指派问题例1的数学模型
运筹学指派问题

n
n
总成本最小
每项任务由一人完成 每人只承担一项任务
解矩阵的特征
• 全部元素仅取0或1 • 每行有且仅有一个1 • 每列有且仅有一个1
0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0
例如,n=5时, X xij
数学模型 : m in z cij xij j 1 i 1
n xij 1, j 1,2 ,...,n i 1 n s .t . xij 1, i 1,2 ,...,n j 1 x 0 ,1 i , j 1,2 ,...,n ij
在C中找出最多独立0的步骤
• 设Wi表示第i行0的数目,Lj表示第i列0的数目.
• 1.统计Wi和Lj(i,j=1,2,…n).
• 2.按W1,W2,…,Wn,L1,L2,…,Ln顺序找出 第一个最小正数,选中该行(列)首个0. • 3.删除该0所在的行与列,对应的Wi=0,Lj=0. • 4.重复步骤1~3,直到全部Wi=0为止.
0
0
这样就找到 4个独立0
如果按自上而下从左到右顺序找
0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
• 这样,4条线就覆盖了全部0
0 0 0 0 0 0
0
0 0
0 0 0 0
运筹学-0-1规划指派问题PPT课件

遗传算法的优点是能够处理大规模、复杂的优化问题,且具有较强的鲁 棒性和全局搜索能力。缺点是算法实现较为复杂,需要较高的计算资源 和时间,且在某些情况下可能会陷入局部最优解。
指派问题通常具有整数约束和 0-1约束,即每个工人只能被分 配一项任务,且每个任务只能 由一个工人完成。
指派问题的解通常具有最优子 结构和局部最优解的特性。
变量定义
• $x{ij}$:如果第i个工人被分配第j项任务,则$x{ij}=1$; 否则$x_{ij}=0$。
目标函数
• $min \sum{i=1}^{n} \sum{ j=1}^{n} c{ij} x{ij}$: 最小化总成本。
04
指派问题在0-1规划中的应用
指派问题的定义
• 指派问题是一种组合优化问题,旨在将一组任务分配给一组工 人,使得总成本最小化。每个工人只能完成一项任务,每项任 务只能由一个工人完成。目标是找到一种最优的分配方式,使 得总成本最低。
指派问题的特点
指派问题具有NP难解的特点, 即没有已知的多项式时间算法 来解决该问题。
04
总结词:整数规划
பைடு நூலகம்
案例三:旅行商问题
总结词:旅行商问题
总结词:图论
详细描述:旅行商问题是一个经典的组合优 化问题,涉及到寻找一条最短路径,使得一 个旅行商能够访问一系列城市并返回出发城 市,同时最小化总旅行距离。
详细描述:图论是研究图形和图形结构的数 学分支,提供了解决旅行商问题和其他优化 问题的理论基础。
在0-1规划问题中,分支定界法将问题分解为多个子问题,每个子问题对应一种指派 方案。算法通过不断排除不可能的解来缩小搜索范围,最终找到最优解。
指派问题

2 15 13
(cij)= 10 4 14
4
15 13
2
4 9 7 0 13 11 6 0 0 5 1 10 7 4 4 2 11 4 2 2
9 14 16
7
8 11
9
0 13 6 0 0 5
7 6 3
0 9 2
0
0
1
0
0
第二步:进行试分配,以寻找最优解。
从只有一个0元素的行(或列)开始, 给这个0元素加圈,记,然后划去所 在的列(或行)的其他0元素,记作Ø。 给只有一个0元素的列(或行)的0元素 加圈,记,然后划去所在的行(或列) 的其他0元素,记作Ø。
分配问题的数学模型:
Min Z= cijxij xij =1 (j=1,2……n) xij =1 (i=1,2……n) xij 0或1 (i=1,2…..m; j=1,2……n)
xij =1 (j=1,2……n)表示
第j 项任务只能由一人去完成。
xij =1 (i=1,2……n)
指派问题 (Assignment Problem)
在实际中经常会遇到这样的问题,有n 项不同的任 务,需要n 个人分别完成其中的一项,但由于任务的性 质和各人的专长不同,因此各人去完成不同的任务的 效率(或花费的时间或费用)也就不同。于是产生了 一个问题,应指派哪个人去完成哪项任务,使完成 n 项任务的总效率最高? (一)、指派问题的数学模型 设n 个人被分配去做n 件工作,规定每个人只做一 件工作,每件工作只有一个人去做。已知第I 个人去 做第j 件工作的的效率( 时间或费用)为 Cij(i=1.2…n;j=1.2…n)并假设Cij ≥0。问应如何分配才 能使总效率( 时间或费用)最高?
