数学讲义:对数的近似值与应用

数学讲义:对数的近似值与应用
数学讲义:对数的近似值与应用

对数的近似值与应用

一般来说,我们可以利用(工程用)计算机求出任何一个对数值,但计算机只

提供计算以10为底的对数。举

例来说,当我们欲求出7log 3的值时,由于7log 3=3

log 7

log ,因此只要依序按下

7log

3的值。

除了使用计算机,我们也可利用“常用对数表”得到以10为底的对数近似值,如下表或见课本附录一,表中最左一行之直栏中的二位数字10, 11, 12,…, 99分别代表1.0, 1.1, 1.2,…, 1.9,最上方横栏中数字0, 1, 2,…, 9分别代表第二位小数,表尾差之横栏中数字1, 2,…, 9分别代表第三位小数,而表中每一个四码数字是代表介于0至1间的一个小数,只是省去了小数点,例如:0414, 1761分别代表0.0414, 0.1761。举例来说,要查27.3log 的值,先在左边直栏找到32(划一横线),接着在最上方横栏中找到7的位置(划一直线),两线的交会处即是27.3log 的近似值0.5145。若要查278.3log 的值,可将27.3log 的值0.5145加上表尾差之值(5145+11=5156),可得278.3log 的近似值0.5156。换你查查看: =34.2log , =345.2log 。

我们也可以由已知的对数値,反查真数的値。例如: 1959.0log =a ,=a 。

3630.0log =b ,=b 。

利用上页的常用对数表,只能查到1到10间小数不超过三位的数之对数値,至于小数超过三位的其他数(例:2984.3log ),便无法查得。此时我们可以利用线性的内插法来估算这些数的数值。线性内插法的原理是利用在平滑曲线上取足够小的一段时,取出的图形与线段很接近,再利用相似形对应边成比例的概念,去推算所需数值的近似值。而对数函数图形即为一平滑曲线,因此我们可以利用线性内插法求对数函数的近似值,观念如下:

图中ADE ABC ??~,因此 121

121y y y y x x x x BC

DE AC AE --'=

--?=y '?= 。

当1x 和2x 很接近时,DE PE ≈ ,因此可用y '来估计y ,也就是y y '≈= 。 将上次运算简化如下:

例题1

(1)已知log 7.45=0.8722,log 7.46=0.8727,求log 7.454之近似值.

(2)已知log x =0.4722,且log 2.96=0.4713,log 2.97=0.4728,求x 之近似值.

例题2

已知9222.036.8log =,利用对数的性质求83600log 及00836.0log 的値。

由于常用对数表中只能查到1到10间小数的对数值,若真数不在此范围内,便可仿照例题2的方法求其对数值,一般做法如下:

求对数A log ()0>A 的近似值时,都先将真数A 化为 10n A a =?, 其中1≤ a <10,而n 是一个整数(正整数、零或负整数),当一个正数A 表 示成a ?10 n 时, 我们说这是A 的科学记号表示法, 例如: 490000 = ; 0.000234 = ; ● 3.14 =

1

21121y y y y x x x x --=--()???

? ??--?-+=?121121x x x x y y y y

当A 的科学记号表示法是n a 10?时,10n A a =?,其中1≤ a <10,n 是整数,

此时 ()n a a a A n n +=+=?=l o g

10log log 10log log 其中 1l o g 010log log 1log <≤?<≤a a

因此任意一个正数A 的对数值A log 皆可写成一个整数n 与一个小于1的非负小数log a 的和,即log log A n a =+,我们称此整数n 为A log 的“首数”,而l o g a 为A log 的“尾数”。例如:

1log 3.5216x =,则1log x 的首数为 ,尾数为 。 2log 3.5216x =-,则1log x 的首数为 ,尾数为 。

例题3

(1)已知log x = 4.7835, 求x log 的首、尾数及x 的近似值. (2)已知log x = -2.7073,求x log 的首、尾数及x 的近似值.

练习3

已知log x = -3.2408, 求x log 的首、尾数并利用对数表求x 的近似值.

Ans: 首数=-4, 尾数=0.7592, 410744.5-?=x

例题4

现在我们来讨论正数A 与其对数的首数及尾数的关系:

例题5

(1)2 99 是几位数?最高位数字是多少?末位数字为何? (2)2 999 是几位数?(log 2 = 0.3010)

练习5

3 20 是几位数?( log 3 = 0.4771 ) Ans: 10位数 例题6

将(2

3

)100以十进制小数表示时, 在小数点后第几位才出现不是0 的数 字?又此数字为何?(log 2 = 0.3010, log3=0.4771)

练习6

(0.9) 1000 在小数点后第几位才出现不是0 的数字? Ans: 第46位数 例题7

已知log2=0.301﹐log3=0.4771﹐试问2106+366为几位数?最高位数字为何? 练习7

已知log2=0.301﹐log3=0.4771﹐log7=0.8451. 若将27

12+1713表为小数时﹐ 则小数点之后第 8 位才不是零.

