2005年全国1%人口抽样调查主要数据公报

合集下载

现代数控机床的评价综述

现代数控机床的评价综述

现代数控机床的评价综述作者:郭凯来源:《价值工程》2013年第13期摘要:分析综合评价体系在现代数控机床中的作用。

以闻邦椿教授提出的产品的全功能和全性能综合设计法为基础,确定现代数控机床的指标体系。

采用理论评价、试验检验和用户使用的方法对指标进行分析。

构建一个适用于现代数控机床的综合质量评价体系。

Abstract: Comprehensive evaluation system is analyzed on modern CNC machine tool. The index system is determined based on the full function and full-performance integrated design method of the products by Prof. Wen Bangcun. The index of modern CNC machine tool is analyzed with theoretical evaluation, the mechanical product's test and user's test. The comprehensive evaluation system is constructed about modern CNC machine tool.关键词:数控机床;质量评价;机械设计Key words: CNC machine tool;evaluation method;mechanical design中图分类号:TH11 文献标识码:A 文章编号:1006-4311(2013)13-0029-02————————————收稿日期:2012年9月20日。

作者简介:郭凯(1980-),男,辽宁盘锦人,沈阳理工大学讲师,博士后,研究方向为机械设计及理论。

0 引言所谓评价,一般是指按照目标测定对象的属性,并把它变成主观效用(满足主体要求的程度)的行为,即明确价值的过程。

(完整版)苏J01-2005

(完整版)苏J01-2005

施工说明苏J01-20057、屋面做法屋面做法说明一、本次修订依据《屋面工程技术规范》(GB50345-2004)要求编编制,取消了所有架空板的屋面做法,油毡防不做法中禁止使用纸胎油毛毡,限制使用PVC煤焦油柔性油毡、塑料煤焦油油膏、建筑防水粉(如憎水粉、拒水粉)、氰凝、双组份煤焦油聚氨酯防水涂料,增加了一些新型防水卷材及防水涂米的做法二、屋面工和设计应根据建筑物的性质、重要程度、使用功能要求以及防水层合理使用年限等,将屋面防水分为四个等级,按不同等级进行设防。

在纬度40以上地区且室内空气湿度在于75%,或其他地区室内气湿度常年大于80%时,若采用吸湿性保温材料做保温层,应选用气密性、水密性好的防水卷材或防水涂料做隔汽层,隔汽层应沿墙面向上铺设,并与屋面的防水层连接,形成全封闭的整体。

七、隔离层的设置卷材、涂膜防水层上设置块体材料或水泥砂浆、细石混凝土时,应在二者之间设置隔离层;在细石混凝土防水层与结构层间宜设置隔离层。

隔离层可采用a 干铺塑料膜、b 土工布c 卷材d 铺抹低强度等级的砂浆八、分格缝设置1 用细石混凝土作保护层或为刚性防水层时,混凝土应密实,表面抹压光,并按纵横间距6m设置分格缝,缝中钢筋应断开,其保护层厚度不小于10,缝宽20,与女儿墙之间留缝30,缝内嵌填密封材料2 用块体材料作保护层时,按100m设置分格缝,用水泥砂浆作保护层时每1m设表面分格缝3 铺贴卷材防水层的水泥砂浆或细石混凝土找平层宜高级置分格缝,纵横间距6m,缝宽20,当兼作排气屋现的排气道时可适当加宽,并与保温层连通。

缝内必须嵌填封材料。

缝上加铺300宽卷材一层,单边粘贴,上另铺一层胎体增强材料的附加层,约900宽九、保温层材料A 聚苯板(保温板)B 胶粉聚苯颗粒(保温砂浆) C发泡聚氨酯保温屋面的保温层和长平层干燥有困难时,宜采用排气屋面,即设置排汽道与排汽孔,排汽道应纵横连通不得堵塞,其间距为6m,并同与在大气连通的排汽孔以不大于36m设置一个为宜,排汽孔必须做好防水处理。