4.4 指派问题

指派问题与匈牙利法
Page 14
若◎ 元素的数目m 等于矩阵的阶数n(即:m=n),那么这指 派问题的最优解已得到。若m < n, 则转入下一步。
3) 用最少的直线通过所有0元素。其方法:
① 对没有◎的行打“√”; ② 对已打“√” 的行中所有含Ø元素的列打“√” ; ③ 再对打有“√”的列中含◎ 元素的行打“√” ; ④ 重复①、②直到得不出新的打√号的行、列为止; ⑤ 对没有打√号的行画横线,有打√号的列画纵线,这就得到覆盖
所有0元素的最少直线数 l 。
注:l 应等于m,若不相等,说明试指派过程有误,回到第2步,另行试 指派;若 l=m < n,表示还不能确定最优指派方案,须再变换当前的系 数矩阵,以找到n个独立的0元素,为此转第4步。
指派问题与匈牙利法
• 4) 变换矩阵(bij)以增加0元素
•
Page 15
在没有被直线通过的所有元素中找出最小值,没有被直线通过 的所有元素减去这个最小元素;直线交点处的元素加上这个最 小值。新系数矩阵的最优解和原问题仍相同。转回第2步。
0 0 1 0 0 0 1 0 0 0 1 0
即完成4个任务的总时间最少 为:2+4+1+8=15
指派问题与匈牙利法
指派问题的求解步骤:
Page 12
1) 变换指派问题的效率矩阵 (cij)为(bij),使在(bij)的各行各列 中都出现0元素,即 从(cij)的每行元素都减去该行的最小元素; 再从所得新系数矩阵的每列元素中减去该列的最小元素。
独立0元素的个数l=4<5,故画直线调整矩阵。
指派问题与匈牙利法
Page 22
2 2 4 4 ◎ 0
◎
0 5 1 Ø 0
指派问题(经典运筹学)

1 1 c 11 2 c 21 … i c i1 … n c n1 2
c 12 c 22 ci2 cn2
…
1 2 3 4
6 20 10
21
25 14 0
5
x6
解:x i
1
2
0
不在第i个地区建站
i=1,2, …,6
Z表示全区消防站总数
2 6 1 x3 x4 1 s.t x3 x4 x5 1 x x x 1 4 5 6 x i 0 ,1 i 1, 2 , , 6
一、决策问题与0-1变量
决策变量
xi
x i 是否做第
i 件事 i 1, 2 , , n
1 0
做第i件事 不做第i件事
x1 x 2 x n k
n件事中必须做k件并只做k件事 n件事中最多做k件事 n件事中至少做k件事
x1 x 2 x n k x1 x 2 x n k
当n=4时, 有16变量,8个约束方程
例:现有4份工作,4个人应聘,由 于各人技术专长不同,他们承担 各项工作所需费用如下表所示, 且规定每人只能做一项工作,每 一项工作只能由一人承担,试求 使总费用最小的分派方案。
工作
Z表示总费用
max Z 3 x11 5 x12 4 x13 5 x14 6 x 21 7 x 22 6 x 23 8 x 24 8 x 31 9 x 32 8 x 33 10 x 34 10 x 41 10 x 42 9 x 43 11 x 44
指派问题详解

第一章绪论1、指派问题的背景及意义指派问题又称分配问题,其用途非常广泛,比如某公司指派n个人去做n 件事,各人做不同的一件事,如何安排人员使得总费用最少?若考虑每个职工对工作的效率(如熟练程度等),怎样安排会使总效率达到最大?这些都是一个企业经营管理者必须考虑的问题,所以该问题有重要的应用价值.虽然指派问题可以用0-1规划问题来解,设X(I,J)是0-1变量, 用X(I,J)=1表示第I个人做第J件事, X(I,J)=0表示第I个人不做第J件事. 