systems & Control Letters)杂志刊载了我国学者邓聚龙的第一篇灰色系统系统论文“灰色系统的控制问题”(The control problem of grey systems);同年,《华中工学院学报》刊载了邓聚龙的第一篇中文灰色系统论文“灰色控制系统”。
这两篇开创性论文的公开发表,标志着灰色系统理论的问世。
1.1.3 不确定性系统的特征与科学的简单性原则1、信息不完全、不准确是不确定性系统的基本特征。
2、系统演化的动态特性、人类认识能力的局限性和经济、技术条件的制约,导致不确定性系统的普遍存在。
3、信息不完全是不确定性系统的基本特征之一。
信息不完全是绝对的,信息完全则是相对的。
4、概率统计中的“大样本”,实际上表达了人们对不完全的容忍程度。
通常情况下,样本量超过30即可视为“大样本”。
5、不确定性系统的另外一个基本特征是数据不准确。
从不准确产生的本质来划分,又可分为概念型、层次型和预测型三类:(1)概念型。
概念型不准确源于人们对某种事物、观念或意愿的表达,如人们通常所说的“大”、“小”、“多”、“少”、“高”、“低”、“胖”、“瘦”、“好”、“差”以及“年轻”、“漂亮”、“一堆”、“一片”、“一群”等,都是没有明确标准的不准确概念,难以用准确的数据表达。
灰色系统理论及其应用学习心得

灰色系统理论及其应用学习心得1.灰色系统理论的产生现代科学技术在高度分化的基础上又呈现了高度综合的大趋势,导致了具有方法论意义的系统科学学科群的出现。
系统科学揭示了事物之间更为深刻、更具本质性的内在联系,大大促进了科学技术的整体化进程;许多科学领域中长期难以解决的复杂问题随着系统科学新学科的出现迎刃而解;人们对自然界和客观事物演化规律的认识也由于系统科学新学科的出现而逐步深化。
20 世纪 40 年代末诞生的系统论、信息论、控制论,产生于20 世纪60 年代末、70 年代初的耗散结构理论、协同学、突变论、分形理论以及 70 年代中后期相继出现的超循环理论、动力系统理论、泛系理论等都是具有横向性、交叉性的系统科学新学科。
在系统研究中,由于内外扰动的存在和认识水平的局限,人们所得到的信息往往带有某种不确定性。
随着科学技术的发展和人类社会的进步,人们对各类系统不确定性的认识逐步深化,不确定性系统的研究也日益深入。
20 世纪后半叶,在系统科学和系统工程领域,各种不确定性系统理论和方法的不断涌现形成一大景观。
如扎德(L. A. Zadeh)教授于60年代创立的模糊数学,邓聚龙教授于 80 年代创立的灰色系统理论,帕拉克(Z. Pawlak)教授于 80 年代创立的粗糙集理论(Rough Sets Theory)和王光远教授于 90年代创立的未确知数学等,都是不确定性系统研究的重要成果。
这些成果从不同角度、不同侧面论述了描述和处理各类不确定性信息的理论和方法。
1982年,中国学者邓聚龙教授创立的灰色系统理论,是一种研究少数据、贫信息不确定性问题的新方法。
灰色系统理论以“部分信息已知,部分信息未知”的“小样本”、“贫信息”不确定性系统为研究对象,主要通过对“部分”已知信息的生成、开发,提取有价值的信息,实现对系统运行行为、演化规律的正确描述和有效监控。
社会、经济、农业、工业、生态、生物等许多系统,是按照研究对象所属的领域和范围命名的,而灰色系统确是按颜色命名的。
灰色系统理论及其应用

5 灰色模型
5.1 GM(1,1) 模型
将时刻 k 2,3,, n 视为连续变量t 则数列 x(1) 就可视为时间 t 的函数,x(1) x(1) (t) GM(1,1) 的白化型为:
dx(1) ax(1) (t) b dt
5 灰色模型
5.2 GM(1, N)模型
GM (1, N) :模型是一阶的,包含N个变量的灰色模型
x(1) 的灰导数为: d (k) x(0) (k) x(1) (k) x(1) (k 1), k 2,3,, n
5 灰色模型
5.1 GM(1,1) 模型
x(1) 的紧邻均值序列为: z(1) (z(1) (2), z(1) (3),, z(1) (n))
z(1) (k) 0.5x(1) (k) 0.5x(1) (k 1), k 2,3,, n
1 n
n
( k