ASTM F 1941M-2005螺纹紧固件上电镀覆层的标准

ASTM F 1941M-2005螺纹紧固件上电镀覆层的标准

Designation:F1941M–05METRICStandard Specification forElectrodeposited Coatings on Threaded Fasteners[Metric]1 This standard is issued under thefixed designation F1941M;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.INTRODUCTIONThis specification covers the coating of steel metric screw threaded fasteners by electrodeposition. The properties of the coatings shall conform to the ASTM standards for the individualfinishes listed. Coating thickness values are based on the tolerances for M series metric threads having the following tolerance positions:6g and4g6g for external threads,and6H for internal threads.The coating must not cause the basic thread size to be transgressed by either the internal or external threads.The method of designating coated threads shall comply with ASME B1.13M.With normal methods for depositing metallic coatings from aqueous solutions,there is a risk of delayed failure due to hydrogen embrittlement for case hardened fasteners and fasteners having a hardness40HRC or above.Although this risk can be managed by selecting raw materials suitable for the application of electrodeposited coatings and by using modern methods of surface treatment and post heat-treatment(baking),the risk of hydrogen embrittlement cannot be completely eliminated. Therefore,the application of a metallic coating by electrodeposition is not recommended for such fasteners.1.Scope1.1This specification covers application,performance and dimensional requirements for electrodeposited coatings on threaded fasteners with metric screw threads.It specifies coating thickness,supplementary chromatefinishes,corrosion resistance,precautions for managing the risk of hydrogen embrittlement and hydrogen embrittlement relief for high-strength and surface-hardened fasteners.It also highlights the differences between barrel and rack plating and makes recom-mendations as to the applicability of each process.1.2The following precautionary statement pertains to the test method portion only,Section9,of this specification:This standard does not purport to address all of the safety concerns, if any,associated with its use.It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limita-tions prior to use.2.Referenced Documents2.1ASTM Standards:2B117Practice for Operating Salt Spray(Fog)Apparatus B487Test Method for Measurement of Metal and Oxide Coating Thickness by Miocroscopical Examination of a Cross SectionB499Test Method for Measurement of Coating Thickness by the Magnetic Method:Nonmagnetic Coatings on Mag-netic Basis MetalsB504Test Method for Measurement of Thickness of Me-tallic Coatings by the Coulometric MethodB567Test Method for Measurement of Coating Thickness by the Beta Backscatter MethodB568Test Method for Measurement of Coating Thickness by X-Ray SpectrometryB659Guide for Measuring Thickness of Metallic and Inorganic Coatings1This specification is under the jurisdiction of ASTM Committee F16onFasteners and is the direct responsibility of Subcommittee F16.03on Coatings on Fasteners.Current edition approved May1,2005.Published May2005.Originally approved st previous edition approved in2000as F1941M–00.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.E 376Practice for Measuring Coating Thickness by Magnetic-Field or Eddy-Current (Electromagnetic)Exami-nation MethodsF 606Test Methods for Determining the Mechanical Prop-erties of Externally and Internally Threaded Fasteners,Washers,and RivetsF 1470Guide for Fastener Sampling for Specified Mechani-cal Properties and Performance InspectionF 1624Test Method for Measurement of Hydrogen Em-brittlement Threshold in Steel by the Incremental Step Loading TechniqueF 1940Test Method for Process Control Verification to Prevent Hydrogen Embrittlement in Plated or Coated Fasteners2.2ASME Standard:3B1.13M Metric Screw Threads -M Profile 2.3National Aerospace Standard (AIA):4NASM-1312-5Fast Test Method -Method 5:Stress Dura-bility2.4IFI Standard:5IFI-142Hydrogen Embrittlement Risk Management 3.Terminology 3.1Definitions:3.1.1local thickness —mean of the thickness measurements,of which a specified number is made within a reference area.3.1.2minimum local thickness —lowest local thickness value on the significant surface of a single article.3.1.3reference area —area within which a specified number of single measurements are required to be made.3.1.4significant surface —significant surfaces are areas where the minimum thickness to be met shall be designated on the applicable drawing or by the provision of a suitably marked sample.However,if not designated,significant surfaces shall be defined as those normally visible,directly or by reflection,which are essential to the appearance or serviceability of the fastener when assembled in normal position,or which can be the source of corrosion products that deface visible surfaces on the assembled fastener.Figs.1and 2illustrate significant surfaces on standard externally threaded and internally threaded fasteners.4.Classification4.1Coating Material —The coating material shall be se-lected and designated in accordance with Table 1.4.2Coating Thickness —The coating thickness shall be selected and designated in accordance with Table 2.4.3Chromate Finish —The chromate finish shall be selected and designated in accordance with Table 3.5.Ordering Information for Electroplating5.1When ordering threaded fasteners to be coated by electrodeposition in accordance with this specification,the following information shall be supplied to the electroplater:5.1.1The desired coating,coating thickness and the chro-mate finish,or the classification codes as specified in Tables 1-3.(For example,Fe/Zn 5C denotes yellow zinc plated with a minimum thickness of 5µm on significant surfaces.)5.1.2The identification of significant surfaces (optional).5.1.3The requirement,if any,for stress relief before elec-troplating,in which case the stress-relief conditions must be specified.5.1.4The requirements,if any,for hydrogen embrittlement relief by heat treatment (baking)stating the tensile strength or surface hardness of the fasteners and/or baking time and temperature.N OTE 1—Fasteners with a specified maximum hardness of 34HRC and below have a very low susceptibility to hydrogen embrittlement and do not require baking.3Available from American Society of Mechanical Engineers (ASME),345E.47th Street,New York,NY 10017.4Available from Standardization Documents Order Desk,DODSSP,Bldg.4,Section D,700Robbins Ave.,Philadelphia,PA 19111-5098.5Available from Industrial Fasteners Institute (IFI),1717East 9th Street,Suite 1105,Cleveland,OH44114–2879.N OTE 1—Black dot (•)indicates test surface.FIG.1Significant surfaces on Externally ThreadedFastenersN OTE 1—Black dot (•)indicates test surface.FIG.2Significant surfaces on Internally Threaded FastenersTABLE 1Designation of Common Coating MaterialsCoating DesignationCoating Type Fe/Zn Zinc Fe/Cd Cadmium Fe/Zn-Co Zinc Cobalt