设非负矩阵C(I,J)表示第I个人做第J件事的费用,则问题可以写成LINGO程序SETS:PERSON/1..N/;WORK/1..N/;WEIGHT(PERSON, WORK): C, X ;ENDSETSDATA:W=…ENDDATAMIN=@ SUM(WEIGHT: C*X);@FOR(PERSON(I): @SUM(WORK(J):X(I,J))=1);@FOR(WORK(J): @SUM(PERSONM(I):X(I,J))=1);@FOR(WEIGHT: @BIN(X));其中2*N个约束条件是线性相关的, 可以去掉任意一个而得到线性无关条件.但是由于有N^2个0-1变量, 当N很大时,用完全枚举法解题几乎是不可能的. 而已有的0-1规划都是用隐枚举法做的,计算量较大. 对于指派问题这种特殊的0-1规划,有一个有效的方法——匈牙利算法,是1955年W. W. Kuhn利用匈牙利数学家D.König的二部图G的最大匹配的大小等于G的最小顶点覆盖的大小的定理提出的一种算法,这种算法是多项式算法,计算量为O(N3).匈牙利算法的基本原理是基于以下两个定理.定理1设C=(C ij)n×n是指派问题的效益矩阵,若将C中的任一行(或任一列)减去该行(或该列)中的最小元素,得到新的效率矩阵C’,则C’对应的新的指派问题与原指派问题有相同的最优解.证明:设X’是最优解, 即@SUM(WEIGHT: C*X’)<= @SUM(WEIGHT: C*X), 则当C中任一行或任一列减去该行或该列的最小数m时,得到的阵C’还是非负矩阵, 且@SUM(WEIGHT: C’*X’)<=@SUM(WEIGHT: C*X)-m=@SUM(WEIGHT: C’*X)定理2效率矩阵C中独立的0元素的最多个数等于覆盖所有0元素的最少直线数. 当独立零元素的个数等于矩阵的阶数时就得到最优解.3、理论基础定义:图G的一个匹配M是图G中不相交的边的集合. 属于匹配M中的边的所有端点称为被该匹配M饱和, 其他的顶点称为M-未饱和的. 如果一个匹配M 饱和了图G的所有顶点,则称该匹配M是一个完全匹配. 可见顶点数是奇数的图没有完全匹配. 一个匹配M称为是极大匹配, 如果它不能再扩张成更大的一个匹配. 一个匹配称为是最大匹配, 如果不存在比它更大的匹配.定义:对于一个匹配M, 图G的一个M-交替路是图G中的边交替地在M中及不在M中的边组成. 从M-未饱和点出发到M-为饱和点结束的M-交替路称为一条M-增广路. 把M-增广路中不是M中的边改成新的匹配M’中的边, 把M-增广路中M中的边不作为M’中的边, 在M-增广路以外的M中的边仍作为M’中的边, 则M’的大小比M大1. 故名M-增广路. 因此最大匹配M不存在M-增广路.定义:若图G和图H有相同的顶点集V, 我们称G和H的对称差,记为G∆H,是一个以V为顶点集的图, 但其边集是G和H的边集的对称差: E(G∆H)=E(G) ∆E(H)=E(G)⋂E(H)-(E(G)⋃E(H))=(E(G)-E(H)) ⋂ (E(H)-E(G))定理: (Berge, 1957) 图G的一个匹配M是最大匹配,当且仅当G中没有M-增广路.证明: 我们只要证明, G中没有M-增广路时, M是最大匹配. 用反证法, 若有一个比M大的匹配M’. 令G的一个子图F, E(F)=M∆M’, 因M和M’都是匹配, F的顶点的最大度数至多是2, 从而F由不相交的路和环组成, 它们的边交替地来自M和M’, 于是F中的环的长度是偶数. 由于M’比M大, F中存在一个连通分支,其中M’中的边数大于M中的边数. 这个分支只能是起始和终止的边都在M’中. 而这就是一条G中的M-增广路. 与假设矛盾. 证毕.定理(Hall, 1935)设G是一个二部图, X和Y是其二分集, 则存在匹配M 饱和X当且仅当对于X中的任意子集S, Y 中与S中的点相邻的点组成的集合N(S)中元素的个数大于等于集合S中元素的个数.