传动轴和万向节设计

合集下载

第5章 万向节与传动轴设计

第5章 万向节与传动轴设计

3)将传动轴做成空心的(无缝钢管或1.5~3mm厚的 薄钢板卷焊)
35
提高传动轴动平衡的方法
传动轴两端点焊平衡片
❖扭转强度 应保证有足够的扭转强度, 轴管的扭转切应力应满足
c
16 DcT1
( Dc4
d
4 c
)
c
300 MPa
36
37
38
2n
按驱动轮打滑 来确定
按日常平均使 用转矩来确定
TSS1
G2m2 i0imm
rr
TSF1
Ft rr i0immn
TSS2
G1m1 rr 2i m m
TSF 2
Ft rr 2i mm n
静强度计算时, 计算载荷TS取TSe1和TSS1 (或TSe2和TSS2 )的较小 值;
进行疲劳寿命计算时, 计算载荷TS取TSF1或TSF2。
12
十字轴万向节构造
• 万向节叉 十字轴、套筒、轴承盖
万向节叉
套筒
十字轴
13
速度特性
当叉轴1以等角速度
1旋转,A点的瞬
时线速度可求:
A= 1r=
2rcos
2> 1
当叉轴1转过900后,
B点的瞬时线速度可
求:
B= 1rcos =
2r
2<
1
不等速性
14
不等速性曲线图
15
准等速万向节
2.双联式万向节
0
1
f
d1 r
2 tan
( 25时)
❖通常约为97%~99%
30
三、球笼式万向节设计
Rzeppa型球笼式万向节设计
假定六个传力钢球均匀受载,则钢球的直径 可按下列经验公式确定:

万向节和传动轴设计

万向节和传动轴设计

万向节和传动轴设计1.引言万向节是一种能够在不同角度传动转矩和旋转动力的机械零件,主要用于在非直线传输轴或传动系统中实现旋转传动。

传动轴则是将功率从原动机传递到负载的一种传动装置。

在机械设计中,万向节和传动轴的设计至关重要,因为它们直接决定了传输系统的力学性能和运动传动的效率。

本文将详细介绍万向节和传动轴的设计原理及其在实际工程中的应用。

2.万向节的设计原理和应用万向节的设计原理基于其能够在多个平面上旋转,如X、Y和Z轴,从而实现非常灵活的角度传输。

万向节通常由两个旋转连接部分组成,具有两个旋转轴。

其中一个旋转轴称为输入轴,另一个旋转轴称为输出轴。

两个旋转轴的交点称为万向节的中心。

通过合理设计万向节的结构,可以实现不同的角度传输和旋转。

万向节广泛应用于汽车工业、航空航天、船舶和机械制造等领域。

在万向节的设计中,需要考虑以下几个方面:1)承受的转矩:根据传动系统的需求,确定万向节需要承受的转矩大小。

这个参数将直接影响到万向节的尺寸和材料选择。

2)角度范围:确定万向节需要实现的角度传输范围。

这个参数将决定万向节的结构设计。

3)装配空间:根据实际的装配空间限制,确定万向节的尺寸和形状。

3.传动轴的设计原理和应用传动轴是将原动机的动力传递到负载的一种传动装置。

传动轴的设计原理基于承受和传递转矩的难度及传输效率的要求。

在传动轴的设计中,需要考虑以下几个方面:1)轴材料的选择:根据传动系统的要求,选择合适的轴材料。

常用的轴材料有铁、钢和铝等。

材料的强度和刚度是选择的重要考虑因素。

2)圆整度和平行度:传动轴的圆整度和平行度对传动的效率和平稳度有很大影响。

在轴的制造过程中,需要保证其圆整度和平行度的要求。

3)轴的结构设计:根据传动系统的要求,确定轴的结构设计。

包括轴的直径、轴的长度、轴的形状等。

传动轴广泛应用于各种机械传动系统中,如汽车变速器、工业机械和机床。

在设计传动轴时,需要综合考虑功率传输、转速、扭矩、材料的选择和轴的结构设计等因素,以满足传动系统的要求。

万向节和传动轴设计

万向节和传动轴设计
二、强度计算
§4-6 中间支承结构分析与设计
1.开式:单式复式2.闭式:万向节被密封于管内,管承受驱动轴反力(独立悬架采用)
应合理选择CR,避免共振
§4-6 中间支承结构分析与设计
中间支承固有频率
感谢阅读
感谢阅读万向节:圆弧槽型球叉式万向节:传动夹角小于33°,磨损快,用于轻中型越野车转向驱动桥;直槽滚道型球叉式万向节:传动夹角小于20°,可以略微伸缩,用于断开式驱动桥
三、等速万向节
2.球笼式万向节:Birfield型球笼式万向节(RF节):承载能力和耐冲击能力强,效率高,结构紧凑,安装方便,应用最广泛,用于独立悬架转向驱动桥靠近转向轮一侧。
一、单十字轴万向节传动
2.转矩变化若T1为常数,则
一、单十字轴万向节传动
3.附加弯曲力偶矩变化1)1=0°,180°时,则T2'= T1sinα,最大;2)1=90°,270°时,则T1'= T1tgα ,最小;因此,主、从动轴受到周期作用的附加弯曲力偶矩,其周期比主动轴转速大一倍(π),在主从动轴支承上引起周期性变化的径向载荷(振动)。
三、等速万向节
2.球笼式万向节:伸缩型球笼式万向节(VL节):外滚道为直槽,可伸缩,省去滑动花键,结构简单,效率高;用于独立悬架转向驱动桥靠近主减速器一侧。
四、挠性万向节
特点:能减小扭转振动、动载荷、噪声结构简单,不用润滑用于两轴间夹角不大(3~5°),轴向位移小的场合
四、挠性万向节
用途:轿车三万向节传动中的靠近变速器的第一节;重型汽车发动机与变速器之间;越野车变速器与分动器之间,以消除制造安装误差和车架变形对传动的影响。
二、准等速万向节
2.凸块式万向节 特点:相当于双联式万向节,工作可靠,加工简单,允许的夹角较大(50°),工作面为全滑动摩擦,效率低,易磨损,对密封和润滑要求高。 用途:多用于中型以上越野车转向驱动桥。

传动轴和万向节设计

传动轴和万向节设计

传动轴和万向节设计一、传动轴的结构传动轴是连接发动机和驱动轴的重要传动部件,其主要结构包括中心轴、连接部件和连接套管。

中心轴是传动轴的主体,其外形通常为圆柱形。

连接部件用于连接中心轴与其他传动部件,常用的连接方式有接合螺母和套筒连接。

连接套管则用于安装传动轴,起到支撑和保护的作用。

二、传动轴的设计要求传动轴作为汽车传动系统的关键零部件,其设计需要满足以下几个主要要求:1.良好的刚度和强度:传动轴在传递发动机动力的同时,还需要承受车辆行驶过程中的各种载荷。