k 1
)2
6 灰色预测
6.2 灰色预测的步骤
(5)小误差概率合格模型: 小误差概率为:
p P k 0.67445S1
给定 p0 0, p p0 称模型为小误差概率合格模型
6 灰色预测
6.2 灰色预测的步骤
常用精度等级:
6 灰色预测
6.3 Verhulst GM (2,1) DGM
2 2
可容覆盖区域:(e n1 , e n2 )
2 2
(k ) (e n1 , e n2 )
6 灰色预测
6.2 灰色预测的步骤
1.数据的检验与处理:
2 2
(k ) (e n1 , e n2 )
2 2
(k ) (e n1 , e n2 )
数据列可用为模型的预测数据 数据列需进行变换处理
平移变换
灰色系统理论及其应用

灰色系统理论及其应用第一章灰色系统的概念与基本原理1.1灰色系统理论的产生和发展动态1982年,北荷兰出版公司出版的《系统与控制通讯》杂志刊载了我国学者邓聚龙教授的第一篇灰色系统理论论文”灰色系统的控制问题”,同年,《华中工学院学报》发表邓聚龙教授的第一篇中文论文《灰色控制系统》,这两篇论文的发表标志着灰色系统这一学科诞生1985灰色系统研究会成立,灰色系统相关研究发展迅速。
1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。
目前,国际、国内300多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。
国际著名检索已检索我国学者的灰色系统论著3000多次。
灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。
1.2几种不确定方法的比较概率统计,模糊数学和灰色系统理论是三种最常用的不确定系统研究方法。
其研究对象都具有某种不确定性,是它们共同的特点。
也正是研究对象在不确定性上的区别,才派生了这三种各具特色的不确定学科。
模糊数学着重研究“认识不确定”问题,其研究对象具有“内涵明确,外延不明确”的特点。
比如“年轻人”内涵明确,但要你划定一个确定的范围,在这个范围内是年轻人,范围外不是年轻人,则很难办到了。
概率统计研究的是“随机不确定”现象,考察具有多种可能发生的结果之“随机不确定”现象中每一种结果发生的可能性大小。
要求大样本,并服从某种典型分布。
灰色系统理论着重研究概率统计,模糊数学难以解决的“小样本,贫信息”不确定性问题,着重研究“外延明确,内涵不明确”的对象。
如到2050年,中国要将总人口控制在15亿到16亿之间,这“15亿到16亿之间“是一个灰概念,其外延很清楚,但要知道具体数值,则不清楚。
1.3灰色系统理论的基本概念定义1.3.1信息完全明确的系统称为白色系统。
灰色系统理论在科学问题求解中的应用

灰色系统理论在科学问题求解中的应用灰色系统理论是一种复杂的理论体系,源于1970年代初中国黄百炼教授创建的灰色系统理论与灰色信息处理方法。
该理论基于科技过程和现象中存在的不确定性,在模糊和确定性之间建立了一种理论框架,能够用来描述那些未知或不完全了解的复杂现象,也可以用来解决那些数据非常稀疏的问题。
在科技研究和应用中,灰色系统理论已经被广泛运用,涉及到许多领域,例如金融、气象、经济学等等。
在本篇文章中,我们将探讨灰色系统理论在科学问题求解中的应用。
灰色系统的基本理论和概念在理解灰色系统理论前,我们先讨论一下灰色系统的基本理论和概念。
灰色系统是指那些仍然存在不确定、缺乏数据和信息的系统。
这些系统的特征在于其所包含的知识和信息都处于灰色地带,即与黑色和白色之间的状态。
而这种不确定性常常涉及到每个数据量的大小、分布、数据来源的不确定性等等,往往导致自变量和因变量之间的关系模糊不清。
与灰色系统有关的一些基本概念包括灰色关联分析、灰色预测、灰色辨识等等。
灰色关联分析是一种将不同因素进行对比分析的手段,通过对比不同因素的相同或不同特点,从而挖掘其中的相似性或差异性。
另外,在一个预测问题中,如果数据量过少或不完整,我们就可以利用灰色预测进行预测。
最后,如果我们想要提取一些有价值的信息或者是提取一些隐藏在数据背后的特征,我们可以使用灰色辨识技术来实现这一目的。
