模态分析的相关介绍

模态分析的相关介绍
模态分析的相关介绍

工程数据管理(EDM)是实现对晶钻仪器公司所有硬件的实时数据管理和处理的PC软件。它的结构清晰,界面友好,功能丰富,操作简单方便。

EDM模态分析一个完整的包括模态测试和分析的实验模态分析(Experimental Modal Analysis (EMA))流程。基于当代流行的模态分析理论和技术开发,操作流程直观且简单,它是实现模态分析实验得力的工具。支持用户实现数百个测量点和多个激励点的高度复杂的模态分析,无论模态测试是多么复杂,EDM模态软件都提供准确的工具来实现您的目标。

为了成功获得测试数据,实验之前需要在测试模型上规划出所有测点的自由度(DOFs)。几何编辑器提供多种坐标系统,使用组件功能,可以简单地把各个子组件合并对一个几何模型。在输入通道设置界面,设置所有通道对应的测点和它们的坐标方向。测试开始后,所有的测试测点都会被测量,并以包含激励和响应自由度的信号名称保存。

模态参数识别是模态分析的核心,EDM模态分析为其提供了多种拟合方法。最小二乘复指数法(The Least-Squares Complex Exponential (LSCE))用于获取单参考点频响函数(FRF)的极点(包括频率和阻尼)。而多参考点(多输入/多输出

或者MIMO)测试,则使用相应的多参考时域分析法(Poly-Reference Time Domain,PTD)。

动画模块是为了动态展示模态振型的模块,允许用户通过3D动画显示模态振型到几何模型。通过不同颜色标识动画的振动幅度。自由变形(FFT)提供增强模式的动画,比点动画更平滑更逼真。使用同一个几何模型,工作变形分析(ODS)可动画显示所选择的时域和频域响应数据到几何模态。

EDM模态支持的应用如下:

●几何模型的创建/编辑/导入/导出/动画

●工作变形分析(ODS)

●锤击法模态实验

●单个或多个模态激振器模态试验

●单参考点模态分析

●多参考点模态分析

●导出测试报表到Word

几何模型编辑(Geometry)

EDM模态几何模型编辑/ODS/动画三个模块是EDM模态分析软件的基础模块,包含在每个EDM模态系统。它们提供快速而有效地几何结构模型生成和模态测试及分析结果的全3D可视化。

点/线/面是几何模型编辑的基本元素,其操作包括增加/删除/修改。组件被定义为几何模型的一部分,每个组件相对独立,包含独立的方向和欧拉角。预置的组件库包括线、面板、立方体,圆柱体和球体,通过指定原点,方向,尺寸和组件的单元格的数目,它们能作为几何模型的一部分,下图是增加面板的界面

编辑的几何模型可以导出保存,并可被其他测试再次使用。清空当前模型操

作方便用户创建一个新模型。导入操作支持多种第三方格式的模型,比如UFF,XML,Obj。

几何模型常用的功能是运行振型动画,运行动画是可选择需要显示的内容,包括点,线,面,标签等元素。动画的视图模式可以设置为单一透视视图或四视图(透视/顶部/侧面/正面)。保存视频功能可记录模态的一个动画周期数据到AVI文件。

主要特征如下:

●基本元素:点、线、面;图形编辑或表格编辑

●坐标系统:直角,圆柱,球

●部件元素:原点、方向(欧拉角)

●内置组件库:线、平面、立方体、圆柱体和球体

●几何模型保存/打开/清除

●几何模型导入:UFF,CAD

●几何模型显示:点、线、面;点方向,点标签;面方向

●模式形状动画:线框、曲面轮廓、FFD

●振型动画速度控制(快、慢),动画幅度控制(增加、减少)

●模态视频保存、图形存储

工作变形分析(ODS)

EDM模态工作变形分析(ODS)允许用户在几何模型中直观的察看被测件各测点的变形状态,同时支持时域和频域数据。它是EDM模态分析的基础功能。

EDM的数据库结构使得数据可以很容易的选取。选中的数据组可以用几何模型来作动画显示。振动的形态,不管是时域或频域的,都可以被保存到.avi视

频文件。

主要特征如下:

●时域和频域的数据管理

●动画显示3D几何模型,支持手动选择动画的显示内容

●可动态调整动画速度和振幅,支持光标位置拖动

●动画视频文件保存

锤击法模态实验(Hammer Impact Testing)