因此,传动轴的设计需要保证足够的刚度和强度,以防止变形和断裂。

2.良好的动平衡性能:传动轴在高速旋转过程中会产生振动和不平衡力,对汽车驾驶稳定性产生不利影响。

因此,传动轴的设计需要考虑动平衡性能,采取相应的平衡措施。

3.重量轻、体积小:随着汽车动力性能和燃油经济性要求的提高,传动轴的质量也要求尽量减小,以减轻整车质量,提高燃油经济性。

4.良好的耐久性和可靠性:传动轴在汽车使用过程中会受到多种因素的影响,如冲击、杂乱加载和腐蚀等。

因此,传动轴的设计需要保证其良好的耐久性和可靠性,减少故障发生的概率。

三、万向节的结构和工作原理万向节用于连接传动轴和车轮之间,是一种能够在不同角度下实现传动的装置。

常见的万向节结构有三个球式和常角度式两种。

其中,三个球式万向节是一种可以实现任意角度传动的结构,由两个内圈、两个外圈和三个转动球组成。

常角度式万向节则适用于需要固定角度传动的场合,常用于前驱汽车。

万向节的工作原理是通过球和轴之间的球座和滚道实现传递动力。

当传动轴转动时,球会在轴上转动,通过球面与内圈、外圈的滚道接触传递动力。

相对于三个球式万向节,常角度式万向节的结构相对简单,其工作原理类似。

四、常见问题及解决方法1.传动轴产生振动:造成传动轴振动的原因有很多,可能是由于不平衡、轴材质问题或连接部件松动等原因。

解决方法可以是进行动平衡修正或更换质量较好的传动轴。

传动轴万向节课程设计

传动轴万向节课程设计

传动轴万向节课程设计一、教学目标本节课的学习目标包括知识目标、技能目标和情感态度价值观目标。

知识目标要求学生掌握传动轴万向节的结构、工作原理和应用场景;技能目标要求学生能够运用所学知识分析实际问题,并具备一定的动手实践能力;情感态度价值观目标要求学生培养对机械传动领域的兴趣,提高创新意识和团队协作能力。

