指数函数练习题(包含详细答案)

合集下载

指数函数练习题及答案

指数函数练习题及答案

(指数函数练习题及答案1.设y 1=,y 2=,y 3=(12)-,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2 解析:选==,y 2==,y 3=(12)-=,∵y =2x在定义域内为增函数, 且>>, %∴y 1>y 3>y 2.2.若函数f (x )=⎩⎪⎨⎪⎧a x,x >14-a2x +2,x ≤1是R 上的增函数,则实数a 的取值范围为( )A .(1,+∞)B .(1,8)C .(4,8)D .[4,8)解析:选D.因为f (x )在R 上是增函数,故结合图象(图略)知⎩⎪⎨⎪⎧a >14-a 2>04-a 2+2≤a,解得4≤a <8.3.函数y =(12)1-x的单调增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)@解析:选A.设t =1-x ,则y =⎝ ⎛⎭⎪⎫12t ,则函数t =1-x 的递减区间为(-∞,+∞),即为y =⎝ ⎛⎭⎪⎫121-x的递增区间.4.已知函数y =f (x )的定义域为(1,2),则函数y =f (2x)的定义域为________.解析:由函数的定义,得1<2x<2⇒0<x <1.所以应填(0,1). 答案:(0,1)1.设13<(13)b <(13)a<1,则( )A .a a <a b <b aB .a a<b a<a bC .a b <a a <b aD .a b <b a <a a、解析:选C.由已知条件得0<a <b <1,∴a b <a a ,a a <b a ,∴a b <a a <b a .2.若(12)2a +1<(12)3-2a,则实数a 的取值范围是( )A .(1,+∞)B .(12,+∞)C .(-∞,1)D .(-∞,12)解析:选B.函数y =(12)x在R 上为减函数,∴2a +1>3-2a ,∴a >12.3.下列三个实数的大小关系正确的是( );A .(12011)2<212011<1B .(12011)2<1<212011C .1<(12011)2<212011D .1<212011<(12011)2解析:选B.∵12011<1,∴(12011)2<1,212011>20=1.4.设函数f (x )=a -|x |(a >0且a ≠1),f (2)=4,则( )A .f (-1)>f (-2)B .f (1)>f (2)C .f (2)<f (-2)D .f (-3)>f (-2)解析:选D.由f (2)=4得a -2=4,又a >0,∴a =12,f (x )=2|x |,∴函数f (x )为偶函数,在(-∞,0)上单调递减,在(0,+∞)上单调递增.5.函数f (x )=12x +1在(-∞,+∞)上( ) X k b 1 . c o m$A .单调递减无最小值B .单调递减有最小值C .单调递增无最大值D .单调递增有最大值解析:选=2x+1为R 上的增函数且u >0,∴y =1u在(0,+∞)为减函数.即f (x )=12x +1在(-∞,+∞)上为减函数,无最小值.6.若x <0且a x >b x>1,则下列不等式成立的是( ) A .0<b <a <1 B .0<a <b <1 C .1<b <a D .1<a <b …解析:选B.取x =-1,∴1a >1b>1,∴0<a <b <1.7.已知函数f (x )=a -12x +1,若f (x )为奇函数,则a =________.解析:法一:∵f (x )的定义域为R ,且f (x )为奇函数,∴f (0)=0,即a -120+1=0.∴a =12.法二:∵f (x )为奇函数,∴f (-x )=-f (x ),即a -12-x +1=12x +1-a ,解得a =12.—答案:128.当x ∈[-1,1]时,f (x )=3x-2的值域为________.解析:x ∈[-1,1],则13≤3x ≤3,即-53≤3x-2≤1.答案:⎣⎢⎡⎦⎥⎤-53,1 9.若函数f (x )=e -(x -u )2的最大值为m ,且f (x )是偶函数,则m +u =________. 解析:∵f (-x )=f (x ), ∴e -(x +u )2=e -(x -u )2,∴(x +u )2=(x -u )2,^∴u =0,∴f (x )=e -x 2.∵x 2≥0,∴-x 2≤0,∴0<e -x 2≤1, ∴m =1,∴m +u =1+0=1. 答案:110.讨论y =(13)x 2-2x的单调性.解:函数y =(13)x 2-2x的定义域为R ,令u =x 2-2x ,则y =(13)u .列表如下:&)uy =(13)x 2-2xx ∈(-∞,1]x ∈(1,∞)|由表可知,原函数在(-∞,1]上是增函数,在(1,+∞)上是减函数.11.已知2x≤(14)x -3,求函数y =(12)x 的值域.解:由2x ≤(14)x -3,得2x ≤2-2x +6,∴x ≤-2x +6,∴x ≤2.∴(12)x ≥(12)2=14,即y =(12)x 的值域为[14,+∞).12.已知f (x )=(12x -1+12)x .\(1)求函数的定义域;(2)判断函数f (x )的奇偶性; (3)求证:f (x )>0.解:(1)由2x-1≠0,得x ≠0,∴函数的定义域为{x |x ≠0,x ∈R }.在定义域内任取x ,则-x 在定义域内,f (-x )=(12-x -1+12)(-x )=(2x1-2x +12)(-x )=-1+2x 21-2x ·x =2x+122x-1·x , $函数 单 调 性 区间而f (x )=(12x -1+12)x =2x+122x-1·x , ∴f (-x )=f (x ),∴函数f (x )为偶函数.(3)证明:当x <0时,由指数函数性质知, 0<2x <1,-1<2x-1<0,∴12x -1<-1, ∴12x -1+12<-12. 又x <0,∴f (x )=(12x -1+12)x >0.由f (x )为偶函数,当x >0时,f (x )>0. 综上,当x ∈R ,且x ≠0时,函数f (x )>0.。