Alloy Fe/Zn-Ni Zinc Nickel Alloy Fe/Zn-FeZinc Iron AlloyTABLE 2Designation of Coating ThicknessN OTE 1—The conversion factor from microns to inch is 3.94310–5(for example,5µm =0.0002in.).Thickness DesignationMinimum Thickness µm3355881212F 1941M –055.1.5The requirements,if any,for the type of electroplating process (barrel-plating or rack-plating).See Section 10and Appendix X1.5.1.6The designation of coated thread class shall comply with ASME B1.13M.6.Requirements6.1Coating Requirements —The electrodeposited coating as ordered shall cover all surfaces and shall meet the following requirements:6.1.1The coating metal deposit shall be bright or semi-bright unless otherwise specified by the purchaser,smooth,fine grained,adherent and uniform in appearance.6.1.2The coating shall be free of blisters,pits,nodules,roughness,cracks,unplated areas,and other defects that will affect the function of the coating.6.1.3The coating shall not be stained,discolored or exhibit any evidence of white or red corrosion products.6.1.3.1Slight discoloration that results from baking,drying,or electrode contact during rack-plating,or all of these,as well as slight staining that results from rinsing shall not be cause for rejection.6.2Corrosion Resistance —Coated fasteners,when tested by continuous exposure to neutral salt spray in accordance with 9.3,shall show neither corrosion products of coatings (white corrosion)nor basis metal corrosion products (red rust)at the end of the test period.The appearance of corrosion products visible to the unaided eye at normal reading distance shall be cause for rejection,except when present at the edges of the tested fasteners.Refer to Annex A1for neutral salt spray performance requirements for zinc,zinc alloy and cadmium coatings.6.3Thickness —The coating thickness shall comply with requirements of Table 2when measured in accordance with 9.1.6.3.1Restrictions on Coating Thickness —This specification imposes minimum local thickness requirements at significant surfaces in accordance with Table 2.Thick or thin local thickness in a location other than a significant surface shall not be a cause for rejection.However the following restrictions apply:6.3.1.1Minimum coating thickness at low current density areas,such as the center of a bolt or recesses,must be sufficient to provide for adequate chromate adhesion.6.3.1.2External Threads —Maximum coating thickness at high current density threaded tips must provide for basic (tolerance position h )GO thread gauge acceptance.Therefore,the thread after coating is subject to acceptance using a class 6hGO gauge for plated 6g class external threads and 4h6h GO gauge for plated 4g6g class external threads respectively.6.3.1.3Internal Threads —Maximum coating thickness of internal threads must provide for basic (tolerance position H )Go thread gauge acceptance.Therefore,the thread after coating is subject to acceptance using a class 6H GO gauge for 6H class internal threads.6.3.1.4Surfaces such as threads,holes,deep recesses,bases of angles,and similar areas on which the specified thickness of deposit cannot readily be controlled,are exempted from minimum thickness requirements unless they are specially designated as not being exempted.When such areas are subject to minimum thickness requirements,the purchaser and the manufacturer shall recognize the necessity for either thicker deposits on other areas or special racking.6.3.2Applicability to M Series Threads :6.3.2.1The applicability of the required coating to M series metric threads is limited by the basic deviation of the threads,and hence limited by the pitch diameter,allowance,and tolerance positions.Refer to Appendix X3as a guideline for the tolerances of the various thread sizes and classes and the coating thickness they will accommodate.6.3.2.2Because of the inherent variability in coating thick-ness by the barrel-plating process,the application of a mini-mum coating thickness of 12µm is not recommended for a standard screw thread by this method due to the fact that dimensional allowance of many metric threaded fasteners normally does not permit it.If the size of the fastener is large enough to economically use the rack-plating process,then the latter shall be used to obtain this thickness requirement.If heavier coatings are required,allowance for the deposit buildup must be made during the manufacture of fasteners.6.3.3Applicability to Wood Screws and Thread Forming Screws —Any classification code in Table 2may be applied to screws that cut or form their own threads.6.4Hydrogen Embrittlement Relief :6.4.1Requirement for Baking —Coated fasteners made from steel heat treated to a specified hardness of 40HRC or above,case-hardened steel fasteners,and fasteners with captive wash-ers made from hardened steel,shall be baked to minimize the risk of hydrogen embrittlement.Unless otherwise specified by the purchaser,baking is not mandatory for fasteners with specified maximum hardness below 40HRC.N OTE 2—With proper care many steel fasteners can be plated without baking by correlating process conditions to the susceptibility of the fastener material to hydrogen embrittlement,and by applying adequate process control procedures,such as those outlined in X4.2.Test Method F 1940is a recognized verification method for process control to minimize the risk of hydrogen embrittlement.Upon agreement between the supplier and the purchaser,this test method can be used as a basis for determining if baking should be mandated in a controlled process environment.6.4.2Baking Conditions —At the time of publication of this specification it was not considered possible to give an exact baking duration.Eight hours is considered a typical example of baking duration.However,upon agreement between the pur-chaser and the manufacturer,baking times between 2and 24h at temperatures of 175to 235°C (350to 450°F)are suitable depending on the type and size of the fastener,geometry,TABLE 3Designation of Chromate FinishDesignationType Typical AppearanceA Clear Transparent colorless with slight iridescenceB Blue-bright Transparent with a bluish tinge and slight iridescenceC Yellow Yellow iridescentD Opaque Olive green,shading to brown or bronzeE Black Black with slight iridescenceFOrganicAny of the above plus organictopcoatmechanical properties,cleaning process and cathodic effi-ciency of the electroplating process used.The baking condi-tions shall be selected based on the results of recognized embrittlement test procedures such as Test Methods F1940, F1624,F606,or NASM1312-5.6.4.2.1Bake time and temperatures may require lowering to minimize the risk of solid or liquid metal embrittlement resulting from alloy compositions such as those containing lead or from the lower melting point of cadmium320°C(610°F)in comparison to zinc419°C(786°F).6.4.2.2Fasteners must be baked within4h,preferably1h after electroplating.Baking to relieve hydrogen embrittlement must be performed prior to the application of the