二、教学内容本节课的教学内容主要包括传动轴万向节的结构、工作原理和应用场景。

首先,介绍传动轴万向节的结构,包括轴身、万向节叉、十字轴等部分,并讲解各部分的作用。

其次,讲解传动轴万向节的工作原理,通过实例分析,使学生理解其在汽车传动系统中的重要作用。

最后,介绍传动轴万向节在实际应用中的各种类型,如恒速万向节、手动变速器万向节等,并分析其优缺点。

三、教学方法为了提高教学效果,本节课采用多种教学方法相结合的方式。

首先,运用讲授法,系统地传授传动轴万向节的相关知识。

其次,采用讨论法,让学生分组讨论传动轴万向节的工作原理和应用场景,增强学生的互动与合作能力。

此外,结合案例分析法,选取实际案例,让学生分析传动轴万向节在汽车传动系统中的应用,提高学生的实践能力。

最后,利用实验法,让学生动手操作传动轴万向节模型,加深对知识的理解和记忆。

四、教学资源本节课的教学资源包括教材、参考书、多媒体资料和实验设备。

教材选用《汽车传动系统》一书,为学生提供系统性的理论知识。

参考书包括《汽车万向节设计与应用》等,为学生提供丰富的实践案例。

多媒体资料包括图片、视频等,用于直观展示传动轴万向节的结构和工作原理。

实验设备包括传动轴万向节模型、实验台等,让学生动手操作,提高实践能力。

五、教学评估本节课的评估方式包括平时表现、作业和考试三个部分。

平时表现占30%,主要评估学生在课堂上的参与程度、提问回答等情况;作业占30%,主要评估学生的理解和应用能力;考试占40%,主要评估学生对知识的掌握程度。

评估方式客观、公正,能全面反映学生的学习成果。

第四章万向节和传动轴设计

第四章万向节和传动轴设计

第四章万向节和传动轴设计一、引言万向节和传动轴是机械传动系统中重要的组成部分,它们的设计对于传动系统的正常运行和高效性能起着决定性的作用。

本章将从万向节和传动轴的基本原理、设计要点以及选材等方面进行探讨。

二、万向节的基本原理和分类万向节是将两个或多个轴相互连接并能够进行相对转动的装置。

它主要通过万向节的柔性连接来解决传动系统中因轴间相对偏斜而引起的传递不平稳、受力不均等问题。

万向节一般由内外球面、轴承和套筒等组成,常见的万向节分类有钢球万向节、十字接头万向节和常温万向节等。

钢球万向节广泛应用于工程机械和汽车等领域。

它通过钢球与内外球面的接触来实现传递扭矩,具有承载能力强、传动平稳等特点。

十字接头万向节主要应用于船舶、起重机等场合,它通过两个十字绞杆的连接来实现传递扭矩,具有承载能力大、传动效率高等特点。

而常温万向节则主要应用于高速高温场合,它通过金属软管的连接来实现传递扭矩,具有抗高温、耐腐蚀等特点。

三、万向节的设计要点(一)轴间角度设定轴间角度是万向节设计的重要参数,它直接影响万向节的传动性能。

在设计时需要根据实际需求和传动方式来确定轴间角度,通常轴间角度在5°~35°之间。

(二)轴间相对偏斜轴间相对偏斜是万向节设计中需要重点考虑的问题。

在实际应用中,轴间的相对偏斜会导致万向节产生额外的旋转变形、较大的径向力和不平稳传动等问题。

因此,在设计时需要合理控制轴间相对偏斜,通常限制在1°以内。

(三)轴向长度万向节的轴向长度是指万向节两个连接轴之间的距离。

轴向长度的设计需要考虑到传递扭矩的大小、工作环境的限制以及安装方式等因素。

四、传动轴的设计要点(一)强度和刚度传动轴的设计需要满足一定的强度和刚度要求,以保证传递扭矩时不会产生过大的变形和振动。

根据传动轴的传动功率和转速等参数,可以通过强度校核和刚度计算等方法来确定传动轴的尺寸和材料。

(二)传动性能传动轴的传动性能包括传动效率、噪声和振动等方面的考虑。

汽车设计 第6版 第4章 万向传动设计

汽车设计 第6版 第4章 万向传动设计

尺寸大,零件多,结构较复杂,传递转矩有限
当应用于转向驱动桥中,由于轴向尺寸大,为 使主销轴线的延长线与地面交点到轮胎的印迹 中心偏离不大,需要较大的主销内倾角
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
四、等速万向节
1.球笼式万向节
(1)固定型球笼式万向节
星形套7以内花键与主动轴1相连,其外表面设置有 6条凹槽(形成内滚道)。球形壳8的内表面设置有 对应的6条凹槽(形成外滚道)。6个钢球分别嵌装 在6条滚道中,并由保持架4使之保持在同一平面内。 动力由主动轴1经过钢球6、球形壳8输出。
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
二、十字轴式万向节
滚针轴承的润滑和密封
毛毡油封:因防漏油、防水、防尘效果差,已淘汰 双刃口复合油封:防漏油、防水、防尘效果好。在 灰尘较多的环境中万向节寿命显著提高。 多刃口油封:防漏油、防水、防尘效果更好。
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
四、等速万向节
2.三枢轴式万向节
三枢轴式万向节能允许最大轴间交角为43°
万向节安装位置或相连接总成
离合器-变速器;变速器-分动器 (相连接总成均安装在车架上)
驱动桥 传动轴
汽车满载 静止夹角
行驶中的 极限夹角
一般汽车 越野汽车 一般汽车 越野汽车
α不大于
1°~3°
6° 12° 15°~20° 30°
第四章 万向传动设计
汽车工程系
第二节 万向节结构方案分析
三、双联式万向节
汽车工程系

传动轴设计[整理版]

传动轴设计[整理版]

传动轴设计1概述在汽车传动轴系或其它系统中,为了实现一些轴线相交或相对置经常变化的转轴之间的动力传递,必须采用万向传动装置。

万向传动装置一般由万向节和传动轴组成,当距离较远时,还需要中间支承。

在汽车行业中把连接发动机与前、后轴的万向传动装置简称传动轴。

传动轴设计应能满足所要传递的扭矩与转速。

现轻型载货汽车多采用不等速万向节传动轴。

2传动轴设计2.1传动轴万向节、花键、轴管型式的选择根据整车提供发动机的最高转速、最大扭矩及变速箱提供的一档速比,及由后轴负荷车轮附着力,计算得扭矩,由两者比较得出的最小扭矩来确定传动轴的万向节、花键、轴管型式。

a按最大附着力计算传动轴的额定负荷公式:Mψmax=G·r k·ψ/i oG满载时驱动轴上的负荷r k车轮的滚动半径ψ车轮与地面的附着系数i o主减速器速比b按发动机最大扭矩计算传动轴的额定负荷公式:Mψmax =M·i k1·i p/nM 发动机最大扭矩i k1变速器一档速比i p 分动器低档速比n 使用分动器时的驱动轴数按《汽车传动轴总成台架试验方法》中贯定选取以上二者较小值为额定负荷。