锤击法是单操作员实验模态测试的基本方法。EDM锤击法提供流程化的操作界面,方便用户完成所有设置和实验。

实验流程的设计,旨在帮助用户快速定义采集参数,将更多的时间可以花在分析上。触发设置界面让用户定义触发方式,触发预览界面显示当前激励和响应的测点名称,触发后采集的激励和响应波形,以及平均的次数;其窗口的尺寸大小可手动调整。手动触发是默认的触发类型,在些类型下当激励达到设置触发值,则激励和响应波形会被显示,用户可以接受/拒绝当前帧。当选择接受则进行下一帧测试,直到达到平均次数,完成当前测点的测试。

驱动点选择是锤击法特有的一个功能子模块,用于方便用户选择哪个测点适合用作固定的激励点或参考点。用户设置几个要测试的驱动点,通过试敲击得到他们的FRF数据,然后判断出最适合的驱动点。EDM简化了此重要的预实验的数据管理。

当开始实际的测量后,采集状态表格会显示所有的DOFs状态(状态包括:未测量,已测量和正在测量),方便用户即时了解所有测点的状态。当测点完成后点“Next Point”或“Previous Point”移动软件上的当前测点。“Roving Setup”,可集中设置游击方式,每个通道对应的测点和方向。

锤击法实验过程一个常见的问题是会出现“double hit”。我们提供了自动检测“double hit”的过程,让用户自动或手动拒绝有双击的敲击。锤击法实验采集的结果会自动添加到模态分析的数据选择模块,这样模态数据采集和分析可无缝对接。

主要特征如下:

●直观的流程化操作过程

●几何模型贯穿整个测试过程

●响应和激励两种游击方式

●自动或手动移动测点

●自动或手动触发模式

●可变尺寸的触发观览窗口

●双击锤击识别,开/关,自动/手动拒绝

●驱动点设置

●测试状态声音和图形反馈

●H1,H2,H3和Hv方式计算FRF

●测点测试状态显示表格

单输入多输出FRF测试(SIMO FRF Testing)

EDM模态SIMO FRF测试用于单激振器采集FRF信号。使用高通道采集系统(比如,Spider-80X或Spider-80Xi),该激振方法提供高效的FRF信号采集过活,以及最大限度减少施加力的峰值有效值比。

SIMO FRF输出类型支持纯随机(白噪声),脉冲随机,线性调频及脉冲线性调频,伪随机,和周期随机。针对周期随机类型(伪随机和周期随机),为了

每次采集时使结构达到稳态响应,提供延迟块和循环块数(Nd,Nc)两个参数,这样可以避免泄漏而无需加窗。

与锤击法一样,SIMO FRF的FRF采集过程与模态分析过程无缝衔接,不用单独启动分析程序

主要特征如下:

●易用的测试流程

●自动/手动改变测点自由度

●单激励(单参考)

●为同步采集和激励增加源触发模式(Source trigger)

●纯随机(白噪声),突发随机,线性调频及脉冲线性调频,伪随机,周期随机等输出类型

●为伪随机和周期随机输出类型:延迟块和循环块数(Nd,Nc)

●H1,H2,H3和Hv方式计算FRF

多输入多输出FRF测试(MIMO FRF Testing)

EDM模态多输入多输出FRF测试用于多激振器同时采集FRF信号。使用高

通道采集系统(比如,Spider-80X或Spider-80Xi),该激振方法提供高效的FRF信号采集过活,以及最大限度减少试件上的局部应力。

当使用多个激振器是,驱动源信号间是保证不相关的。MIMO FRF输出类型支持纯随机(白噪声),突发随机,线性调频及脉冲线性调频,伪随机,周期随机。针对周期随机型(伪随机和周期随机),为了每次采集时使结构达到稳态响应,提供延迟块和循环块数(Nd,Nc)两个参数,这样可以避免泄漏,允许不加窗分析。

多激振方法可以分离且识别重根和高度偶合的模态。时域多于一个的激振器,可同时测量频率响应矩阵的多个列。结合多参考曲线拟合算法,模态参数因子将帮助分离重复和高度耦合模式。

与锤击法一样,MIMO FRF的采集过程与模态分析过程无缝衔接,不用另外启动分析程序

主要特征如下:

●易用的测试流程

●自动/手动改变测点自由度

●同步多信号源输出

●单或多激励

●为同步采集和激励增加源触发模式(Source trigger)

●支持纯随机(白噪声),突发随机,线性调频及脉冲线性调频,伪随机,周期随机等输出类型

●为伪随机和周期随机输出类型:延迟块和循环块数(Nd,Nc)两参数

●H1,H2,H3和Hv方式计算FRF

标准模态分析(Standard Modal Analysis)