chromate finish because temperatures above65°C(150°F)damage the chromatefilm thereby negating its performance.6.4.3Hydrogen Embrittlement Testing—Hydrogen em-brittlement testing is mandatory for fasteners with a specified hardness of40HRC or above,unless the electroplating process has been qualified in accordance with Test Method F1940(that is,the process has been shown not to cause embrittlement for a given product or class of product).This specification does not require mandatory testing of fasteners having a specified hardness below40HRC,unless otherwise specified by the purchaser.7.Dimensional Requirements7.1Threaded components,except those with spaced and forming threads,supplied for electrodeposited coating shall comply with ASME B1.13M.Screw threads that are specifi-cally manufactured to allow the application of12µm or greater coating thickness by the barrel-plating process,must adhere to a special allowance specified by the manufacturer or in ASME B1.13M.The other dimensional characteristics shall be as specified on the applicable standard or drawing.It should be noted that modifications to the threads of a fastener could affect its properties or performance,or both.Refer to Appendix X3 for further information on effects of coating on pitch diameter, allowances and tolerances for external and internal threads.8.Sampling8.1Sampling for coating thickness,salt spray and embrittle-ment testing shall be conducted based on lot size in accordance with Guide F1470.9.Test Methods9.1Coating Thickness—Unless otherwise specified,the re-quirement to measure coating thickness is applicable to sig-nificant surfaces only.The test methods for determining the coating thickness are defined in Test Methods B487,B499, B504,B567,B568,Guide B659or Practice E376as applicable.9.2Embrittlement Test Method—The embrittlement test method shall conform to those specified in Test Method F1940 for process verification,or Test Methods F606,F1624,or NASM-1312-5for product testing.9.3Corrosion Resistance—The requirement to determine corrosion resistance is applicable to significant surfaces only. When specified in the contract or purchase order,salt spray testing shall be conducted in accordance with Practice B117. To secure uniformity of results,samples shall be aged at room temperature for24h before being subjected to the salt spray test.10.Electroplating Processes10.1Two electroplating processes are most commonly used to apply a metallic coating by electrodeposition on threaded fasteners:barrel-plating and rack-plating.When threadfit or thread integrity,or both,is a concern for externally threaded fasteners,rack-plating is preferable to barrel-plating.Refer to Appendix X1.11.Keywords11.1chromatefinish;electrodeposited coating;fasteners; hydrogen embrittlement relief;hydrogen embrittlement test-ing;surfacetreatmentANNEX(Mandatory Information)A1.NEUTRAL SALT SPRAY PERFORMANCETABLE A1.1Classification Code and Neutral Salt Spray Corrosion Protection Performance of Zinc and Cadmium CoatingsClassification Code Minimum Coating Thickness(µm)Chromate Finish DesignationFirst Appearance of White Corrosion Product,(hour)First Appearance of Red Rust Cadmium,(hour)First Appearance of Red Rust Zinc,(hour)Fe/Zn or Fe/Cd 3A 3AA 32412Fe/Zn or Fe/Cd 3B B 62412Fe/Zn or Fe/Cd 3C C 243624Fe/Zn or Fe/Cd 3D D 243624Fe/Zn or Fe/Cd 5A 5A 64824Fe/Zn or Fe/Cd 5B B 127236Fe/Zn or Fe/Cd 5C C 4812072Fe/Zn or Fe/Cd 5D D 7216896Fe/Zn or Fe/Cd 5E E 1272Fe/Zn or Fe/Cd 8A 8A 69648Fe/Zn or Fe/Cd 8B B 2412072Fe/Zn or Fe/Cd 8C C 72168120Fe/Zn or Fe/Cd 8D D 96192144Fe/Zn or Fe/Cd 8E E 2412072Fe/Zn or Fe/Cd 12A 12A 614472Fe/Zn or Fe/Cd 12B B 2419296Fe/Zn or Fe/Cd 12C C 72240144Fe/Zn or Fe/Cd 12D D 96264168Fe/ZnorFe/Cd12BkE2419296ALow coating thickness impairs chromate adhesion and performance.TABLE A1.2Classification Code and Neutral Salt Spray Corrosion Protection Performance of Zinc-Cobalt CoatingsClassification CodeMinimum Coating Thickness (µm)Chromate Finish DesignationFirstAppearance of Zinc Alloy Corrosion Product (hour)FirstAppearance of Red Rust (hour)Fe/Zn-Co 5C 5C 96240Fe/Zn-Co 5D D 96240Fe/Zn-Co 5E E 100240Fe/Zn-Co 5F F 196340Fe/Zn-Co 8C 8C 96240Fe/Zn-Co 8D D 96240Fe/Zn-Co 8E E 100240Fe/Zn-Co 8F F 200340Fe/Zn-Co 12B 12B 12240Fe/Zn-Co 12C C 96400Fe/Zn-Co 12D D 96400Fe/Zn-Co 12E E 100400Fe/Zn-Co12FF196500APPENDIXES(Nonmandatory Information)X1.STANDARD ELECTRODEPOSITION PROCESSESX1.1Barrel-Plating Process —The preparation and metallic coating of threaded fasteners is usually accomplished by the barrel-plating process.In this process,quantities of an item are placed within a containment vessel,called a barrel.The barrel is designed to move the group of items,together,through each of the process steps,allowing ready ingress and egress of processing solutions and rinses.As the barrel is moved through the process steps,it is also rotated such that the individual items are constantly cascading over one another.This can damage the external threads of fasteners.The effect of thread damage is worse on heavy fine threaded fasteners than on light coarse threaded fasteners.In some of the process steps,notably the electrocleaning and electroplating steps,an electric current is applied to the group of items.The cascading action randomly exposes the surface of each individual piece to the process electrodes while also maintaining electrical continuity between all the parts.The local coating thickness on a part is a result of the electrical current density at that location.Therefore,the coating thickness on an individual screw or bolt tends to be greatest at the extremities (head and threaded tip).The extremi-ties being the high current density areas receive the greatest coating thickness.In contrast,the center or recesses such as the bottom of the threads,which are the low current density areas,receive the lowest coating thickness.This phenomenon is accentuated with increasing length and decreasing diameter of the screw or bolt.The extremity-to-center coating thickness ratio increases with increasing length and decreasing diameter,but is also a function of process parameters such as plating solution chemistry and efficiency,anodic/cathodic efficiency,average current density and plating time.TABLE A1.3Classification Code and Neutral Salt Spray Corrosion Protection Performance of Zinc-Nickel CoatingsClassification CodeMinimum Coating Thickness (µm)Chromate Finish DesignationFirstAppearance of Zinc Alloy Corrosion Product (hour)FirstAppearance of Red Rust (hour)Fe/Zn-Ni 5B 5B 20150Fe/Zn-Ni 5C C 120500Fe/Zn-Ni 5D D 180750Fe/Zn-Ni 5E E 100500Fe/Zn-Ni 5B/F B/F 150300Fe/Zn-Ni 5C/F C/F 240620Fe/Zn-Ni 5D/F D/F 3001000Fe/Zn-Ni 5E/F E/F 220620Fe/Zn-Ni 8B 8B 20240Fe/Zn-Ni 8C C 120720Fe/Zn-Ni 8D D 180960Fe/Zn-Ni 8E E 100720Fe/Zn-Ni 8B/F B/F 150400Fe/Zn-Ni 8C/F C/F 240840Fe/Zn-Ni 8D/F D/F 3001200Fe/Zn-Ni 8E/F E/F 220840Fe/Zn-Ni 12B 12B 20500Fe/Zn-Ni 12C C 120960Fe/Zn-Ni 12D D 1801000Fe/Zn-Ni 12E E 100960Fe/Zn-Ni 12B/F B/F 150620Fe/Zn-Ni 