证明:必要性是显然的. 对于充分性, 假设 |N(S)|≥|S|, ∀S⊂X, 考虑G的一个最大匹配M, 我们用反证法,若M没有饱和X, 我们来找一个集合S不满足假设即可. 设u∈X是一个M-未饱和顶点, 令S⊂X和T⊂Y分别是从u出发的M-交替路上相应的点.我们来证明M中的一些边是T到S-u上的一个匹配. 因为不存在M-增广路,T中的每个点是M-饱和的. 这意味着T中的点通过M中的边到达S中的一个顶点. 另外, S-u中的每个顶点是从T中的一个顶点通过M中的一条边到达的. 因此M 中的这些边建立了T与S-u的一个双射, 即|T|=|S-u|. 这就证明了M中的这些边是T到S-u上的一个匹配,从而意味着T⊂N(S), 实际上, 我们可证明T=N(S). 这是因为连接S和Y-T中的点y的边是不属于M的, 因为不然的话, 就有一条到达y的M-增广路, 与y∉T矛盾. 故|N(S)|=|T|=|S-u|=|S|-1<|S|, 与假设矛盾.当X与Y的集合的大小相同时的Hall定理称为婚姻问题,是由Frobenius(1917)证明的.推论: k-正则的二部图(X的每一点和Y的每一点相关联的二部图)(k>0)存在完全匹配.证明: 设二分集是X,Y. 分别计算端点在X和端点在Y的边的个数, 得k|X|=k|Y|, 即|X|=|Y|.因此只要证明Hall的条件成立即可. 使X饱和的匹配就是完全匹配. 考虑∀S⊂X, 设连接S与N(S)有m条边, 由G的正则性, m=k|S|. 因这m条边是与N(S)相关联的, m≤k|N(S)|, 即k|S|≤ k|N(S)|, 即|N(S)|≥|S|. 这就是Hall的条件.用求M-增广路的方法来得到最大匹配是很费时的. 我们来给出一个对偶最优化问题.定义:图G的一个顶点覆盖是集合S⊂V(G), 使得G的每条边至少有一个端点在S中. 我们称S中的一个顶点覆盖一些边, 若这个顶点是这些边的公共端点.因为匹配的任意两条边不能被同一个顶点覆盖, 所以顶点覆盖的大小不小于匹配的大小: |S|≥|M|. 所以当|S|=|M| 时就同时得到了最大的匹配和最小的顶点覆盖.定理(König [1931],Egerváry[1931])二部图G的最大匹配的大小等于G的最小顶点覆盖的大小.证明: 设M是G的任一个匹配, 对应的二分集是X,Y. 设U是一个最小的顶点覆盖, 则|U|≥|M|, 我们只要由顶点覆盖U来构造一个大小等于|U|的匹配即完成证明. 令R=U⋃X, T=U⋃Y, 令H, H’分别是由顶点集R⋂(Y-T)及T⋂(X-R)诱导的G的子图. 我们应用Hall的定理来证明H有一个R到Y-T中的完全匹配,H’有一个从T到X-R中的完全匹配. 再因这两个子图是不相交的, 这两个匹配合起来就是G中的一个大小为|U|的匹配.因为R⋂T是G的一个覆盖, Y-T与X-R之间没有边相联接. 假设S⊂R, 考虑在H中S的邻接顶点集N(S), N(S) ⊂Y-T. 如果|N(S)|<|S|, 因为N(S)覆盖了不被T覆盖的与S相关联所有边, 我们可以把N(S) 代替S作为U中的顶点覆盖而得到一个更小的顶点覆盖. U的最小性意味着H中Hall条件成立. 对H'作类似的讨论得到余下的匹配. 证毕.最大匹配的增广路算法输入: 一个二分集为X,Y的二部图G,一个G中的匹配M, X中的M-未饱和顶点的集合U.思路: 从U出发探求M-交替路,令S⊂X,T⊂Y为这些路到达过的顶点集. 标记S中不能再扩张的顶点. 对于每个x∈(S⋂T)-U, 记录在M-增广路上位于x前的点.初始化: S=U,T=∅.