EDM模态标准模态分析是一套完整的分析流程,包括从FRF数据选择到模态参数识别,再到结果验证和振型动画。

模态实验完成后,所有的FRF数据可用来进行下一步的模态分析。用户也可以从外部导入需要的FRF数据,增加或替换某些FRF信号。编辑完成的FRF 数据列表可导出到本地成为一个已选择集合,也可以导入已选择的集合直接用于分析。这些操作集中在“模态数据选择”模块。所有的FRF数据都能在模块浏览,同时几何模型显示已选择信号的测点,信号窗口分单独显示和集中显示两种方式浏览信号。

单击“模态参数”健,模态辨识过程将被启动。模态指示函数(MIF),包括MMIF,CMIF, RMIF,虚部集总,以及Mag集总,有助于指示重根和高度偶合的根(模态)。

稳态图(Stability Diagram)是模态参数识别的一种迭代方法。在标准模态分析中,我们使用最小二乘复指数法(LSCE)识别出所有极点。在稳态图中可以选择稳定的物理极点(而不是计算极点),使用最小二乘频域法进行用于下

一步的振型计算。

计算出的振型结果将被保存并用以进行振型的动画显示。模态置信准则(MAC)和FRF综合都可用来验证模态参数的正确性。

主要特征如下:

●易用的模态数据选择

●模态指示函数:Multivariate MIF, Complex MIF, Real MIF, Image Sum

●稳态图

●LSCE和LSFD拟合算法

●可编辑的模态振型结果

●模态振型动画

●自/互MAC计算和显示

●拟合FRF与测量FRF对比

●输入/输出振型:UFF格式

高级模态分析(Advanced Modal Analysis)

EDM模态高级模态分析包括所有标准模态分析的功能,在此基础上增加了用于拟合多参考点(MIMO)FRF矩阵的分析方法。使用多参考点的时域拟合方法(Poly reference time domain)计算极点。

在实际拟合时,基于FRF集合是单参考点还是多参考点,EDM Modal软件会自动选择使用LSCE还是PTD。

主要特征如下:

●基于标准模态分析的所有特征和功能

●提供PTD拟合算法

●根据参考点个数自动选择拟合算法

SIMO正弦扫频测试(SIMO Swept Sine Testing)

模态分析软件(EDM-Modal)的SIMO扫描正弦测试包括专用测试设置和使用单个激振器输出正弦波以获取FRF信号的操作过程。源输出类型为正弦扫

频信号。扫频模式可以是线性或对数的。在定义的参考DOF的基础上,构建测量值DOF的FRF信号。输出驱动量级可以设定以开环控制方式或闭环控制方式工作,闭环方式时可以指定某个通道的响应为控制反馈信号。

实验模态分析过程可与SIMO正弦扫频测试集成运行。

SIMO扫频正弦测试特点:

●测试操作简单易用

●测点/方向支持自动/手动遍历

●一个扫正弦激励信号(参考信号)

●激励输出量级可设定,并可以开环方式扫频,或闭环方式控制量级。

●线性、对数扫描模式

●比例滤波、RMS值、平均、峰值4种测量策略

●固定、可变比例跟踪滤波器,用户可定义带宽

●用户可定义扫频方向,开始/结束频率,扫描频速度

SIMO步进正弦测试(SIMO Stepped Sine Testing)

模态分析软件(EDM Modal)的SIMO步进正弦测试包括测试设置和使用单个激振器输出正弦波以获取FRF信号的操作过程。输出类型为步进正弦,而不是扫频正弦。步进模式可以是线性或对数的。将构造相对于定义的参考通道的每个测量DOFs的FRF信号。可以定义输出驱动量级,工作中可以在开环模式工作,或者也可以闭环方式工作,闭环时指定控制通道为量级反馈信号。

实验模态分析过程与SIMO步进正弦测试可集成运行。

SIMO步进正弦测试特点:

●测试操作简单易用

●测点/方向支持自动/手动遍历

●一个扫正弦激励信号(参考信号)

●激励输出量级可设定,并可以开环方式扫频,或闭环方式控制量级。

●线性、对数步进模式

●比例滤波、RMS值、平均、峰值4种测量策略

●固定、可变比例跟踪滤波器,用户可定义带宽

频率移动速率

工作模态测试(Operational Modal Testing )