应用实例灰色系统理论的应用实例非常广泛,下面我们以生态学研究领域为例,来具体探讨一下灰色系统理论在科学问题求解中的应用。
生态学研究领域中的一个重要问题是生态系统恢复和保护。
在这个问题中,我们需要研究的生态系统通常拥有复杂的生境和非线性的生态关系,数据较为不完整。
采用传统的科学研究方法在这方面的研究中,效果往往不佳。
而采用灰色系统分析方法可以解决这一问题。
比如,我们可以利用灰色预测分析法预测未来动态态变化,利用灰色关联分析方法挖掘海洋生物和群落间的相似性和差异性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十八章灰色系统理论及其应用客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。
对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。
本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。
§1 灰色系统概论客观世界在不断发展变化的同时,往往通过事物之间及因素之间相互制约、相互联系而构成一个整体,我们称之为系统。
按事物内涵的不同,人们已建立了工程技术、社会系统、经济系统等。
人们试图对各种系统所外露出的一些特征进行分析,从而弄清楚系统内部的运行机理。
从信息的完备性与模型的构建上看,工程技术等系统具有较充足的信息量,其发展变化规律明显,定量描述较方便,结构与参数较具体,人们称之为白色系统;对另一类系统诸如社会系统、农业系统、生态系统等,人们无法建立客观的物理原型,其作用原理亦不明确,内部因素难以辨识或之间关系隐蔽,人们很难准确了解这类系统的行为特征,因此对其定量描述难度较大,带来建立模型的困难。
这类系统内部特性部分已知的系统称之为灰色系统。
一个系统的内部特性全部未知,则称之为黑色系统。
区别白色系统与灰色系统的重要标志是系统内各因素之间是否具有确定的关系。
运动学中物体运动的速度、加速度与其所受到的外力有关,其关系可用牛顿定律以明确的定量来阐明,因此,物体的运动便是一个白色系统。
当然,白、灰、黑是相对于一定的认识层次而言的,因而具有相对性。
某人有一天去他朋友家做客,发现当外面的汽车开过来时,他朋友家的狗就躲到屋角里瑟瑟发抖。
他对此莫名其妙。
但对他朋友来讲,狗的这种行为是可以理解的,因为他知道,狗在前不久曾被汽车撞伤过。
显然,同样对于“狗的惧怕行为”,客人因不知内情而面临一个黑箱,而主人则面临一个灰箱。
作为实际问题,灰色系统在大千世界中是大量存在的,绝对的白色或黑色系统是很少的。
随着人类认识的进步及对掌握现实世界的要求的升级,人们对社会、经济等问题的研究往往已不满足于定性分析。
尽管当代科技日新月异,发展迅速,但人们对自然界的认识仍然是肤浅的。
粮食作物的生产是一个实际的关系到人们吃饭的大问题,但同时,它又是一个抽象的灰色系统。
肥料、种子、农药、气象、土壤、劳力、水利、耕作及政策等皆是影响生产的因素,但又难以确定影响生产的确定因素,更难确定这些因素与粮食产量的定量关系。
人们只能在一定的假设条件(往往是一些经验及常识)下按照某种逻辑推理演绎而得到模型。
这种模型并非是粮食作物生产问题在理论认识上的“翻版”,而只能看作是人们在认识上对实际问题的一种“反映”或“逼近”。
社会、经济、农业以及生态系统一般都会有不可忽略的“噪声”(即随即干扰)。
现有的研究经常被“噪声”污染。
受随机干扰侵蚀的系统理论主要立足于概率统计。
通过统计规律、概率分布对事物的发展进行预测,对事物的处置进行决策。
现有的系统分-415-析的量化方法,大都是数理统计法如回归分析、方差分析、主成分分析等,回归分析是应用最广泛的一种办法。
但回归分析要求大样本,只有通过大量的数据才能得到量化的规律,这对很多无法得到或一时缺乏数据的实际问题的解决带来困难。
回归分析还要求样本有较好的分布规律,而很多实际情形并非如此。
例如,我国建国以来经济方面有几次大起大落,难以满足样本有较规律的分布要求。
因此,有了大量的数据也不一定能得到统计规律,甚至即使得到了统计规律,也并非任何情况都可以分析。