指数函数与对数函数专项训练(解析版)

指数函数与对数函数专项训练(解析版)

指数函数与对数函数专项训练一、单选题1.(23-24高一下·云南玉溪·期末)函数()()2lg 35f x x x =-的定义域为()A .()0,∞+B .50,3⎛⎫⎪C .()5,0,3∞∞⎛⎫-⋃+ ⎪D .5,3⎛⎫+∞ ⎪【答案】C【详解】由题意知,2350x x ->,即(35)0x x ->,所以0x <或53x >.故选:C.2.(23-24高一上·云南昭通·期末)函数()327x f x x =+-的零点所在的区间是()A .()0,1B .31,2⎛⎫ ⎪⎝⎭C .3,22⎛⎫⎪D .()2,3【答案】B【详解】∵3x y =和27y x =-均在R 上单调递增,∴()327x f x x =+-在R 上单调递增;又()12f =-,327402f ⎛⎫=-> ⎪⎝⎭,∴()f x 在31,2⎛⎫ ⎪⎝⎭上有唯一的零点,故选:B.3.(23-24高一上·云南昆明·期末)滇池是云南省面积最大的高原淡水湖,一段时间曾由于人类活动的加剧,滇池水质恶化,藻类水华事件频发.在适当的条件下,藻类的生长会进入指数增长阶段.滇池外海北部某年从1月到7月的水华面积占比符合指数增长,其模型为23 1.65x y -=⨯.经研究“以鱼控藻”模式能有效控制藻类水华.如果3月开始向滇池投放一定量的鱼群后,鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,将两函数模型放在同期进行比较,如图所示.下列说法正确的是(参考数据:671.6520.2,1.6533.3≈≈)()A .水华面积占比每月增长率为1.65B .如果不采取有效措施,到8月水华的面积占比就会达到60%左右C .“以鱼控藻”模式并没有对水华面积占比减少起到作用D .7月后滇池藻类水华会因“以鱼控藻”模式得到彻底治理【答案】B【详解】对于A ,由于模型23 1.65x y -=⨯呈指数增长,故A 错误;对于B ,当8x =时,8220.63 1.605326.y -⨯==⨯≈,故B 正确;对于C ,因为鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,所以“以鱼控藻”模式对水华面积占比减少起到作用,故C 错误;对于D ,由两函数模型放在同期进行比较的图象可知,7月后滇池藻类水华并不会因“以鱼控藻”模式得到彻底治理,故D 错误.故选:B.4.(23-24高一上·云南昭通·期末)()()1log 14a f x x =-+(0a >且1a ≠)的图象恒过定点M ,幂函数()g x 过点M ,则12g ⎛⎫⎪⎝⎭为()A .1B .2C .3D .4【答案】D【详解】()()1log 14a f x x =-+,令11x -=,得2x =,()124f =,则()()1log 14a f x x =-+(0a >且1a ≠)恒过定点12,4M ⎛⎫⎪⎝⎭,设()g x x α=,则124α=,即2α=-,即()2g x x -=,∴142g ⎛⎫= ⎪⎝⎭,故选:D.5.(23-24高一下·云南楚雄·期末)已知0.320.3lo g 3,2,lo g 2a b c -===,则()A .c b a <<B .<<b c aC .<<c a bD .a b c<<【答案】A【详解】因为2log y x =在(0,)+∞上单调递增,且234<<,所以222log 2log 3log 4<<,所以21log 32<<,即12a <<,因为2x y =在R 上递增,且0.30-<,所以0.300221-<<=,即01b <<,因为0.3log y x =在(0,)+∞上单调递减,且12<,所以0.30.3log 1log 2>,所以0.3log 20<,即0c <,所以c b a <<.故选:A6.(23-24高一上·云南·期末)若()21()ln 1||f x x x =+-,设()0.3(3),(ln2),2a f b f c f =-==,则a ,b ,c 的大小关系为()A .c a b >>B .b c a >>C .a b c >>D .a c b>>【答案】D【详解】由题意知()(),00,x ∈-∞⋃+∞,由()()()21ln 1f x x f x x⎡⎤-=-+-=⎣⎦-,所以()f x 为偶函数,图象关于y 轴对称,当0x >时,由复合函数的单调性法则知()f x 随x 的增大而增大,即()0,x ∈+∞,()21()ln 1||f x x x =+-单调递增,因为()()33a f f =-=,()0.3(ln2),2b f c f ==,且00.3112222=<<=,0ln2lne 1<<=,所以0.3ln 223<<,所以()()()0.3ln223f f f <<-,即b c a <<,也就是a c b >>.故选:D7.(23-24高一下·云南·期末)设222,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则实数a 的取值范围是()A .[]1,2B .(2,3]C .()2,+∞D .()3,+∞【答案】B【详解】方程2[()](2)()20f x a f x a -++=化为[()2][()]0f x f x a --=,解得()2f x =或()f x a =,函数()f x 在(,0]-∞上单调递增,函数值的集合为(2,3],在(0,1]上单调递减,函数值的集合为[0,)+∞,在[1,)+∞上单调递增,函数值的集合为[0,)+∞,在同一坐标系内作出直线2,y y a ==与函数()y f x =的图象,显然直线2y =与函数()y f x =的图象有两个交点,由关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则直线y a =与函数()y f x =的图象有3个交点,此时23a <≤,所以实数a 的取值范围是(2,3].故选:B8.(23-24高一下·云南昆明·期末)若()12:lo g 11,:39a p a q --<<,则p 是q 的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】A【详解】对于()22:log 11log 2p a -<=,则012a <-<,解得13a <<;对于1:39a q -<,则12a -<,解得3a <;因为{}|13a a <<是{}|3a a <的真子集,所以p 是q 的充分不必要条件.故选:A.二、多选题9.(23-24高一上·云南迪庆·期末)已知函数()()2ln 2f x x x =-,则下列结论正确的是()A .函数()f x 的单调递增区间是[)1,+∞B .