考虑到出现最大附着力时的工况是紧急制动工况此时的载荷转移系数为μ因此实际可利用最大附着力矩:M ψmaxo = M max ·μ传动轴的试验扭矩:由汽车设计丛书《传动轴和万向节》中得知:一般总成的检查扭矩为设计扭矩的1.5-2.0倍。

传动轴设计中轴管与万向节的设计扭矩也应选取1.5-2.0倍的计算扭矩,以满足整车使用中的冲击载荷。

轴管扭转应力公式:τ=16000DM π(D 4-d 4)<[τ] =120N/ mm2D 轴管直径; d 轴管内径;M 变速箱输出最大扭矩;花键轴的扭转应力:τ=16000M πD 23<[τ] =350N/ mm 2D 2花键轴花键底径;D 2=27.667mm 。

Z 花键齿数 m 花键模数M变速箱输出最大扭矩;传动轴花键齿侧的挤压应力:δ=2×TΨ×Z×m×L×Z×m在25-50N.mm2推荐范围内Ψ各齿载荷不均系数;Z花键齿数;L花键齿的最短工作长度长度;m花键模数;2.2传动轴的临界转速计算传动轴的临界转速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录传动轴与十字轴万向节设计1.1结构方案选择 (02)1.2计算传动轴载荷 (03)1.3传动轴强度校核 (04)1.4十字轴万向节设计 (04)1.5传动轴转速校核及安全系数 (07)1.6参考文献 (09)1.传动轴与十字轴万向节设计要求1.1万向传动轴总体概述万向传动轴是汽车传动系的重要组成部件之一。