EDM Modal -工作模态测试专门用于外场环境振动数据测试,包括专用测试步骤和操作流程。采用多通道动态数据采集系统(例如, Spider-80X 或Spider-80Xi), 这种振动台激励方法为FRF测量提供了更高的效率和准确度, 同时尽可能减少了测试过程中的局部干扰。

典型的模态分析方法和程序是基于在实验室进行的强迫激励试验。频率响应函数(FRF)作为输入的模态参数被测量。然而,测试结构承受的实际负载条件通常与实验室测试中使用的条件有很大不同。许多情况下(如:海洋平台的激励或桥梁上运行/风的激励),想要进行强制激励测试非常困难,即使不是完全不可能,至少标准的测试设备是无法测试的。这种情况下,只测量响应振动数据通常是唯一可用的办法。

工作模态测试只测量和处理环境振动响应的数据,为这些参数标示做准备。使用去卷积方法可以进一步顺利得到交叉功率谱向量。

模态分析过程与工作模态测试是实时同步进行的。工作模态测试特点:

●易于使用的测试流程

●点/方向自动/手动增量

●用户定义的参考通道

●"作用域" 选项卡在测量前查看通道数据

●扩展了所有输入通道与参考通道的交叉功率谱●交叉功率频谱矢量平滑, 多次或取消

模态分析和频率响应分析的目的

有限元分析类型 一、nastran中的分析种类 (1)静力分析 静力分析是工程结构设计人员使用最为频繁的分析手段,主要用来求解结构在与时间无关或时间作用效果可忽略的静力载荷(如集中载荷、分布载荷、温度载荷、强制位移、惯性载荷等)作用下的响应、得出所需的节点位移、节点力、约束反力、单元内力、单元应力、应变能等。该分析同时还提供结构的重量和重心数据。 (2)屈曲分析 屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,NX Nastran中的屈曲分析包括两类:线性屈曲分析和非线性屈曲分析。 (3)动力学分析 NX Nastran在结构动力学分析中有非常多的技术特点,具有其他有限元分析软件所无法比拟的强大分析功能。结构动力分析不同于静力分析,常用来确定时变载荷对整个结构或部件的影响,同时还要考虑阻尼及惯性效应的作用。 NX Nastran的主要动力学分析功能:如特征模态分析、直接复特征值分析、直接瞬态响应分析、模态瞬态响应分析、响应谱分析、模态复特征值分析、直接频率响应分析、模态频率响应分析、非线性瞬态分析、模态综合、动力灵敏度分析等可简述如下: ?正则模态分析 正则模态分析用于求解结构的固有频率和相应的振动模态,计算广义质量,正则化模态节点位移,约束力和正则化的单元力及应力,并可同时考虑刚体模态。 ?复特征值分析 复特征值分析主要用于求解具有阻尼效应的结构特征值和振型,分析过程与实特征值分析类似。此外

Nastran的复特征值计算还可考虑阻尼、质量及刚度矩阵的非对称性。 ?瞬态响应分析(时间-历程分析) 瞬态响应分析在时域内计算结构在随时间变化的载荷作用下的动力响应,分为直接瞬态响应分析和模态瞬态响应分析。两种方法均可考虑刚体位移作用。 直接瞬态响应分析 该分析给出一个结构随时间变化的载荷的响应。结构可以同时具有粘性阻尼和结构阻尼。该分析在节点自由度上直接形成耦合的微分方程并对这些方程进行数值积分,直接瞬态响应分析求出随时间变化的位移、速度、加速度和约束力以及单元应力。 模态瞬态响应分析 在此分析中,直接瞬态响应问题用上面所述的模态分析进行相同的变换,对问题的规模进行压缩,再对压缩了的方程进行数值积分,从而得出与用直接瞬态响应分析类型相同的输出结果。 ?随机振动分析 该分析考虑结构在某种统计规律分布的载荷作用下的随机响应。例如地震波,海洋波,飞机超过建筑物的气压波动,以及火箭和喷气发动机的噪音激励,通常人们只能得到按概率分布的函数,如功率谱密度(PSD)函数,激励的大小在任何时刻都不能明确给出,在这种载荷作用下结构的响应就需要用随机振动分析来计算结构的响应。NX Nastran中的PSD可输入自身或交叉谱密度,分别表示单个或多个时间历程的交叉作用的频谱特性。计算出响应功率谱密度、自相关函数及响应的RMS值等。计算过程中,NX Nastran不仅可以像其他有限元分析那样利用已知谱,而且还可自行生成用户所需的谱。 ?响应谱分析 响应谱分析(有时称为冲击谱分析)提供了一个有别于瞬态响应的分析功能,在分析中结构的激励用各个小的分量来表示,结构对于这些分量的响应则是这个结构每个模态的最大响应的组合。 ?频率响应分析 频率响应分析主要用于计算结构在周期振荡载荷作用下对每一个计算频率的动响应。计算结果分实部和虚部两部分。实部代表响应的幅度,虚部代表响应的相角。 直接频率响应分析 直接频率响应通过求解整个模型的阻尼耦合方程,得出各频率对于外载荷的响应。该类分析在频域中主要求解两类问题。第一类是求结构在一个稳定的周期性正弦外力谱的作用下的响应。结构可以具有粘性阻尼和结构阻尼,分析得到复位移、速度、加速度、约束力、单元力和单元应力。这些量可以进行正则化以获得传递函数。 第二类是求解结构在一个稳态随机载荷作用下的响应。此载荷由它的互功率谱密度定义。而结构载荷由上面所提到的传递函数来表征。分析得出位移、加速度、约束力或单元应力的自相关系数。该分析也对自功率谱进行积分而获得响应的均方根值。 模态频率响应 模态频率响应分析和随机响应分析在频域中解决的两类问题与直接频率响应分析解决相同的问题。