叠代: 若S中没有未标记过的顶点, 结束并报告T⋂(X-S)是最小顶点覆盖而M是最大匹配.不然, 选取S中未标记的点x, 考虑每个y∈N(x)且xy∉M, 若y是M-未饱和的, 则得到一个更大的匹配,它是把xy加入原来的匹配M得到的,将x从S中去除. 不然, y是由M中的一条边wy相连接的, w∈X, 把y加入T(也有可能y本来就在T中), 把w加入S. w未标记, 记录w前的点是y. 对所有关联到x的边进行这样的探索后, 标记x. 再次叠代.定理: 增广路算法可以得到一个相同大小的匹配和顶点覆盖.证明: 考虑这个算法终止的情况, 即标记了S中所有的点. 我们要证明R=T⋂(X-S)是大小为|M|的一个顶点覆盖.从U出发的M-交替路只能通过M中的边进入X中的顶点, 所以S-U中的每个顶点通过M与T中的顶点匹配, 并且没有M中的边连接S和Y-T. 一旦一条M-交替路到达x∈S, 可以继续沿着任何未饱和的边进入T, 由于算法是对于x的所有邻域顶点进行探索才终止的,所以从S 到Y-T 没有未饱和边. 从而S 到Y-T 没有边, 证明了R 是一个顶点覆盖.因为算法是找不到M-增广路时终止, T 的每一个顶点是饱和的. 这意味着每个顶点y ∈T 是通过M 匹配与S 中的一个顶点. 由于U ⊂S, X-S 的每个顶点是饱和的, 故M 中与X-S 相关联的边不和T 中的点相连接. 即它们与是饱和T 的边不同的, 这样我们可见M 至少有|T|+|X-S|条边. 因不存在一个比顶点覆盖更大的匹配, 所以有|M|=|T|+|X-S|=|R|.设二部图G 的二分集X 和Y 都是n 个元素的点集, 在其边j i y x 上带有非负的权ij w , 对于G 的一个匹配M, M 上各边的权和记作w(M).定义: 一个n ×n 矩阵A 的一个横截(transversal)是A 中的n 个位置, 使得在每行每列中有且只有一个位置(有的文献中把横截化为独立零元素的位置来表示).定义: 指派问题就是给定一个图G=n n K ,(完全二部图, 即每个X 中的顶点和Y 中的每个顶点有边相连接的二部图)的边的权矩阵A, 求A 的一个横截, 使得这个横截上位置的权和最大. 这是最大带权匹配问题的矩阵形式.定义: 对于图G=n n K ,,设其二分集是X ,Y ,给定G 的边j i y x 的n ×n 权矩阵W={ij w }.考虑G 的子图v u G ,, 设其二分集是U ⊂X ,V ⊂Y, 边集是E(v u G ,), 对于子图v u G ,的带权覆盖u,v 是一组非负实数{i u },{j v },使得ij j i w v u ≥+,)(,v u j i G E y x ∈∀, v u G ,的带权覆盖的费用是∑∑+j i v u 记为C(u,v), 最小带权覆盖问题就是求一个具有最小费用C(u,v)的带权覆盖u,v.引理: 若M ⊂E(v u G ,)是一个带权二部子图v u G ,的最大匹配, 且u, v 是v u G ,的带权覆盖, 则C(u,v)≥w(M). 而且, C(u,v)=w(M)当且仅当ij j i w v u =+,M y x j i ∈∀. 这时M 是v u G ,最大带权匹配, u,v 是v u G ,的最小带权覆盖, 定义这时的v u G ,为G 的相等子图(equality subgraph ).证明: 因为匹配M 中的边是不相交的, 由带权覆盖的定义就得C(u,v)≥w(M). 而且C(u,v)=w(M)当且仅当ij j i w v u =+,M y x j i ∈∀成立. 因一般地有C(u,v)≥w(M).所以当C(u,v)=w(M)时. 