函数()f x 的值域是RC .函数()f x 的图象关于1x =对称D .不等式()ln 3f x <的解集是()1,3-【答案】BC【详解】对于A ,当1x =时,2210x x -=-<,此时()()2ln 2f x x x =-无意义,故A 错误;对于B ,由于()22y g x x x ==-的值域为[)1,-+∞,满足()[)0,1,+∞⊆-+∞,所以函数()f x 的值域是R ,故B 正确;对于C ,由题意()()()22ln 2ln 11f x x x x ⎡⎤=-=--⎣⎦,且定义域为()(),02,-∞+∞ ,它满足()()()21ln 11f x x f x+=-=-,即函数()f x 的图象关于1x =对称,故C 正确;对于D ,由于()f x 的定义域为()(),02,-∞+∞ ,故D 错误.故选:BC.10.(23-24高一上·云南昆明·期末)已知函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩,若1234x x x x <<<,且()()()()1234fx fx fx fx ===,则下列结论中正确的是()A .122x x +=-B .1204x x <<C .()41,4x ∈D .342x x +的取值范围是332,4⎡⎫⎪⎢⎣⎭【答案】BC【详解】作出函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩的图像如图.对于选项A,根据二次函数的对称性知,12()224x x +=⨯=--,故A 项错误;对于选项B ,因120x x <<,由上述分析知124x x +=-,则21212120()()()42x x x x x x --<=-⋅-≤=,因12x x ≠,故有1204x x <<,即B 项正确;对于选项C ,如图,因0x ≤时,2211()2(2)2222f x x x x =--=-++≤,0x >时,2()|log |f x x =,依题意须使20|log |2x <<,由2|log |0x >得1x ≠,由2|log |2x <解得:144x <<,故有3411,144x x <<<<,即C项正确;对于选项D ,由图知2324log log x x -=,可得341x x =,故431x x =,则343322x x x x ++=,3114x <<,不妨设21,(,1)4y x x x =+∈,显然函数2y x x =+在(1,14)上单调递减,故23334x x <+<,即342x x +的取值范围是(333,4),故D 项错误.故选:BC.11.(23-24高一上·云南昆明·期末)关于函数()ln f x x x =+,以下结论正确的是()A .方程()0f x =有唯一的实数解c ,且(0,1)c ∈B .对,0,()()()x y f xy f x f y ∀>=+恒成立C .对()1212,0x x x x ∀>≠,都有()()1212f x f x x x ->-D .对12,0x x ∀>,均有()()121222f x f x x x f ++⎛⎫≤⎪【答案】AC【详解】A 选项,由于1y x =在R 上单调递增,2ln y x =在()0,∞+上单调递增,故()ln f x x x =+在定义域()0,∞+上单调递增,又()11ln 30,11033f f ⎛⎫=-<=> ⎪⎝⎭,故由零点存在性定理可得,方程()0f x =有唯一的实数解c ,且(0,1)c ∈,A 正确;B 选项,()ln f xy xy xy =+,()()ln ln ln f x f y x x y y x y xy +=+++=++,显然,0x y ∀>,由于xy 与x y +不一定相等,故()()f x f y +与()f xy 不一定相等,B 错误;C 选项,由A 选项可知,()ln f x x x =+在定义域()0,∞+上单调递增,对()1212,0x x x x ∀>≠,都有()()12120f x f x x x ->-,C 正确;D 选项,12,0x x ∀>,均有121212ln 222x xx x x x f +++⎛⎫=+ ⎪⎝⎭,()()12112212121212ln ln ln ln 22222f x f x x x x x x x x x x x x x ++++++==+=+,由于12122x x x x +≥,当且仅当12x x =时,等号成立,故1212ln ln 2x x x x +≥,即()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,D 错误.故选:AC 三、填空题12.(23-24高一上·云南昆明·期末)()()2,(1)29,1x a x f x x ax a x ⎧>⎪=⎨-++-≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围为.【答案】[]2,5【详解】因为在R 递增,则112129a a a a a⎧⎪⎪≥⎨⎪-++-≤⎪⎩>,解得:25a ≤≤,故答案为:[]2,513.(23-24高一下·云南昆明·期末)设函数()ln(1)f x x =+,2()g x x a =-+,若曲线()y f x =与曲线()y g x =有两个交点,则实数a 的取值范围是.【答案】(0,)+∞【详解】当0x ≥时,()ln(1),f x x =+当0x <时()ln(1),f x x =-+函数图象示意图为则2()g x x a =-+与()ln (1)f x x =+有两个零点知a 的取值范围是(0,)+∞.故答案为:(0,).+∞14.(23-24高一下·云南玉溪·期末)苏格兰数学家纳皮尔(J.Napier ,1550-1617)在研究天文学的过程中,经过对运算体系的多年研究后发明的对数,为当时的天文学家处理“大数”的计算大大缩短了时间.即就是任何一个正实数N 可以表示成10(110,)n N a a n =⨯≤<∈Z ,则lg lg (0lg 1)N n a a =+≤<,这样我们可以知道N 的位数为1n +.已知正整数M ,若10M 是10位数,则M 的值为.(参考数据:0.9 1.1107.94,1012.56≈≈)【答案】8或9【详解】依题意可得910101010M ≤<,两边取常用对数可得91010lg10lg lg10M ≤<,即910lg 10M ≤<,所以0.9lg 1M ≤<,即0.91010M ≤<,又M 为正整数,所以8M =或9M =.故答案为:8或9四、解答题15.(23-24高一上·云南昆明·期末)设函数()log (3)(,10a f x x a =-+>且1)a ≠.