12C/F C/F 2401080Fe/Zn-Ni 12D/F D/F 3001500Fe/Zn-Ni12E/FE/F2201080TABLE A1.4Classification Code and Neutral Salt Spray Corrosion Protection Performance of Zinc-Iron CoatingsClassification CodeMinimum Coating Thickness (µm)Chromate Finish DesignationFirstAppearance of Zinc Alloy Corrosion Product (hour)FirstAppearance of Red Rust (hour)Fe/Zn-Co 5E 5E 144312Fe/Zn-Co 8E 8E 144312Fe/Zn-Co 12E12E144480X1.2Rack-Plating Process —The preparation and metallic coating of threaded fasteners can be accomplished by the rack-plating process,particularly on large size fasteners where thread fit and/or damage is a concern,or for smaller size fasteners when it is economically feasible.In this process,quantities of an item are placed on a support,called a rack.The rack is designed to move the group of items,together,through each of the process steps,allowing ready ingress and egress of processing solutions and rinses.In some of the process steps,notably the electrocleaning and electroplating steps,an electric current is applied to the group of items.The electrical continuity is maintained between the parts by the rack itself.The average current density is usually low enough such that the extremity-to-center coating thickness ratio is much lower than with barrel-plating.The external thread damage is also mini-mized in comparison to barrel-plating due to the absence of tumbling.X2.GUIDELINES FOR CHOOSING BETWEEN BARREL-PLATING AND RACK-PLATINGX2.1Table X2.1indicates the recommended electroplating process for each size of externally threaded metric fasteners for all thickness classes in Table 2.For internally threaded fasteners barrel-plating is generally suitable.X3.COATING ACCOMMODATION TOLERANCES FOR EXTERNALLY AND INTERNALLY THREADED FASTENERSX3.1Short screws and bolts are those with a length-to-diameter ratio equal to or less than 5.Long screws and bolts have a length-to-diameter ratio greater than 5but less than 10.Special processing is normally required for bolts with a ratio greater than 10in order to minimize the extremity-to-center thickness ratio.X3.2This specification does not impose maximum thick-ness values on high current density areas,where the coating thickness tends to be the greatest.On an externally threaded fastener this occurs at the threaded tip.Measuring coating thickness on the threaded portion of a fastener is possible but impractical for in-process quality control verification.For this reason the control mechanism specified in this document is by means of GO thread gauges.Nevertheless Table X3.1,which is supplied as an informative guideline,illustrates the maximum coating thickness permitted by the allowance for tolerance classes 6g and 4g6g.N OTE X3.1—The following information is based on ASME B1.13M .That standard should be consulted for more detailed information.X3.3Size limits for standard tolerance classes 6g and 4g6g apply prior to coating.The external thread allowance may thusbe used to accommodate the coating thickness on threaded fasteners,provided the maximum coating thickness is no more than 1⁄4of the allowance (see Fig.X3.1).Thus,threads after coating are subject to acceptance using a class 6h GO gauge for plated 6g class external threads and 4h6h GO gauge for plated 4g6g class external threads respectively.Class 6g and 4g6g shall be used as respective NOT-GO gauges.X3.4In certain cases size limits must be adjusted,within the tolerances,prior to coating,in order to insure proper thread fit.This applies to the following cases:X3.4.1Standard internal threads,because they provide no allowance for coating thickness.X3.4.2Where the external thread has no allowance,such as in class h external threads.X3.4.3Where allowance must be maintained after coating for trouble free thread fit.X3.5Table X3.1provides maximum coating thickness values based only on the allowance for external thread toler-ance classes 6g and 4g6g.It assumes that the external thread pitch diameter is at the maximum and that the internal thread pitch diameter is at the minimum of the tolerance.TABLE X2.1Recommended Electroplating Process for Each Size of Externally Threaded Metric FastenersN OTE 1—Barrel-plating process (B)and rack-plating process (R).Diameter (D),(in.)Length (L)L #5D5D <L #10D10D <L #20D20D <L #30DL >30D M1.6-M4B B B B R M5-M6B B B R R M8-M10B B B R R M12B B R R R M14B B R R R M16B B R R R M20B R R R R M24R R R R R M30-M100RRRRRTABLE X3.1Coating Accommodation Tolerances for ExternallyThreaded Class 6g and 4g6g Metric FastenersThread Pitch,mm Diameter,(in.)Pitch Diameter Allowance for 6g and 6g4g Tolerance Positions,(µm)Maximum Allowable Coating Thickness on Threaded Tip(µm)0.35M1.6–1940.4M2–1940.45M2.5–2050.5M3–2050.6M3.5–2150.7M4–2250.8M5–2461M6–2661.25M8–2871.5M10–3281.75M12–3482M14,M16–3892.5M20–42103M24–48123.5M30–53134M36–60154.5M42–63155M48–71175.5M56–75186M64,M72,M80,M90,M100–8020FIG.X3.1Metric Tolerance System for ScrewThreadsX4.APPLICATION REQUIREMENTSX4.1Cleaning of Basis Metal—Thorough cleaning of the basis metal is essential in order to ensure satisfactory adhesion, appearance and corrosion resistance of the coating.X4.2Hydrogen Embrittlement Risk Management:X4.2.1Process Considerations—The following are some general recommendations for managing the risk of hydrogen embrittlement.For more detailed information refer to IFI-142. X4.2.1.1Clean the fasteners in non-cathodic alkaline solu-tions and in inhibited acid solutions.X4.2.1.2Use abrasive cleaners for fasteners having a hard-ness of40HRC or above and case hardened fasteners.X4.2.1.3Manage anode/cathode surface area and efficiency, resulting in proper control of applied current densities.High current densities increase hydrogen charging.X4.2.1.4Use high efficiency plating processes such as zinc chloride or acid cadmiumX4.2.1.5Control the plating bath temperature to minimize the use of brighteners.X4.2.1.6Select raw materials with a low susceptibility to hydrogen embrittlement by controlling steel chemistry,micro-structure and mechanical properties.X4.2.2Process Control Verification—Test Method F1940 should be used as a test method for process control to minimize the risk of hydrogen embrittlement.Periodic inspections should be conducted according to a specified test plan.The test plan should be designed based upon the specific characteristics of a process,and upon agreement between the purchaser and the manufacturer.The testing frequency should initially estab-lish and subsequently verify over time,the ability of a process to produce parts that do not have the potential for hydrogen embrittlement.PARISON OF THE REQUIREMENTS OF SPECIFICATION F1941M–00VERSUS ISO4042–99X5.1Table X5.1provides the main differences that exist between Specification F1941M–00versus ISO4042–99.In many cases,both standards do not use the same numbering system to address a similar provision.If needed,the reader must refer to the related paragraph(s)of each standard in its entirety to fully appreciate thecomparison.。