另外,回归分析不能分析因素间动态的关联程度,即使是静态,其精度也不高,且常常出现反常现象。
灰色系统理论提出了一种新的分析方法—关联度分析方法,即根据因素之间发展态势的相似或相异程度来衡量因素间关联的程度,它揭示了事物动态关联的特征与程度。
由于以发展态势为立足点,因此对样本量的多少没有过分的要求,也不需要典型的分布规律,计算量少到甚至可用手算,且不致出现关联度的量化结果与定性分析不一致的情况。
这种方法已应用到农业经济、水利、宏观经济等各方面,都取得了较好的效果。
灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。
通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。
但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。
尽管连续系统的离散近似模型对许多工程应用来讲是有用的,但在某些研究领域中,人们却常常希望使用微分方程模型。
事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理或化学过程的本质。
灰色系统理论首先基于对客观系统的新的认识。
尽管某些系统的信息不够充分,但作为系统必然是有特定功能和有序的,只是其内在规律并未充分外露。
有些随机量、无规则的干扰成分以及杂乱无章的数据列,从灰色系统的观点看,并不认为是不可捉摸的。
相反地,灰色系统理论将随机量看作是在一定范围内变化的灰色量,按适当的办法将原始数据进行处理,将灰色数变换为生成数,从生成数进而得到规律性较强的生成函数。
例如,某些系统的数据经处理后呈现出指数规律,这是由于大多数系统都是广义的能量系统,而指数规律是能量变化的一种规律。
灰色系统理论的量化基础是生成数,从而突破了概率统计的局限性,使其结果不再是过去依据大量数据得到的经验性的统计规律,而是现实性的生成律。
这种使灰色系统变得尽量清晰明了的过程被称为白化。
目前,灰色系统理论已成功地应用于工程控制、经济管理、未来学研究、生态系统及复杂多变的农业系统中,并取得了可喜的成就。
灰色系统理论有可能对社会、经济等抽象系统进行分析、建模、预测、决策和控制,它有可能成为人们认识客观系统改造客观系统的一个新型的理论工具。
§2 关联分析大千世界里的客观事物往往现象复杂,因素繁多。
我们往往需要对系统进行因素分析,这些因素中哪些对系统来讲是主要的,哪些是次要的,哪些需要发展,哪些需要抑制,哪些是潜在的,哪些是明显的。
一般来讲,这些都是我们极为关心的问题。
事实上,因素间关联性如何、关联程度如何量化等问题是系统分析的关键和起点。
因素分析的基本方法过去主要采取回归分析等办法。
正如前一节指出的,回归分-416-析的办法有很多欠缺,如要求大量数据、计算量大及可能出现反常情况等。
为克服以上弊病,本节采用关联度分析的办法来做系统分析。
作为一个发展变化的系统,关联分析实际上是动态过程发展态势的量化比较分析。
所谓发展态势比较,也就是系统各时期有关统计数据的几何关系的比较。
例如,某地区1977~1983年总收入与养猪、养兔收入资料见表1。
表1 收入数据1977 1978 1979 1980 1981 1982 1983总收入养猪养兔18 20 22 40 44 48 60 10 15 16 24 38 40 50 3 2 12 10 2218 20根据表1,做曲线图1。
图1 收入数据图由上图易看出,曲线A与曲线B发展趋势比较接近,而与曲线C相差较大,因此可以判断,该地区对总收入影响较直接的是养猪业,而不是养兔业。
很显然,几何形状越接近,关联程度也就越大。
当然,直观分析对于稍微复杂些的问题则显得难于进行。
因此,需要给出一种计算方法来衡量因素间关联程度的大小。
2.1 数据变换技术为保证建模的质量与系统分析的正确结果,对收集来的原始数据必须进行数据变换和处理,使其消除量纲和具有可比性。
定义1 设有序列))(,),2(),1((nxxxx"=则称映射-417--418- nk k y k x f yx f ,,2,1 ),())((:"==→为序列x 到序列y 的数据变换。