传动轴选用与设计的合理与否直接影响传动系的传动性能。

选用、设计不当会给传动系增添不必要的和设计未能估算在内的附加负荷,可能导致传动系不能正常运转..。

传动轴是将发动机输出的转知经分动器传递给前驱和后驱的传动机构,转速达3000~7000r/min,振动是传动轴总成设计需考虑的首要问题。

尽管采取涂层技术来减小滑移阻力,但产生的滑移阻力仍为等速万向节的10~40倍,而滑移阻力将产生振动。

为选型设计提供依据,传动轴分为CJ+CJ型、BJ+BJ型(靠花键产生滑移)BJ+DOJ型、BJ+TJ型、BJ+LJ型5种类型。

传动布置型式的选择万向节传动轴是汽车传动系的重要组成部件之一。

传动轴选用与设计布置的合理与否直接影响传动系的传动性能。

选用与布置不当会给传动系增添不必要的和设计未能估算在内的附加动负荷,可能导致传动系不能正常运转和早期损坏。

车辆的万向节传动,主要应用于非同心轴间和工作中相对位置不断改变的两轴之间的动力传递。

装在变速器输出轴与前后驱动桥之间。

变速器的动力输出轴和驱动桥的动力输入轴不在一个平面内。

有的装载机在车桥与车架间装有稳定油缸、铰接式装载机在转向时均会使变速箱与驱动桥之间的相对位置和它们的输出、输出入轴之间的夹角不断发生变化。

这时常采用一根或多根传动轴、两个或多个十字轴万向节的传动[7]。

图2.1为用于汽车变速箱与驱动桥之间的不同万向传动方案。

(a)单轴双万向节式(b)两轴三万向节式图2.1汽车的万向传动方案[7]1.2 计算传动轴载荷由于发动机前置后驱,根据表4-1,位置采用:用于变速器与驱动桥之间①按发动机最大转矩和一档传动比来确定T se1=k d T emax ki1i fη/nT ss1= G2 m’2φr r/ i0i mηm发动机最大转矩T emax=235.3Nm驱动桥数n=1,发动机到万向传动轴之间的传动效率η=0.85,液力变矩器变矩系数k={(k0 -1)/2}+1=1.6满载状态下一个驱动桥上的静载荷G2=65%m a g=0.65*950*9.8=6051.5N,发动机最大加速度的后轴转移系数m’2=1.2,轮胎与路面间的附着系数φ=0.85,车轮滚动半径r r=0.35主减速器从动齿轮到车轮之间传动比i m=1,主减速器主动齿轮到车轮之间传动效率ηm=η发动机η离合器=0.9*0.85=0.765,因为0.195 m a g/T emax<16,f j>0,所以猛接离合器所产生的动载系数k d=2,主减速比i0=3.98所以:T se1=k d T emax ki1i fη/n=198.315.26.13.2352⨯⨯⨯⨯⨯=7491.952NT ss1= G2 m’2φr r/ i0i mηm=765.0198.335 .085.02.15.6051⨯⨯⨯⨯⨯=709.556N ∵T1=min{ T se1, T ss1} ∴T1= T ss1=709.556N1.3 传动轴强度校核按扭转强度条件τT =T/W T ≈9550000P n 0.2D c 3(1-(d c /D c )4)≤[τT ] 式中,τT 为扭转切应力,取轴的转速n=4000r/min ,轴传递的功率P=65kw ,D c =60mm ,d c =81mm 分别为传动轴的外内直径,根据机械设计表15-3得[τT ]为15-25 Mpa∴τT =⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⨯⨯4360521602.04000659550000=8.242 Mpa<[τT ] 故传动轴的强度符合要求1.4 十字轴万向节设计万向节类型的选择对万向节类型及其结构进行分析,并结合技术要求选择合适的万向节类型。

考虑到本毕业设计所针对的车型为中轻型货车,对其万向传动轴的设计应满足:制造加工容易、成本低,工作可靠承载能力强,使用寿命长,结构简单,调整维修方便等要求,本设计选用十字轴式万向节。