冷库保温结构优化分析

冷库保温结构优化分析
阻计 算 , 入 式 ( ) 计 算得 23 ( K)W. 代 1, .6 m /
1 2 2 聚苯板 保 温层 热 阻 : ..
按照实际情 况和建模要求 参数的选 择.选用 挤 塑型 聚苯板 ( P ) 导 热 系数 A= .4 ( ES , 0 00 W/m。 K 按照设计要求所选择的厚度一般是 1 c ; ) 5. m 内墙按照冷库设计规范 , 修正系数选取 13 ..
第2 7卷
选 用 1 1 5 0 g 密度 是 2 . 2 k/ 聚 氨 4 2 . / , B 7 5 gm
酯材料导热系数 : 0 041 ( A= .2 2 W/m ・ ) . 。 K ]按 照设计要求所选择 的外墙保温厚度是 8Cl I; l 按照 冷库 设 计规 范 , 正 系数 选 取 14; 墙 保 温 层 热 修 . 外
材 料单 价 :4元/ 。面积 6 厚 度 l m, 1 m, 0m , 5c
为简化结构, 降低成本 , 减少保温层厚度 , 消灭 冷桥 , 提高冷库工作效 率, 结合 已有技术和实际施
工要 求 , 对保 温 层进 行了 如下 优化 设计 .
计算材料成本为 16元. 2
13 3 采 用复合 保温 层 的材料 成本 模 型 ..
先计算用聚氨酯的成本 : 将面积 6 厚度 2 0m , 选用导热系数A= . 4 2 / m ・ ) 00 ( K 聚氨 c 修 正 系数 13计 算得 到 聚 氨酯 成 本 为 80元 , 2 1W m, . 6 酯材 料和 导热 系数 A= .4 00 0w/( . 聚 苯材 再计 算使 用聚 苯 板 的成 本 : 面 积 6 I, 度 1 m K) 将 01。厚 T 0 料, 喷涂 约厚 度 l11 1 聚氨酯材料 , 3 在铺设厚度约 a 计 算 聚 苯 板 成 本 为 7 m, 4元 , 后得 到 材 料 成 本 最