(1)若(12)3f =,解不等式()0f x >;(2)若()f x 在[4,5]上的最大值与最小值之差为1,求a 的值.【答案】(1)10(,)3+∞(2)2a =或12a =【详解】(1)由(12)3f =可得log (123)13a -+=,解得3a =,即3()log (3)1,(3)f x x x =-+>,则()0f x >,即3log (3)10x -+>,即310,1333x x x >⎧⎪∴>⎨->⎪⎩,故不等式()0f x >的解集为10(,)3+∞;(2)由于()f x 在[4,5]上的最大值与最小值之差为1,故log 11(log 21)1a a +-+=,即log 21,2a a =∴=或12a =,即a 的值为2a =或12a =.16.(23-24高一上·云南昭通·期末)化简求值:(1)()13103420.027π4160.49--++;(2)ln22311lg125lg40.1e log 9log 1632-+++⨯.【答案】(1)8(2)9【详解】(1)()13103420.027π4160.49--++()()()1313423420.3120.7⎡⎤⎡⎤⎡⎤=-++⎣⎦⎣⎦⎣⎦0.3180.78=-++=;(2)ln22311lg125lg4lg 0.1e log 9log 1632-++++⨯3211112lg34lg2lg5lg23222lg2lg3=+-++⨯lg 5lg28=++9=.17.(23-24高一上·云南·期末)已知定义域为R 的函数()11333xx m f x +-⋅=+是奇函数.(1)求m 的值并利用定义证明函数()f x 的单调性;(2)若对于任意t ∈R ,不等式()()22620f t t f t k -+-<恒成立,求实数k 的取值范围.【答案】(1)1m =,证明见解析(2)3k <-【详解】(1)因为()f x 是奇函数,函数的定义域为R ,所以(0)0f =,所以1033m-=+,所以1m =,经检验满足()()f x f x -=-易知()11312133331x x x f x +-⎛⎫==-+ ⎪++⎝⎭设12x x <,则2112122(33)()()3(31)(31)x x x x f x f x --=++因为3x y =在实数集上是增函数,故12()()0f x f x ->.所以()f x 在R 上是单调减函数(2)由(1)知()f x 在(,)-∞+∞上为减函数.又因为()f x 是奇函数,所以()()22620f t t f t k -+-<等价于()()2262f t t f k t-<-,因为()f x 为减函数,由上式可得:2262t t k t ->-.即对一切t R ∈有:2360t t k -->,从而判别式361203k k ∆=+<⇒<-.所以k 的取值范围是3k <-.18.(23-24高一下·云南昆明·期末)已知函数1()xx f x a a ⎛⎫=- ⎪⎝⎭ (0a >且1a ≠).(1)讨论()f x 的单调性(不需证明);(2)若2a =,(ⅰ)解不等式3()2≤f x x;(ⅱ)若21()(22))2(x g f x t x x f +=-+在区间[]1,1-上的最小值为74-,求t 的值.【答案】(1)答案见解析(2)(ⅰ)(](],10,1-∞-⋃;(ⅱ)2t =-或2t =【详解】(1)若1a >,则1()()x xf x a a=-在R 上单调递增;若01a <<,则1()()x xf x a a=-在R 上单调递减.(2)(ⅰ)3()2≤f x x ,即132()022xx x --≤,设13()2()22xx g x x=--,则(1)0g =,()()g x g x -=-,所以()g x 为奇函数,当0x >时,()g x 单调递增,由()(1)g x g ≤,解得01x <≤,根据奇函数的性质,当0x <时,()(1)g x g ≤的解为1x ≤-,综上所述,3()2≤f x x的解集为(](],10,1-∞-⋃.(ⅱ)2122()2(2)2()222(22)x x x x x g x f x tf x t +--=-+=++-,令22x x m --=,因为[]1,1x ∈-,则33,22m ⎡⎤∈-⎢⎥⎣⎦,所以2()()22g x h m m tm ==++,其图象为开口向上,对称轴为m t=-的抛物线,①当32t -≤-,即32t ≥时,min 39177()()3232444h m h t t =-=-+=-=-,解得2t =.②当3322t -<-<,即3322t -<<时,222min 7()()2224h m h t t t t =-=-+=-+=-,解得1152t =,2152t =-矛盾.③当32t -≥,即32t ≤-时,min 39177()()3232444h m h t t ==++=+=-,解得2t =-.综上所述,2t =-或2t =.19.(23-24高一上·云南昆明·期末)函数()e (0)x f x mx m =-<.(1)求(1)f -和(0)f 的值,判断()f x 的单调性并用定义加以证明;(2)设0x 是函数()f x 的一个零点,当1em <-时,()02f x k >,求整数k 的最大值.【答案】(1)1(1)e f m --=+,(0)1f =,()f x 在定义域R 上单调递增,证明见解析,(2)整数k 的最大值为1-【详解】(1)1(1)e f m --=+,(0)1f =,判断()f x 在定义域R 上单调递增,证明如下:在R 上任取1x ,2x ,且12x x <,则1212121212()()e (e )(e e )()x x x x f x f x mx mx m x x -=---=---,因为12x x <,0m <,所以12e e x x <,120x x -<,0m ->,所以12e e 0x x -<,12()0m x x --<,所以1212(e e )()0x x m x x ---<,即12())0(f x f x -<,所以12()()f x f x <,所以()f x 在定义域R 上单调递增.(2)由题意得0()0f x =,即00e 0x mx -=,1em <-,则10e m +<,即0(1)0()f f x -<=,由()f x 是R 上的增函数,所以01x -<,又0(0)10()f f x =>=,所以010x -<<,0200(2)e 2x f x mx =-002e 2e x x =-,令01e (ext =∈,1),则22()2(1)1g t t t t =-=--,所以()g t 在1(e ,1)上单调递减,所以()()11g t g >=-,即0(2)1f x >-,当1em <-时,0(2)f x k >,所以1k ≤-,所以整数k 的最大值为1-.。