意味着没有一个匹配的权比C(u,v)大, 也没有一个覆盖的费用比w(M)小.Kuhn 得到一个指派问题的算法,命名为匈牙利算法, 为的是将荣耀归于匈牙利数学家König 和Egerv áry.指派问题的匈牙利算法(Kuhn[1955], Munkres[1957]):输入G=n n K ,的边的权矩阵A, 及G 的二分集X,Y.初始化: 任取一个可行的带权覆盖,例如)(max ij ji w u =,0=j v ,建立G 的相等子图v u G ,, 其二分集是X, Y ’⊂Y, 求v u G ,的一个最大匹配M. 这个匹配的权和w(M)=C(u,v), M 的带权覆盖是具有最小费用的.叠代: 如M 是G 的一个完全匹配, 停止叠代, 输出最大带权匹配M. 不然, 令U 是X 中的M-未饱和顶点. 令S ⊂X, T ⊂Y 是从U 中顶点出发的M-交替路到达的顶点的集合.令},:min{T Y y S x w v u j i ij j i -∈∈-+=ε.对于所有的S x i ∈, 将i u 减少ε, 对于所有的T y j ∈,将j v 增加ε,形成新的带权覆盖u ’,v ’及对应的新的相等子图v u G '',.如果这个新的相等子图含有M-增广路, 求它的最大匹配M ’, 不然不改变M 再进行叠代.定理: 匈牙利算法能找到一个最大权匹配和一个最小费用覆盖.证明: 算法由一个覆盖开始,算法的每个叠代产生一个覆盖,仅在相等子图有一个完全的匹配为止。
运筹学指派问题课件
c
i 1 j 1
n
n
ij
xij
n xij 1 i 1 n st . xij 1 (i , j 1, 2, ..., n) j 1 x 1or 0 ij
运筹学教程
例1:某商业公司计划开5家新商店,商业公司决定由5家建筑 公司分别承建。已知建筑公司Ai(i=1,2…5)对新商店Bj(j=1…5) 的建筑费用报价Cij.问题:商业公司对5家建筑公司如何分配任 务,才能使总的建筑费用最少? Cij Ai Bj
运筹学教程
指派问题解法:匈牙利解法 解法思想:
若从系数矩阵C的任何一行(列)各元素中分别减去 一个常数K(K可正可负)得到新矩阵C’,则以C’为系 数矩阵的指派问题与原问题有相同的解,但最优值 比原问题最优值小K。
匈牙利法条件: MIN、i=j 、Cij≥0
运筹学教程
匈牙利法的主要步骤: 步骤1:变换系数矩阵,使在各行各列都出现零元素。 (1)从矩阵C的每行元素减去该行的最小元素;
0 11 8 7 7 3 3 2 1 C ' 5 0 4 3 4 0
第二步 圈0 寻找不同行不同列的0元素,圈之。 所在行和列其它0元素划掉
0 0 0 0 0 3 0 11 8 第三步 打 无的行打,打行上0列打 , 1 7 7 3 打列上行打,打行上0列打 ' 2 3 2 1 C 0 5 0 4 0 3 0 11 8 0 1 7 7 3 2 3 4 0 C ' 0 2 3 2 1 第四步 确定方案划线 0 0 5 0 4 没有打行上画一条横线; 0 2 3 4 0 有打列上画一条竖线;
15 120 15 12 0 14 100 14 100 8 7 0 0 8 7
数学建模模版之指派问题
j 1
n
xij 1, j 1,2, , n
i 1
xij 0 或 1
指派问题是特殊的0 – 1规划,但它有更简便的解法
匈牙利法。
1955年由库恩(W.W. Kuhn)提出,但他引用了匈牙利
数学家康尼格(D. Konig)关于矩阵中零元素定理:
确定或反映指派问题的唯一因素或数据是效益矩阵:
c11 c12 c1n
2. 最优解定理
如果效益矩阵 B (bij )nn中有n个独立0元素bij ((i, j) J ), 则
1, (i, j) J xij
0, (i, j) J
为指派问题的最优指派决策.