纳米二氧化硅表面改性的研究

纳米二氧化硅表面改性的研究

等通过原位 表面改性制备
入三口瓶中, 然后加入甲苯和钛酸酯偶联剂 , 搅拌并 超声振荡 , 而后升温至指定温度, 回流, 然后抽滤 , 洗 涤, 放入烘箱中干燥 , 制得改性后的纳米 SiO2。 ( 3) 硬脂酸改性纳米 S i O2 将一定量的硬脂酸和 NaOH 置于三口瓶中, 加 入适量开水, 升温搅拌, 待硬脂酸和 NaOH 全部溶解 加入一 定量的 纳米 SiO2。恒温 搅拌一 定时 间, 抽 滤, 用无水乙醇洗 去表面的有机 物, 再用水 洗涤一 次, 干燥, 即制得改性后的纳米 S i O 2。 1 4 改性效果的表征 ( 1)亲油化度的测定 将 1g 改性后的纳米 S i O 2 粉体置于 40mL 蒸馏 水中 , 然后逐滴地滴定甲醇, 当漂浮在水面上的粉体 完全润湿后, 记录甲醇的加入量 V ( mL ) , 则 亲油化度 = ( V / 40+ V ) ∀ 100 % ( 2)吸水率的测定 将 1 000g 改性后的产品均匀铺洒在表面皿上, 然后放入盛有适量水的干燥器中 , 放置一定时间后, 称量并计算粉体增加的质量 m, 按下面的公式计算 其吸水率。 吸水率 = (m / 1 000) ∀ 100 %
充效果, 所以 , 有必要对其进行表面改性。目前, 采 用硅烷偶联剂、 钛酸酯偶联剂对纳米 S i O2 进行表面 改性的研究有报道 , Zh iW en W ang 等
8!
以超临界
CO 2 为溶剂、 以钛酸酯偶联剂 NDZ 201 为改性剂对 纳米 SiO2 进行了表面改性 , 修饰后纳米 S i O 2 由亲 水变为疏水, I R 和热重分 析表明纳米 S i O 2 和钛酸 酯偶联剂主要 是通过化学键相互作用的。 Yan lo ng T a i等
粉体置于40ml蒸馏水中然后逐滴地滴定甲醇当漂浮在水面上的粉体完全润湿后记录甲醇的加入量yml则亲油化度v40y1002吸水率的测定将10009改性后的产品均匀铺洒在表面皿上然后放人盛有适量水的干燥器中放置一定时间后称量并计算粉体增加的质量m按下面的公式计算其吸水率

初论铌,钽和钨的成矿作用:实验研究

初论铌,钽和钨的成矿作用:实验研究
3 实 验结 果 和讨 论
实 验 结 果 羊lJ实 验 条 件 分 别 列 人 表 1、表 2 表 3和 表 示 在 图 l和 图 2中
3.1 实验 结 果 的 误 差来 源
实验 结果的误差来源是多方 面的 从总 体 讲 现代分析技术 引起实验结 果的误差 远 比由实验本身带来 的误差小 就本 研究而 言,微 量元素在少 量实验产物 中的不均匀分布 可 能是 引起误差 的主要原 因 为 了克服 这一缺陷 ,我们 曾采取先让初始 物在高于液相线 温 度充分熔化 ,然后缓慢 冷 却至实验要求 的温 度值 ,并在这些 温压下保 持 72h的措施 ,但 仍 不能完 全避 免微 量元素分布 的不均匀 性。其次 ,部分 实验曾采用 天然锂云母钠长 花 岗 岩 作 为 初 始 物 ,陵花 岗 岩 的 Nb O 和 Ta O 含 量 仅 为 万 分 之 几 ,由于 在 实 验 中 形 成 了 Nb、Ta的 独 立 矿 物 及 部 分 Nb、l'a的水 解 ,故 在 残 余 熔 体 及 流 体 中 的 Nb、Ta含 量 低 而 不 能精 确测定 。第 三,尽 管我们采 用快 速淬火 高压釜进行实 验,但仍 可能有少量 Nb、Ta在 淬火过 程中脱离 流体 ,甚 至在高 温 F水解 的 Nb、Ta在 淬火至 低温 时也可 能部 分返熔 到 流 体 中 但 整体 看 ,我 们 的 实验 达 到 了平 衡 ,大 多 数 实 验 产 物 中 的 元 素 分 布 比较 均 匀 ,所 得 元 素 分 配 系 数 接 近 其 真 值 、尤 其 是 实 验 结 果 显 示 的规 律 性 是 可 信 的 。
pH


室 验 编 号
韧 介 f , 宴 实 时 间
始 物
验 验
S】o TiO Al2o1 FeO M I1O M gO CaO K20

一种基于接触力分析进行对接的控制策略

一种基于接触力分析进行对接的控制策略

( o e e f u m t n B i gU ie i f ot n e c m n a o sB i g 1 0 7 ,C ia C  ̄ g t a o , e i n r t o s a dT l o mu i t n, e i 0 8 6 h ) oA o i j n v sy P e ci j n n
1 空 间 机 械 臂 末 端 与 对 接 口 的 简 化 模 型 以 及 数 据 定 义
空 间 机 械 臂 末 端 与 对 接 口 的 机 械 结 构 较 为 复 杂 ,为
态进行 了几何分析 以及动力学分析 : rn 4 Sai or To ̄1 hh po 在 n
研 究 的 基 础 上 对 动 态 装 配 过 程 进 行 几 何 分 析 .所 提 出 的
便 于分 析 ,将 对 接 模 型 简化 如 图 1所 示 。 图 中 :r 空 一
间 机 械 臂 末 端 半 径 : R 对 接 口 内 一
模 型可 以更 清 楚 了解 动态 装 配机 制 :CC C eg 通 过分 .. h n m 析 插孔 作业 过 程 ,提 出 了一种 新 的被 动柔 顺 设备 来 较好
首先 移 动机 械 臂末 端 位置 使力 接 触 为零 。控 制 方法
如下 :使 末端 朝着 使接 触力 为 零 的方 向运 动 。 即 对 于 当前 末 端 位 姿 (。y, , , P) 保 持 Z, 。 x,eZ B ,e , ed , B , 变 ,按照 式 ( ) 动 位姿 为 (。 Y。Z,【 3, 。 。P 不 2移 x ,e e0 , …1 P)
第2 5卷 第 1期
21 0 2年 1月
D v lp n & In v t n o a h n r & E e t c lP o u t e eo me t n o ai f c iey o M l cr a r d cs i