4.2 指数函数(精练)(解析版) -人教版高中数学精讲精练(必修一)

4.2 指数函数(精练)(解析版) -人教版高中数学精讲精练(必修一)

x
2
1 ,故值域为 y
|
0
y
1
.
8.(2021·黑龙江·绥化市第一中学高一期中)已知函数 f x 4x a 2x 3 , a R .
(1)当 a 4 ,且 x 0, 2 时,求函数 f x 的值域;
(2)若函数 f x 在0, 2 的最小值为1,求实数 a 的值;
【答案】(1)1,3 (2) a 2 2

y
2
x
是指数函数;
④ y xx 的底数是 x 不是常数,不是指数函数;

y
3
1 x
的指数不是自变量
x
,不是指数函数;
1
⑥ y x3 是幂函数.
故答案为:③
9.(2021·全国·高一专题练习)函数 y a2 5a 5 ax 是指数函数,则 a 的值为________.
【答案】 4
f
x
ax2 2x ,
a
1 x
x 1
3a,
x
1 的最小值为
2,则实数
a 的取值范围是______.
【答案】1,
【解析】由题意,函数
f
x
ax2 2x ,
a 1 x
x 1
3a, x
1 的最小值为
2

因为函数 f x 在[1, ) 上为增函数,可得 x 1时,函数 f x 有最小值为 2 ,
则当 x (,1) 时,函数 f x 2 , min

A. c a b
B. c b a
【答案】A
1
2
【解析】
b
1 4
3
1 2
3

C. b c a

(完整版)指数和指数函数练习题及答案

(完整版)指数和指数函数练习题及答案

指数和指数函数一、选择题1.(36a 9)4(63a 9)4等于()(C)a 4(A)a 16(B)a b 8(D)a -b 22.若a>1,b<0,且a +a =22,则a -a 的值等于()-b b (A)6(B)±2(C)-2(D)22x 3.函数f(x)=(a -1)在R 上是减函数,则a 的取值范围是()(A)a >1(B)a <2(C)a<2(D)1<a <4.下列函数式中,满足f(x+1)=(A)21f(x)的是( )211x -x(x+1) (B)x+ (C)2(D)224x 25.下列f(x)=(1+a )⋅a -x 是()(A)奇函数(B)偶函数(C)非奇非偶函数(D)既奇且偶函数1a 1b116.已知a>b,ab ≠0下列不等式(1)a >b ,(2)2>2,(3)<,(4)a 3>b 3,(5)()<()33a b22a b 11中恒成立的有()(A)1个(B)2个(C)3个(D)4个2x -17.函数y=x 是()2+1(A)奇函数(B)偶函数(C)既奇又偶函数(D)非奇非偶函数8.函数y=1的值域是()x 2-1(A)(-∞,1)(B)(-∞,0)⋃(0,+∞)(C)(-1,+∞)(D)(-∞,-1)⋃(0,+∞)+9.下列函数中,值域为R 的是()(A)y=512-x(B)y=(1x 11-xx)(C)y=()-1(D)y=1-223e x -e -x10.函数y=的反函数是()2(A)奇函数且在R 上是减函数(B)偶函数且在R 上是减函数++(C)奇函数且在R 上是增函数(D)偶函数且在R 上是增函数11.下列关系中正确的是()++111111(A)()3<()3<()3(B)()3<()3<()3252225111111(C)()3<()3<()3(D)()3<()3<()352252221222122112212.若函数y=3+2的反函数的图像经过P 点,则P 点坐标是()(A)(2,5)(B)(1,3)(C)(5,2)(D)(3,1)x -113.函数f(x)=3+5,则f (x)的定义域是()(A)(0,+∞)(B)(5,+∞)(C)(6,+∞)(D)(-∞,+∞)x 14.若方程a -x-a=0有两个根,则a 的取值范围是()(A)(1,+∞)(B)(0,1)(C)(0,+∞)(D)φ15.已知函数f(x)=a +k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是()x x x x (A)f(x)=2+5 (B)f(x)=5+3 (C)f(x)=3+4 (D)f(x)=4+316.已知三个实数a,b=a ,c=a a x x-1a a ,其中0.9<a<1,则这三个数之间的大小关系是()(A)a<c<b (B)a<b<c (C)b<a<c (D)c<a<bx 17.已知0<a<1,b<-1,则函数y=a +b 的图像必定不经过()(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限二、填空题1.若a <ax 322,则a 的取值范围是。