模态分析实验报告

篇一:模态分析实验报告 模态分析实验报告 姓名:学号:任课教师:实验时间:指导老师:实验地点: 实验1传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1) 掌握锤击激振法测量传递函数的方法; 2) 测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3) 分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4) 比较原点传递函数和跨点传递函数的特征; 5) 考察激励点和响应点互换对传递函数的影响; 6) 比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,lms lms-scadas ⅲ测试系统,具体型号和参数见表1-1。 仪器名称 型号 序列号 3164 灵敏度 2.25 mv/n 100 mv/g 备注比利时 丹麦 b&k 数据采集和分析系统 lms-scadas ⅲ 2302-10 力锤 加速度传感器 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字 信号处理技术获得频率响应函数(frequency response function, frf),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时lms公司scadas采集前端及modal impact测量分析软件组成。力锤及加速度传感器通过信号线与scadas采集前端相连,振动传感器及力锤为icp型传感器,需要scadas采集前端对其供电。scadas采集相应的信号和进行信号处理(如抗混滤波,a/d转换等),所测信号通过电缆与电脑完成数据通讯。图1-1 测试分析系统框图 四、实验数据采集 1、振动测试实验台架 实验测量的是一段轴,在轴上安装了3个加速度传感器,如图1-2所示,轴由四根弹簧悬挂起来,使得整个测试统的频率很低,基本上不会影响到最终的测试结果。整个测试系统如下图所示:a1 a 测点2测点3测点4 图1-2 测试系统图

基于模态分析法的结构动载荷识别研究

文章编号:1000-1506(2000)04-0011-04 基于模态分析法的结构动载荷识别研究 文祥荣,智 浩,缪龙秀 (北方交通大学机械与电气工程学院,北京100044) 摘 要:分析了基于模态分析法的动载荷识别时域方法,应用薄板实例进行了验证,结果表明该方法具有较高精度,并对该方法在转向架结构应用中的一些问题进行了探讨. 关键词:动载荷识别;时域分析;模态分析 中图分类号:U453 文献标识码:A R esearch on Structural Dynamic Load Identif ication B ased on Modal Analysis Method WEN Xiang 2rong ,ZHI Hao ,M IAO Long 2xiu (College of Mechanical and Electrical Engineering ,Northern Jiaotong University ,Beijing 100044,China ) Abstract :A dynamic load identification method in time domain based on modal analysis is analyzed.The method is verified with a flat thin plate and the results show its high accuracy.Some problem in the application of this method to identify dynamic load of bogie of rolling stock are also presented in this paper. K ey w ords :dynamic load identification ;time domain analysis ;modal analysis 动态载荷识别是根据已知系统的动态特性和实测的动力响应反算结构所受的动态激励.动载荷的确定是一个较难的问题,但又是结构动态设计的关键之一.动载荷的识别在结构动力响应计算、结构动态设计及故障分析中是十分重要的,为结构的动态计算、设计及分析提供可靠的依据.载荷识别方法主要分为时域和频域两大类.频域法发展较早,理论与计算方法较为成熟,应用也较广泛,在直升飞机动态力、汽车装配梁激振力、掘进机受载、海洋平台冰载、机床切削力、发动机活塞力等方面得到了应用[1].采用频域法虽然可确定动态力谱的均值与方差,但对于识别动态力确切的时间历程还有一定困难,特别是可能会出现奇异值和不稳定现象.时域法的最大特点是可以不经动态力谱而直接在时域内求解载荷时间历程,便于工程应用[2,3]. 将动载荷识别技术应用于铁路机车车辆结构受载状况的确定在国内外均未见报道.通过对机车车辆结构,尤其是转向架结构在运用条件下的动载荷识别,有助于制定转向架疲劳设计载荷谱,为转向架的动态设计与疲劳设计提供可靠的依据.我国的高速客车转向架正处于研制开发阶段,缺乏实践运用经验,各铁路工厂亦迫切需要这些载荷数据,以便完善转向架结构的 收稿日期:2000203201作者简介:文祥荣(1971— ),男,江西南康人,博士生.em ail :wen -xiangrong @https://www.360docs.net/doc/6e15383044.html, 2000年8月第24卷第4期 北 方 交 通 大 学 学 报JOURNAL OF NORTHERN J IAO TON G UN IV ERSIT Y Aug.2000 Vol.24No.4