直罗地区长6储层非均质性研究

直罗地区长6储层非均质性研究
0“
2 3飘 5
5 3 嚣 ^ 83 I ∞
3 ,T ∞ 8 瑚 ‘ 3
表1 长6 油层组层内非均质系数统计表
2 层 间 非 均 质 性 层 内 非 均 质 性 是 指 一 个 单 砂 层 内 部 在 垂 向上 的 储 层 性
质变化 ,它是 直接控制 单砂层 内水淹 厚度及 系数 的关键地
最墨 熏数
事均曩蛙 哭进 羹异 墓数 j数 l
14 .2 1 封 . 2∞
1嬲
± - 长虹
08 { 1I .
0 竹 .
g2 .3 掌5 .6
l ‘ l3
1 2 .l l 75
1 4前
0 ∞蝣 . O O ∞ B
0 0 ● .O3
0 计 . 8 麓 .
媾 |. 1 街


0. l 0
0 2 0
0。 啪
0锄
0.I 0o
呻 帕’柚
O嘲 .
l ∞
稚鑫 j事 x 瞻 帕 D} 图1 长6 段井渗透率垂 向韵律 性 收稿 日期:2 1 一 7 3 修 回 日期:2 1 一 8 2 0 1O —0 0 1O— 6 基金项 目:国家重大专项 ( 编号 :y s 2 1 k — 一 1 。 cy 0 Oy C 0 )
鄂 尔 多 斯 盐 地 已 探 明 低 渗 透 储 量 1. 8 5 1 , 是 12 5 × 0t
坝 砂 体 有 这 种 特 征 。 复 合 韵 律 是 由 向上 水 淹 及 驱 油 速 度 变 化 更 大 , 易 图2 形成 多段 水淹 , 纵 向 上 水 驱 不 均 匀 。
l 层内非均质性
1 1储 层垂 向上的粒序性 . 根 据直罗地 15 井 岩心 资料统 计,长6  ̄ 7j 1 E 储层 内部渗透
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年全国1%人口抽样调查主要数据公报
中华人民共和国国家统计局
2006年3月16日
经国务院批准,我国于2005年底开展了全国1%人口抽样调查工作。

这次调查以全国为总体,以各省、自治区、直辖市为次总体,采取分层、多阶段、整群概率比例的抽样方法。

最终样本单位为调查小区。

这次调查的样本量为1705万人,占全国总人口的1.31%。

在国务院和地方各级人民政府的统一领导下,通过调查工作人员的艰苦努力,调查的各项任务已基本完成。

现将快速汇总的全国总人口及其结构的主要数据公布如下:
一、总人口
2005年11月1日零时,全国31个省、自治区、直辖市和现役军人的总人口为130628万人,与2000年11月1日零时第五次全国人口普查的总人口126583万人相比,增加了4045万人,增长3.2%;年平均增加809万人,年平均增长0.63%。

根据调查数据推算,2005年年末总人口为130756万人。

二、流动人口
全国人口中,流动人口为14735万人,其中,跨省流动人口4779万人。

与第五次全国人口普查相比,流动人口增加296万人,跨省流动人口增加537万人。

三、城乡构成
全国人口中,居住在城镇的人口56157万人,占总人口的42.99%;居住在乡村的人口74471万人,占总人口的57.01%。

与第五次全国人口普查相比,城镇人口占总人口的比重上升了6.77个百分点。

四、性别构成
全国人口中,男性为67309万人,占总人口的51.53%;女性为63319万人,占总人口的48.47%。

性别比(以女性为100,男性对女性的比例)为106.30,与第五次全国人口普查相比下降0.44。

五、年龄构成
全国人口中,0-14岁的人口为26478万人,占总人口的20.27%;15-59岁的人口为89742万人,占总人口的68.70%;60岁及以上的人口为14408万人,占总人口的11.03%(其中,65岁及以上的人口为10045万人,占总人口的7.69%)。

与第五次全国人口普查相比,0-14岁人口的比重下降了2.62个百分点,60岁及
以上人口的比重上升了0.76个百分点(其中,65岁及以上人口比重上升了0.73个百分点)。

六、民族构成
全国人口中,汉族人口为118295万人,占总人口的90.56%;各少数民族人口为12333万人,占总人口的9.44%。

与第五次全国人口普查相比,汉族人口增加了2355万人,增长了2.03%;各少数民族人口增加了1690万人,增长了15.88%。

七、受教育程度
全国人口中,具有大学程度(指大专及以上)的人口为6764万人,高中程度(含中专)的人口为15083万人,初中程度的人口为46735万人,小学程度的人口为40706万人。

与第五次全国人口普查相比,具有大学程度的人口增加2193万人,高中程度的人口增加974万人,初中程度的人口增加3746万人,小学程度的人口减少4485万人(以上各种受教育程度的人口包括各类学校的毕业生、肄业生和在校生)。

八、家庭户人口
全国共有家庭户39519万户,家庭户人口为123694万人,平均每个家庭户的人口为3.13人;集体户人口为6934万人。

与第五次全国人口普查相比,平均每个家庭户的人口减少了0.31人。

城镇平均每个家庭户的人口为2.97人,农村为3.27人。

注:
1、本公报为根据调查结果的初步推算数。

2、调查登记标准时间为2005年11月1日零时,调查登记对象为具有中华人民共和国国籍并居住在中华人民共和国境内大陆的常住人口。

3、全国总人口数未包括中国香港、中国澳门、中国台湾省人口数。

4、经事后质量抽查,总人口的净漏登率为1.72%。

全国人口中已包括据此计算的漏登人口数。

相关文档
最新文档