十字轴式万向节的结构分析十字轴式万向节的基本构造,一般由一个十字轴、两个万向节叉、和滚针轴承等组成。

两个万向节叉上的孔分别松套在十字轴的两对轴颈上。

为了减少磨擦损失,提高效率,在十字轴的轴颈处加装有由滚针和套筒组成的滚针轴承。

然后,将套筒固定在万向节叉上,以防止轴承在离心力作用下从万向节叉内脱出。

这样,当主动轴转动时,从动轴既可随之转动,又可绕十字轴中心在任意方向摆动。

目前,最常见的滚针轴承轴向定位方式有盖板式、卡环式、瓦盖固定式和塑料环定位式① 设作用于十字轴轴颈中点的力为F ,则F= T 1/2rcos α=709.556/2*50x10-3*cos8o =7165.292N② 十字轴轴颈根部的弯曲应力σw 和切应力τ应满足σw =32d 1Fs π(d 14-d 42)≤[σw ]198.315.26.13.2352⨯⨯⨯⨯⨯ τ=4F π(d 21-d 22)≤[τ]式中,取十字轴轴颈直径d 1=38.2mm ,十字轴油道孔直径d 2=10mm ,合力F 作用线到轴颈根部的距离s=14mm ,[σw ]为弯曲应力的许用值,为250-350Mpa ,[τ]为切应力的许用值,为80-120 Mpa∴σw =32d 1Fs π(d 14-d 42)=()()[]43-43-331010-102.381014292.7165102.3832⨯⨯⨯⨯⨯⨯⨯--π= = 18.32Mpa<[σw ]τ=4F π(d 21-d 22) =()()[]23-23-1010-102.38292.71654⨯⨯⨯π=6.711Mpa<[τ]故十字轴轴颈根部的弯曲应力和切应力满足校核条件③ 十字轴滚针的接触应力应满足σj =272(1d 1+1d 0)F n L b ≤[σj ]式中,取滚针直径d 0=3mm ,滚针工作长度L b =27mm ,在合力F 作用下一个滚针所受的最大载荷F n =4.6F iZ=441292.71656.4⨯⨯=749.09N,当滚针和十字轴轴颈表面硬度在58HRC 以上时,许用接触应力[σj ]为3000-3200 Mpaσj =272(1d 1+1d 0)F n L b= 272333102709.7491031102.381---⨯⨯⎥⎦⎤⎢⎣⎡⨯+⨯=0.859 Mpa<[σj ] 故十字轴滚针轴承的接触应力校核满足④ 万向节叉与十字轴组成连接支承,在力F 作用下产生支承反力,在与十字轴轴孔中心线成45°的截面处,万向节叉承受弯曲和扭转载荷,其弯曲应力σw 和扭应力τb 应满足σw =Fe/W ≤[σw ]τb =Fa/W t ≤[τb ]式中,取a=40mm,e=80mm,b=35mm,h=70mm,查表,取k=0.246,W=bh 2/6, W t =khb 2, 弯曲应力的许用值[σw ]为50-80Mpa ,扭应力的许用值[τb ]为80-160 Mpa∴σw =Fe/W=()6107010351080292.71652333---⨯⨯⨯⨯⨯=20.054 Mpa< [σw ]τb =Fa/W t =()233310351070247.01040292.7165---⨯⨯⨯⨯⨯⨯=13.587 Mpa<[τb ]故万向节叉承受弯曲和扭转载荷校核满足要求⑤ 十字轴万向节的传动效率与两轴的轴间夹角α,十字轴的支承结构和材料,加工和装配精度以及润滑条件等有关。

当α≤25°时,可按下式计算(取α=15°)η0=1-f (d 1r )2tan απ=1-0.07(502.38)2tan15°π=99.08%1.5 传动轴转速校核及安全系数①传动轴的临界转速为n k =1.2×108D c 2+d 2c L c 2式中,取传动轴的支承长度L c =1.5m, d c =70mm, D c =90mm 分别为传动轴轴管的内外直径, n max =4500 r/min∴n k =1.2×108×902+70215002=6080.933 r/min在设计传动轴时,取安全系数K= n k /n max =1.2-2.0∴K= n k /n max =6080.9334500=1.351故符合要求② 传动轴轴管断面尺寸除应满足临界转速要求以外,还应保证有足够的扭转强度。

轴管的扭转应力τc =16D c T 1π(D c 4-d c 4)≤[τc ] 式中[τc ]=300 Mpa∴τc =()()[]43-43-31070-1090556.709109016⨯⨯⨯⨯⨯⨯-π=7.818 Mpa<[τc ]∴轴管的扭转应力校核符合要求③ 对于传动轴上的花键轴,通常以底径计算其扭转应力τh ,许用应力一般按安全系数2-3确定τh =16T 1πd h 3式中,取花键轴的花键内径d h =70mm ,外径D h =80mm, ∴τh =()33-1070556.70916⨯⨯⨯π=10.336 Mpa④ 传动轴花键的齿侧挤压应力σy 应满足σy =T 1K ’/(D h +d h )4(D h -d h )2L h n 0≤[σy ]式中,取花键转矩分布不均匀系数K ’=1.35,花键的有效工作长度L h =60mm ,花键齿数n 0=18,当花键的齿面硬度大于35HRC 时:许用挤压应力[σy ]=25-50 Mpa∴σy = 963.671×1.3537.5×5×60×18×10-9910186055.3735.1556.709-⨯⨯⨯⨯⨯ =4.730Mpa <[σy ]∴传动轴花键的齿侧挤压应力σy 满足要求1.6 参考文献:[1] 王望予.汽车设计.北京:机械工业出版社,[2] 纪名刚.机械设计.北京:高等教育出版社,[3]刘鸿文.材料力学.北京:高等教育出版社,。

相关文档
最新文档