DHMA实验模态分析系统的概述

DHMA实验模态分析系统的概述 江苏东华测试技术有限公司推出的“DHMA实验模态分析系统”, 从激励信号、传感器、适调器、数据采集和分析软件到实验报告的生成,构成了完整的进行实验模态分析的硬件和软件条件。专业的技术培训,保证了用户可靠、准确、合理的使用本系统。 DHMA实验模态分析系统汇集了公司多年来硬件、软件研发经验,和广大用户对实验模态分析系统的改进意见,参考国内外实验模态分析领域专家学者的研究成果和指导意见,功能强大,特点鲜明:采用内嵌专业知识的软件模式,即使是非专业的用户也可以成功地进行模态实验;内嵌的工作流程保证符合质量标准的重复实验过程;强大的模态参数提取技术保证了高质量、不受操作者经验多寡的影响,即使对模态高度密集或阻尼很大的结构也游刃有余。 汽车白车身现场图片

汽车白车身一阶振型 针对不同实验对象的特点,本公司提供了三种具体的解决方案,满足了大多数用户的需求: 方案一:不测力法(环境激励)实验模态分析系统 不测力法实验模态分析(OMA)可用于对桥梁及大型建筑、运行状态的机械设备或不易实现人工激励的结构进行结构特性的动态实验。仅利用实测的时域响应数据,通过一定的系统建模和曲线拟合的方法识别结构的模态参数。桥梁及大型建筑、运行状态下的机械设备等不易实现人工激励的结构均可采用不测力法来进行实验模态分析。

方案二:锤击激励法实验模态分析系统 DHMA实验模态分析系统可以提供用户完整的锤击激励法实验模态分析完整的解决方案,是对被测结构用带力传感器的力锤施加一个已知的输入力,测量结构各点的响应,利用软件的频响函数分析模块计算得到各点频响函数数据。利用频响函数,通过一定的模态参数识别方法得到结构的模态参数。锤击激励法实验模态分析可分为单点激励法和单点拾振法。

ANSYS中的模态分析与谐响应分析

ANSYS中的模态分析与谐响应分析 作者:未知时间:2010-4-15 8:59:49 模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载 NSUBST,100, !指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。不知道这种理解是否正确,我也没有用ANSYS这样做过。如果正确的话,时域分析和频域分析的结果应该是一致的。 模态分析的应用及它的试验模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过 AHA12GAGGAGAGGAFFFFAFAF

模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 二、各模态分析方法的总结 (一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

曲轴强度模态分析报告

柴油机曲轴ANSYS计算报告 蔡川东:20114541

目录 1摘要3 2workbench高级应用基础3 2.1接触设置 (3) 2.2多点约束MPC (4) 3模型介绍5 3.1模型简化 (5) 3.1.1轴瓦建立 (6) 3.1.2质量块建立 (6) 3.2材料性能和参数 (7) 3.3有限元模型构建 (7) 4强度分析9 4.1理论简介 (9) 4.2载荷工况 (9) 4.3计算分析 (11) 5模态分析12 5.1理论简介 (12) 5.2约束条件 (12) 5.3计算分析 (12) 6结果与讨论13