二、匈牙利法的步骤
Step 1. 将C零元素化,得到矩阵B,使B中每行每列中均有 零元素 ① C中的各行减该行最小元素; ② C中的各列减该列最小元素;
选第3行标 0
选第5行标 0
选第1行标 0
选第2行标 0
选第4行标 0 ,标 0 有
5个元素. 最优解
0 1 0 0 0 0 0 1 0 0 x (xij ) 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
三. 求最大化指派问题 (max cx) 1. 可以将之最小化 min - cx . 2. 为方便起见,可令
z* 5 4 9 11 29
Step 3. 如有0 的元素个数小于n,则当前方案不是最优的, 需调整,先选最少直线覆盖所有0元素。
①对没有 0 的行打√号; ②对已打√号的行中有 0 元素的列打√号; ③对打√号的列中含有 0元素的行打√号; ④重复②和③,直至得不出新的打√号的行列为止;
⑤ 对于没有√的行画横线,所有打√号的列画竖线, 产生覆盖所有零元素的最少直线,直线数目应等于
最短路径、指派、运输问题
第二步:进行试指派以寻求最优解。
(1)进行行检验:从只有一个0元素的行开始,给这 个0元素加(),记作(0);再划去(0)所在列的其它 0元素,记作φ。若遇到有两个0元素以上的行,先放下。 (2)进行列检验:给只有一个0元素的列0元素加() ,记作(0);然后划去(0)所在行的0元素,记作φ。 (3)再对两个以上0元素的行和列标记,任意取一个 加()。
B1 A1 A2 A3 4 7 6
B2 8 9 9
B3 7 17 12
B4 15 14 8
B5 12 10 7
A4
A5
6
6
7
9
14
12
6
10
10
6
三、其它指派问题
(1)目标函数求最大值的指派问 题 对于此问题可做一个新的 矩阵B=(bij)。找出原矩阵的最 大元素m,令B=(bij)=m-cij
∑
产 量 与 销 量 平 衡
解: 设产地Ai到销地Bi的运量为xij,由问题构造运量平衡表
可以知道:
(1)产销平衡 (2)Ai运出量等于产量 (3)Bj运入量等于销量
a b
i 1 i j1
m
n
j
x
j 1
n
ij
ai
x
i 1
m
ij
bj
运量平衡表
销地Bi 运价 产地Ai A1 A2 C11 C21 C12 C22 B1 B2
4 2 (cij ) 4 3 3 3 3 2 4 6 5 6 1 - 1 3 5 - 2 0 1 4 - 3 5 -2 1 2 1 0 0 3 0 - 1 3 4 3 - 2 0 1 2 1-3 4 3 -2 1 -2 2 1 0 0 1 2 0 2 0 3 (b ) ij 1 3
运筹学 指派问题课件 PPT
效率表
工厂1 工厂2
58 75
69 50
180 150
260 230
工厂3 工厂4
65 82
70 55
170 200
250 280
2
返回总目录
例1 某公司拟将四种新产品配置到四个工厂生产,四 个工厂的单位产品成本(元/件)如下表所示。求最 优生产配置方案使得单位产品成本总和为最小。
15
返回总目录
第三步:用最少的直线覆盖所有0:
0 0 11 22 22 25 25 0 0 0 0 0 5 5 5 27 27 0 45 45 6 17 17 0 30 0 0 0 0 0 0 0 0 45 45 32 6 17 17 0 0 0 0 0 0 0 45 45
回到第三步,用最少的直线覆盖所有0。 此时最少直线数=4,表明矩阵中存在4个不同行不 同列的零元素,于是得到最优解。 第五步:找出4个独立的0元:
( 0 ) 30 0 32 6 17 17 0 ( 0) 0 0 0 ( 0 ) (0 ) 45 45 ( 0 ) 30 0 32 6 17 17 0 0 ( 0 ) 0 ( 0) 0 (0 ) 45 45
x14 x24 x34 x44
工厂2 x21 工厂3 x31 工厂4 x41
1 1 1 1
1
1
1
1
产品1 产品2 产品3 产品4
工厂1 工厂2 工厂3 工厂4 58 75 65 82 69 50 70 55 180 150 170 200 260 230 250
5280
返回总目录
数学模型 匈牙利算法 其他变异的指派问题