1)当0)1( ),()1()())((≠==x k y x k x k x f 称f 是初值化变换。
2)当∑====nk k x n x k y k x k x f 1)(1 ),()())(( 称f 是均值化变换。
3)当()(())()max ()kx k f x k y k x k ==称f 是百分比变换。
4)当()(())(),min ()0min ()kkx k f x k y k x k x k ==≠称f 是倍数变换。
5)当)()())((0k y x k x k x f ==其中0x 为大于零的某个值,称f 是归一化变换。
6)当-419-)()(max )(min )())((k y k x k x k x k x f kk=−=称f 是极差最大值化变换。
7)当)()(min )(max )(min )())((k y k x k x k x k x k x f kkk=−−=称f 是区间值化变换。
2.2 关联分析定义2 选取参考数列))(,),2(),1((},,2,1|)({00000n x x x n k k x x ""===其中k 表示时刻。
假设有m 个比较数列))(,),2(),1((},,2,1|)({n x x x n k k x x i i i i i ""===,m i ,,2,1"=则称)()(max max )()()()(max max )()(min min )(0000t x t x k x k x t x t x t x t x k s tsi s tss tsi −+−−+−=ρρξ (1)为比较数列i x 对参考数列0x 在k 时刻的关联系数,其中]1,0[∈ρ为分辨系数。
称(1)式中)()(min min 0t x t x s ts−、)()(max max 0t x t x s ts−分别为两级最小差及两级最大差。
一般来讲,分辨系数ρ越大,分辨率越大;ρ越小,分辨率越小。
(1)式定义的关联系数是描述比较数列与参考数列在某时刻关联程度的一种指标,由于各个时刻都有一个关联数,因此信息显得过于分散,不便于比较,为此我们给出定义3 称∑==nk i i k n r 1)(1ξ (2)为数列i x 对参考数列0x 的关联度。
由(2)易看出,关联度是把各个时刻的关联系数集中为一个平均值,亦即把过于分散的信息集中处理。
利用关联度这个概念,我们可以对各种问题进行因素分析。
考虑-420-下面的问题。
例1 通过对某健将级女子铅球运动员的跟踪调查,获得其1982年至1986年每年最好成绩及16项专项素质和身体素质的时间序列资料,见表2,试对此铅球运动员的专项成绩进行因素分析。
表2 各项成绩数据 1982 1983 1984 1985 1986 铅球专项成绩 0x 13.6 14.01 14.54 15.64 15.69 4kg 前抛 1x 11.50 13.00 15.15 15.30 15.02 4kg 后抛 2x 13.76 16.36 16.90 16.56 17.30 4kg 原地 3x 12.41 12.70 13.96 14.04 13.46 立定跳远 4x 2.48 2.49 2.56 2.64 2.59 高 翻 5x 85 85 90 100 105 抓 举 6x 55 65 75 80 80 卧 推 7x 65 70 75 85 90 3kg 前抛 8x 12.80 15.30 16.24 16.40 17.05 3kg 后抛 9x 15.30 18.40 18.75 17.95 19.30 3kg 原地 10x 12.71 14.50 14.66 15.88 15.70 3kg 滑步 11x 14.78 15.54 16.03 16.87 17.82 立定三级跳远 12x 7.64 7.56 7.76 7.54 7.70 全 蹲 13x 120 125 130 140 140 挺 举 14x 80 85 90 90 95 30米起跑 15x 4’’2 4’’25 4’’1 4’’06 3’’99 100米 16x13’’1 13’’42 12’’85 12’’72 12’’56在利用(1)式及(2)式计算关联度之前,我们需对表2的各个数列做初始化处理。