1摘要 曲轴是柴油机中最重要的部件之一,也是受力情况最复杂的部件,他的参数尺寸以及设计方法在很大程度上影响着柴油机的性能和可靠性。随着柴油机技术的不断完善和改进,曲轴的工作条件也越来越复杂。曲轴设计是否可靠,对柴油机使用寿命有很大影响,因此在研制过程中需要给予高度重视。因此,对曲轴的结构进行强度分析在柴油机的设计和改进过程中占有极为重要的地位。此外,在周期性变化的载荷作用下,曲轴系统可能在柴油机转速范围内发生共振,产生附加的动应力,使曲轴过早的出现弯曲疲劳破坏和扭转疲劳破坏,因此有必要对曲轴进行动态特性分析以获取其固有频率避免共振带来不良影响。本文以六缸柴油机的曲轴为对象,计算分析了曲轴在一种载荷工况下的强度分析,找出其最大应力所在位置,以及讨论起是否在参考安全范围内,为曲轴设计中的强度计算提供一种可行性方案。同时对曲轴进行模态分析,找出其各阶固有频率,并观察其各阶模态形状,为柴油机避免共振提供数据参考。 实验采用有限元法对曲轴进行分析,有限元法是根据变分原理求解数学物理问题的一种数值计算方法,是分析各种结构问题的强有力的工具,使用有限元法可方便地进行分析并为设计提供理论依据。本文利用曲轴的三维模型IGES文件,导入Workbench中进行工况设计。比较准确地得到应力、变形的大小及分布和曲轴的固有频率及振型。 2workbench高级应用基础 2.1接触设置 (1)接触问题属于不定边界问题,即使是弹性接触问题也具有表面非线性,其中既有由接触面 积变化而产生的非线性及由接触压力分布变化而产生的非线性,也有由摩擦作用产生的非线性。由于这种表面非线性和边界不定性,所以,一般来说,接触问题的求解是一个反复迭代过程。 当接触内力只和受力状态有关而和加载路径无关时,即使载荷和接触压力之间的关系是非线性的,仍然属于简单加载过程或可逆加载过程。通常无摩擦的接触属于可逆加载。当存在摩擦时,在一定条件下可能出现不可逆加载过程或称复杂加载过程,这时一般要用载荷增量方法求解。 (2)接触面的连接条件。在接触问题中,除了各相互接触物体内部变形的协调性以外,必须保 证各接触物体之间在接触边界上变形的协调性,不可相互侵入。同时还包括摩擦条件—称为接触面的连接条件。采用有限元法分析接触问题时,需要分别对接触物体进行有限元网格剖分,并规定在初始接触面上,两个物体对应节点的坐标位置相同,形成接触对。 (3)workbench中有5中接触类型分别是: ?Bonded无相对位移。就像共用节点一样。 ?No seperation法向不分离,切向可以有小位移。 ?Frictionless法向可分离,但不渗透,切向自由滑动 ?Rough法向可分离,不渗透,切向不滑动

结构模态分析方法

模态分析技术的发展现状综述 摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。 关键词:模态分析技术发展现状 Modality Analysis Technology Development Present Situation Summary Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development. Key words:Modality analysis Technology Development status 0 引言 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 1 数值模态分析的发展现状 数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。 正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。 70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

模态分析意义

模态分析意义模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。近十多年来,由于计算机技术、

FFT 分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:(1)动态数据的采集及频响函数或脉冲响应函数分析1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。2)数据采集。SISO 方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO 及MIMO 的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时

有限元模态分析报告实例

ANSYS模态分析实例 5.2ANSYS建模 该课题研究的弹性联轴器造型如下图5.2: 在ANSYS中建立模型,先通过建立如5.2所式二分之一的剖面图,通过绕中轴线旋转建立模拟模型如下图5.3

5.3单元选择和网格划分 由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划分模型实体。课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分后模型如图5.4。 5.4边界约束 建立柱坐标系R-θ-Z,如5-5所示,R为径间,Z为轴向

选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转 5.5联轴器模态分析 模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。 在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。因此在设置中间件2的材料属性时,选用elastic材料。 5.5.1联轴器材料的设置 材料参数设置如下表5-1: 表5.1材料参数设置 表5.1材料参数设置 铁圈1 中间件2 铁圈3 泊松比0.3 0.4997 0.3 弹性模量Mpa 2E5 1.274E3 2E5 密度kg/m 7900 1000 7900 5.5.2联轴器振动特性的有限元计算结果及说明 求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6: 表5.2固有频率 SET TEME/FREQ LOAO STEP SUBSTEP CUMULATIVE 1 40.199 1 1 1 1 73.63 2 1 2 2 3 132.42 1 3 3 4 197.34 1 4 4