指数函数习题及答案

指数函数习题及答案

指数函数习题及答案一.选择题1.若函数f (x )=()xa 1-在R 上是减函数,那么实数a 的取值范围是( )A .a >1 且1≠aB .1<a <2C .a >1且2≠aD .a >02.已知0>a ,41=--a a ,则22-+a a 的值是( )A .14B .16C .18D .203.一套邮票现价值a 元,每过一年都将增值00b ,则10年后其价值为( ) A .()00110b a + B .()00101b a +C .()[]10001b a + D .()1001ba +4.设f (x )=x)21(,x ∈R ,那么f (x )是( ) A .偶函数且在(0,+∞)上是减函数B .偶函数且在(0,+∞)上是增函数C .奇函数且在(0,+∞)上是减函数D .奇函数且在(0,+∞)上是增函数 5.函数y =-2-x的图象一定过哪些象限( )A .一、二象限B .二、三象限C .三、四象限D .一、四象限 6.函数y =a x 在[0,1]上的最大值与最小值和为3,则函数y =123-⋅x a 在[0,1]上的最大值是( )A .3B .1C .6D .23 7.下列函数中值域为(0,+∞)的是( ) A .y =x15B .y =x )31( C .y =12+-xD .y =12-x8.若-1<x <0,则不等式中成立的是( )A .5-x <5x <0.5x B .0.5x <5-x <5x C .5x <5-x <0.5xD .5x <0.5x <5-x9.当a ≠0时,函数y a x b=+和y b ax=的图象只可能是( )10.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确的是( )A .)()()(y f x f y x f ⋅=+B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈= D .)()]([·)]([)(+∈=N n y f x f xy f nnn二.填空题11.已知函数f (x )=21)31(x -,其定义域是________________.12.函数f (x )=a x -1+3的图象一定过定点P ,则P 点的坐标是____________.13.函数121+⎪⎭⎫⎝⎛=x y ,[]1,2-∈x 的值域是_____________.14.函数y =x-3的图象与函数________________的图象关于y 轴对称. 三.解答题(共6小题,共80分) 15.(本小题12分)(1)计算:3122726141-⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛- (2)化简:2433221---÷⎪⎪⎭⎫ ⎝⎛⋅a b b a16.(12分)(1) 解不等式145-+<x x a a(a>0且a ≠1)(2)函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,求满足1)(>x f 的x 的取值范围17.(14分) 求函数2233x x y -++=的单调区间和最值(单调区间请加以证明).18.(1)已知m x f x +-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程k x=-|13|无解?有一解?有两解?19.(14分)已知函数4()42xx f x =+ (1)试求()(1)f a f a +-的值.(2)求1232007()()()()2008200820082008f f f f +++⋅⋅⋅+的值. 20.(14分)已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性; (2)求f (x )的值域;(3)证明f (x )在(-∞,+∞)上是增函数.<指数函数>参考答案1—10 BCDAC CBDAD9.[-1,1] 10.(1,4) 11.27 12.[41,2] 13.x y 3= 14.1415.1>a 时,x>2;10<<a 时,x<2. 16.1-a17.解:单调增区间:(,1]-∞;单调减区间:[1,)+∞;值域:(,81]-∞。

(完整)指数函数基础练习及答案

(完整)指数函数基础练习及答案

指数函数练习1. 函数(1)x y 4=; (2) 4x y =; (3) x y 4-=; (4) x y )4(-=; (5) x y π=; (6) 24x y =;(7) x x y =; (8) 1()1(>-=a a y x , 且a 1≠)中,是指数函数的是2. 函数33(0,1)x y a a a-=+>≠恒过的定点是 3. 若1()21xf x a =+-是奇函数,则a = 【答案】【解析】12(),()()2112xx x f x a a f x f x --=+=+-=--- 21121()21122112122x x x x x xa a a a ⇒+=-+⇒=-==----故 4. 若指数函数y a x =+()1在()-∞+∞,上是减函数,那么( )A 、 01<<aB 、 -<<10aC 、 a =-1D 、 a <-15. 函数213-=x y 的定义域为6. 若函数()1222-=--aax xx f 的定义域为R ,则实数a 的取值范围 . []0,1-7. 设0x >,且1x x a b <<(0a >,0b >),则a 与b 的大小关系是( B )A 1b a <<B 1a b <<C 1b a <<D 1a b <<8. 如图,指出函数①y=a x ;②y=b x ;③y=c x ;④y=d x的图象,则a,b,c,d 的大小关系是BA a 〈b 〈1〈c 〈dB b<a 〈1〈d<cC 1〈a<b 〈c 〈dD a 〈b<1〈d<c9. 下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( C )y y y yO x O x O x O xAB C D111110. 函数x xx x e e y e e--+=-的图像大致为( A )。

指数函数习题(经典含答案及详细解析)

指数函数习题(经典含答案及详细解析)