机床实验模态分析综述

机床的模态分析方法综述 甄真 (北京信息科技大学机电工程学院,北京100192) 摘要:模态分析是研究机械结构动力特性的一种近代方法,是结构动态设计及设备的故障诊断的重要方法。机床在工作时,由于要承受各种变载荷而产生振动,其精度和寿命会受到影响。因此有必要对机床进行模态分析,了解其动态特性,以便进一步分析和改进。本文概述了模态分析的概念、研究意义及发展历史,介绍了机床模态分析的研究现状, 从理论方法与试验方法两方面指出了其关键技术以及研究发展方向。 关键词:模态分析;动态特性;机床;理论方法;实验方法 Summary of the model analysis method of machine tool ZHEN Zhen (Beijing Information Science & Technology University, Mechanical and Electrical Engineering College, Beijing, 100192) Abstract:Modal analysis is a modern method to study the dynamic characteristics of mechanical structure. It’s an important method in structure dynamic design and fault diagnosis of equipment.Its accuracy and lifetime will be affected due to withstand all kinds of variable load and vibration when the machine tool works.So it is necessary to make modal analysis and to understand the dynamic characteristics for machine tool in order to further analyze and improve. This paper summarizes the concept, significance and history of modal analysis and introduces the research status of model analysis of machine tool. It also points out the key technology and research direction in this field from two aspects of theoretical method and experimental method. Key words:model analysis; dynamic characteristics; machine tool; theoretical method; experimental method 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法[1]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析主要分为3类方法:一是,基于计算机仿真的有限元分析法;二是,基于输入(激励)输出(响应)模态试验的试验模态分析法;三是,基于仅有输出(响应)模态试验的运行模态分析法。有限元分析属结构动力学正问题,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制难以达到很高的精度。第二、三类方法属结构动力学反问题,基于真实结构的模态试验。因而能得到更准确

环境振动下模态参数识别方法综述.

环境振动下模态参数识别方法综述 摘要:模态分析是研究结构动力特性的一种近代方法,是系统识别方法在工程振动领域中的应用。环境振动是一种天然的激励方式,环境振动下结构模态参数识别就是直接利用自然环境激励,仅根据系统的响应进行模态参数识别的方法。与传统模态识别方法相比,具有显著的优点。本文主要是做了环境振动下模态识别方法的一个综述报告。 关键词:环境振动模态识别综述 Abstract: The modal analysis is the study of structural dynamic characteristics of a modern method that is vibration system identification methods in engineering applications in the field. Ambient vibration is a natural way of incentives, under ambient vibration modal parameter identification is the direct use of the natural environment, incentives, based only on the response of the system for modal parameter identification method. With the traditional modal identification methods, has significant advantages. This paper is a summary report of the environmental vibration modal identification method. Keywords: Ambient vibration ;modal parameters ;Review 随着我国交通运输事业的发展,各种形式的大、中型桥梁不断涌现,由于大型桥梁结构具有结构尺大、造型复杂、不易人工激励、容易受到环境影响、自振频率较低等特点,传统模态参数识别技术在应用上的局限性越来越突出。传统的振动试验采用重振动器或落锤激励桥梁,需要投入大量人力和试验设备,激励成本增高,难度大,而且对于桥梁这样的大型复杂结构,激励(输入)往往很难测得,也不适合长期监测的实验模态分析。 环境振动是指振幅很小的环境地面运动。系由天然的和(或)人为的原因所造成,例如风、海浪、交通干扰或机械振动等,受激结构的振幅较小,但响应涵盖频率丰富。系统或者结构的模态参数包括:模态频率、模态阻尼、模态振型等。模态参数识别是系统识别的一部分,通过模态参数的识别可以了解系统或结构的动力学特性,这些动力特性可以作为结构有限元模型修正、故障诊断、结构实时监测的评定标准和基础。环境振动下的模态参数识别就是利用自然环境激励,根据结构的动

模态分析基本内容简介

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。 概述 振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。模态分析提供了研究各类振动特性的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。 用处

模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为以下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷。 最佳悬挂点 模态试验时,一般希望将悬挂点选择在振幅较小的位置,最佳悬挂点应该是某阶振型的节点。 最佳激励点 最佳激励点视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。 最佳测试点 模态试验时测试点所得到的信息要求有尽可能高的信噪比,因此测试点不应该靠近节点。在最佳测试点位置其AD DOF(Average Driving DOF Displacement)值应该较大,一般可用EI(Effective Independance)法确定最佳测试点。 模态参数有那些 模态参数有:模态频率、模态振型、模态质量、模态向量、模态刚度和模态阻尼等。 主模态主空间主坐标 无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。 模态截断

相关文档
最新文档