2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且A .f (b x )≤f (c x) B .f (b x )≥f (c x) lg(a x -2x-5 ≥5 [9,(9,1,,1[1,[1,,1)上的最大值比最小值大,则234x x ---+11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.的取值范围.指数函数答案指数函数答案1.1.解析:由解析:由a ⊗b =îïíïìa a ≤bba >b得f (x )=1⊗2x=îïíïì2xx,1x答案:答案:A A 2. 2. 解析:∵解析:∵f (1(1++x )=f (1(1--x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)(0)==3,∴c =3.3.∴∴f (x )在(-∞,-∞,1)1)1)上递减,在上递减,在上递减,在(1(1(1,+∞)上递增.,+∞)上递增.,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0<0,则,则3x<2x<1<1,∴,∴f (3x)>f (2x). ∴f (3x )≥f (2x ). 答案:答案:A A3.3.解析:由于函数解析:由于函数y =|2x-1|1|在在(-∞,-∞,0)0)0)内单调递减,在内单调递减,在内单调递减,在(0(0(0,+∞)内单调递增,而函数在,+∞)内单调递增,而函数在区间区间((k -1,k +1)1)内不单调,所以有内不单调,所以有k -1<0<k +1,解得-,解得-1<1<k <1. 答案:答案:C C4. 4. 解析:由题意得:解析:由题意得:A =(1,2)(1,2),,a x -2x >1且a >2>2,由,由A ⊆B 知a x -2x>1在(1,2)(1,2)上恒成立,即上恒成立,即a x -2x -1>0在(1,2)(1,2)上恒成立,令上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0ln2>0,所以函数,所以函数u (x )在(1,2)(1,2)上单调递增,则上单调递增,则u (x )>u (1)(1)==a -3,即a ≥3.≥3. 答案:答案:B B5. 5. 解析:数列解析:数列解析:数列{{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,为增函数,注意a 8-6>(3>(3--a )×7-)×7-33,所以îïíïìa >13-a >0a8-6-a -3,解得2<a <3.答案:答案:C C6. 6. 解析:解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,的图象,当a >1时,必有a -1≥12,即1<a ≤2,≤2,当0<a <1时,必有a ≥12,即12≤a <1<1,,综上,12≤a <1或1<a ≤2.≤2.答案:答案:C C7. 7. 解析:当解析:当a >1时,y =a x 在[1,2][1,2]上单调递增,故上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax 在[1,2][1,2]上单调递减,故上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线曲线||y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果的图象如图所示,由图象可得:如果||y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]1,1].. 答案:答案:[[-1,1]9. 9. 解析:如图满足条件的区间解析:如图满足条件的区间解析:如图满足条件的区间[[a ,b ],当a =-=-11,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-=-11,b =1时区间长度最大,最大值为2,故其差为1. 答案:答案:1 110. 10. 解:要使函数有意义,则只需-解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.≤1. ∴函数的定义域为∴函数的定义域为{{x |-4≤x ≤1}.≤1}. 令t =-x 2-3x +4,则t =-x 2-3x +4=-=-((x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-=-44或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x ---+的值域为的值域为[[28,1]1]..+)+(≤-时,≤234()2x x ---+在,-32]-32,-32,,-32][1a,,1a ]=1a,即(1a+=13或-15(或13.。

指数函数习题及答案完整版

指数函数习题及答案完整版

指数函数习题及答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】指数函数习题一、选择题1.定义运算ab=,则函数f(x)=12x的图象大致为( )2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( ) A.(-1,+∞)B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若AB,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a 的取值范围是( )A.(0,]∪[2,+∞)B.[,1)∪(1,4]C.[,1)∪(1,2]D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=211.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由ab=得f(x)=12x=答案:A2.解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增. 若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x ). 若x <0,则3x <2x <1,∴f (3x )>f (2x ). ∴f (3x )≥f (2x ). 答案:A3.解析:由于函数y =|2x -1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4.解析:由题意得:A =(1,2),a x -2x >1且a >2,由AB 知a x -2x >1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5.解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数, 注意a 8-6>(3-a )×7-3,所以,解得2<a <3. 答案:C6.解析:f (x )<x 2-a x <x 2-<a x ,考查函数y =a x 与y =x 2-的图象, 当a >1时,必有a -1≥,即1<a ≤2, 当0<a <1时,必有a ≥,即≤a <1, 综上,≤a <1或1<a ≤2. 答案:C7.解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =,得a =.当0<a <1时,y =a x 在[1,2]上单调递减,故a -a 2=,得a =.故a =或. 答案:或8.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9.解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110.解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +)2+,∴当-4≤x ≤1时,t max =,此时x =-,t min =0,此时x =-4或x =1. ∴0≤t ≤.∴0≤≤.∴函数y =2341()2x x --+[,1].由t =-x 2-3x +4=-(x +)2+(-4≤x ≤1)可知,当-4≤x ≤-时,t 是增函数, 当-≤x ≤1时,t 是减函数. 根据复合函数的单调性知:y =1()2[-4,-]上是减函数,在[-,1]上是增函数.∴函数的单调增区间是[-,1],单调减区间是[-4,-].11.解:令a x =t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,],故当t =,即x =-1时, y max =(+1)2-2=14. ∴a =或-(舍去). 综上可得a =3或.12.解:法一:(1)由已知得3a +2=183a =2a =log 32. (2)此时g (x )=λ·2x -4x , 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x ,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x ]≤0成立. 设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.给出下列结论:
②n
a n =|a |(n >1,n ∈N *,n 为偶数);
④若
2x =16,3y =
1
27,则x +y =7.
其中正确的是( ) A .①② B .②③ C .③④ D .②④
答案 B 解析
∵2x =16,∴x =4,∵3y =
1
27,∴y =-3.
∴x +y =4+(-3)=1,故④错. 2.函数y =16-4x 的值域是( ) A .[0,+∞) B .[0,4] C .[0,4) D .(0,4)
答案 C
3.函数f (x )=3-x -1的定义域、值域是( ) A .定义域是R ,值域是R B .定义域是R ,值域是(0,+∞) C .定义域是R ,值域是(-1,+∞) D .以上都不对 答案 C
解析 f (x )=(1
3)x -1,
∵(1
3)x>0,∴f(x)>-1.
4.设y1=40.9,y2=80.48,y3=(1
2)-1.5,则()
A.y3>y1>y2B.y2>y1>y3
C.y1>y2>y3D.y1>y3>y2
答案 D
解析y1=21.8,y2=21.44,y3=21.5,
∵y=2x在定义域内为增函数,∴y1>y3>y2.
5.函数f(x)=a x-b的图像如图,其中a,b为常数,则下列结论正确的是()
A.a>1,b<0 B.a>1,b>0
C.0<a<1,b>0 D.0<a<1,b<0
答案 D
6.(2014·成都二诊)若函数f(x)=(a+1
e x-1)cos x是奇函数,则常数a的值等于()
A.-1 B.1
C.-1
2 D.
1
2
答案 D
7.(2014·山东师大附中)集合A={(x,y)|y=a},集合B={(x,y)|y=b x+1,b>0,b≠1},若集合A∩B只有一个子集,则实数a的取值范围是()
A.(-∞,1) B.(-∞,1]
C.(1,+∞) D.R
答案 B
8.函数f(x)=3·4x-2x在x∈[0,+∞)上的最小值是()
A.-1
12B.0
C .2
D .10
答案 C
解析 设t =2x ,∵x ∈[0,+∞),∴t ≥1. ∵y =3t 2-t (t ≥1)的最小值为2, ∴函数f (x )的最小值为2.
9.已知函数f (x )=⎩⎨⎧
x -1,x >0,
2-|x |+1,x ≤0.若关于x 的方程f (x )+2x -k =0有且
只有两个不同的实根,则实数k 的取值范围为( )
A .(-1,2]
B .(-∞,1]∪(2,+∞)
C .(0,1]
D .[1,+∞)
答案 A
解析 在同一坐标系中作出y =f (x )和y =-2x +k 的图像,数形结合即可. 10.函数y =2|x |的定义域为[a ,b ],值域为[1,16],当a 变化时,函数b =g (a )的图像可以是( )
答案 B
解析 函数y =2|x |的图像如图.
当a =-4时,0≤b ≤4;当b =4时,-4≤a ≤0.
11.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________.
答案 (-2,-1)∪(1,2)
解析 函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则0<a 2-1<1,解得
1<a <2或-2<a <-1.
12.函数y =a x 在[0,1]上的最大值与最小值的和为3,则a =________. 答案 2
解析 ∵y =a x 在[0,1]上为单调函数, ∴a 0+a 1=3,∴a =2.
13.(2014·沧州七校联考)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=1
9,则f (x )的单调递减区间是________.
答案 [2,+∞)
解析 f (1)=a 2=19,a =1
3,
f (x )=⎩⎪⎨⎪⎧
(13)2x -4, x ≥2,
(13)4-2x , x <2.
∴单调递减区间为[2,+∞). 14.若0<a <1,0<b <1,且,则x 的取值范围是________.
答案 (3,4)
解析 log b (x -3)>0,∴0<x -3<1,∴3<x <4.
15.若函数y =2-x +1+m 的图像不经过第一象限,则m 的取值范围是______. 答案 m ≤-2
16.是否存在实数a ,使函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上的最大值是14?
答案 a =3或a =13
解析 令t =a x ,则y =t 2+2t -1. (1)当a >1时,∵x ∈[-1,1], ∴a x ∈[
1a ,a ],即t ∈[1
a ,a ].
∴y =t 2+2t -1=(t +1)2-2
在[1a ,a ]上是增函数(对称轴t =-1<1a ).
∴当t =a 时,y max =(a +1)2-2=14.
∴a =3或a =-5.∵a >1,∴a =3. (2)当0<a <1时,t ∈[a ,1
a ].
∵y =(t +1)2-2在[a ,1
a ]上是增函数, ∴y max =(1
a +1)2-2=14.
∴a =13或a =-15.∵0<a <1,∴a =13. 综上,a =3或a =1
3
.
17.(2011·)已知函数f (x )=a ·2x +b ·3x ,其中a ,b 满足a ·b ≠0. (1)若a ·b >0,判断函数f (x )的单调性;
(2)若a ·b <0,求f (x +1)>f (x )时的x 的取值范围.
答案 (1)a >0,b >0时,f (x )增函数;a <0,b <0时,f (x )减函数 (2)a <0,b >0时,x >log 1.5⎝ ⎛⎭⎪⎫-a 2b ;a >0,b <0时,x <log 1.5⎝
⎛⎭⎪⎫-a 2b 解析 (1)当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2,
∴f (x 1)-f (x 2)<0,∴函数f (x )在R 上是增函数. 当a <0,b <0时,同理,函数f (x )在R 上是减函数. (2)f (x +1)-f (x )=a ·2x +2b ·3x >0.
当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b ,则x >log 1.5⎝ ⎛⎭⎪⎫-a 2b ; 当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b ,则x <log 1.5⎝ ⎛⎭⎪⎫-a 2b . 18.已知函数f (x )=-2x
2x +1
.
(1)用定义证明函数f (x )在(-∞,+∞)上为减函数; (2)若x ∈[1,2],求函数f (x )的值域;
(3)若g (x )=a
2+f (x ),且当x ∈[1,2]时g (x )≥0恒成立,求实数a 的取值范围.
答案 (1)略 (2)[-45,-23] (3)a ≥8
5
(2)∵f (x )在(-∞,+∞)上为减函数, ∴f (x )的值域为[-45,-2
3].
(3)当x ∈[1,2]时,g (x )∈[a 2-45,a 2-2
3]. ∵g (x )≥0在x ∈[1,2]上恒成立, ∴a 2-45≥0,∴a ≥85.。

相关文档
最新文档