例题8 [活用园地题型一]

设10<x <100 ﹐ 又log x 与log 1

x

尾数相同﹐ 求x =? 练习8

设A >0,log A 的首数为3,若log 5

A

之尾数为log A 的尾数之两倍,则A = 2000 .

例题9 [活用园地题型三]

(1)设n S =1+35+(35)2+……+(35

)1n -﹐ 若lim n n S →∞

=S ﹐则S =______ .

(2)承上题﹐ 若|n S -S |<103-﹐ 则n 之最小值为______. (log2=0.301﹐log3=0.4771) 练习9

无穷等比级数11

1()2

n n ∞

∑-=之和为S ﹐ 其前n 项之和为n S ﹐ 则使S -n S <105-的最

小自然数n 之值= 18 .

利息问题:

◆单利计息:=(1+)??本利和本金期利率期數

[每期的本金皆为一开始存入的金额,不因期数改变]

例:甲银行计息方式为年利率5%,每年单利计息一次,若阿棋现存入10000 元,则t 年后可领回多少元?

一年后:当次利息=500%510000=?;

本利和=()%5110000%5100001000050010000+?=?+=+

10500

= 二年后:当次利息=500%510000=?;

本利和=()%510000%511000050010500?++?=+

()110002%5110000=?+?= 三年后:当次利息=500%510000=?;

本利和=()%5100002%511000050011000?+?+?=+

()115003%5110000=?+?=

t 年后:当次利息=500%510000=?;

本利和=()()()t t ?+?=?+-?+?%5110000%5100001%5110000 复利计息:=(1+)?期數本利和本金期利率

[本期本金+利息=下期新本金]

例:甲银行计息方式为年利率5%,每年复利计息一次,若阿棋现存入10000 元,则t 年后可领回多少元?

一年后:当次利息=500%510000=?;

本利和=()%5110000%5100001000050010000+?=?+=+ 10500

= 二年后:当次利息=()525%5%5110000%510500=?+?=?;

本利和=()()%5%5110000%511000052510500?+?++?=+

()11025%51100002

=+?

= 三年后:当次利息()%5%51100002

?+?=;

本利和()()%5%5110000%51100002

2

?+?++?=

()25.11576%51100003

=+?=

t 年后:当次利息()%5%51100001

?+?=-t ;

本利和()()%5%5110000%51100001

1

?+?++?=--t t

()t

%5110000+?

= 例题

买政府公债100 万元, 六年期满可得本利和1,126,162 元, 若利息是逐 年复利计算, 则年利率为何?

高中数学对数的运算

对数函数专题 对数及对数运算 【要点梳理】 要点一、对数概念 1.对数的概念 如果()01b a N a a =>≠,且,那么数b 叫做以a 为底N 的对数,记作:log a N=b .其中a 叫做对数的底数,N 叫做真数. 要点诠释: 对数式log a N=b 中各字母的取值范围是:a>0 且a ≠1, N>0, b ∈R . 2.对数()log 0a N a >≠,且a 1具有下列性质: (1)0和负数没有对数,即0N >; (2)1的对数为0,即log 10a =; (3)底的对数等于1,即log 1a a =. 3.两种特殊的对数 通常将以10为底的对数叫做常用对数,N N lg log 10简记作.以e (e 是一个无理数, 2.7182e =???)为底的对数叫做自然对数, log ln e N N 简记作. 4.对数式与指数式的关系 由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示. 由此可见a ,b ,N 三个字母在不同的式子中名称可能发生变化. 要点二、对数的运算法则 已知()log log 010a a M N a a M N >≠>,且,、 (1)正因数的积的对数等于同一底数各个因数的对数的和; ()log log log a a a MN M N =+ 推广: ()( )1 2 1 l o g a k a N N N = + 、、、 (2)两个正数的商的对数等于被除数的对数减去除数的对数; log log log a a a M M N N =- (3)正数的幂的对数等于幂的底数的对数乘以幂指数; log log a a M M αα= 要点诠释: (1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两

(完整word)高中数学必修一对数函数

2.3对数函数 重难点:理解并掌握对数的概念以及对数式和指数式的相互转化,能应用对数运算性质及换底公式灵活地求值、化简;理解对数函数的定义、图象和性质,能利用对数函数单调性比较同底对数大小,了解对数函数的特性以及函数的通性在解决有关问题中的灵活应用. 考纲要求:①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用; ②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点; ③知道对数函数是一类重要的函数模型; ④了解指数函数与对数函数互为反函数. 经典例题:已知f(logax)=,其中a>0,且a≠1. (1)求f(x);(2)求证:f(x)是奇函数;(3)求证:f(x)在R上为增函数. 当堂练习: 1.若,则() A.B.C.D. 2.设表示的小数部分,则的值是() A.B.C.0 D. 3.函数的值域是() A.B.[0,1] C.[0,D.{0} 4.设函数的取值范围为() A.(-1,1)B.(-1,+∞)C.D. 5.已知函数,其反函数为,则是() A.奇函数且在(0,+∞)上单调递减B.偶函数且在(0,+∞)上单调递增C.奇函数且在(-∞,0)上单调递减D.偶函数且在(-∞,0)上单调递增 6.计算= .

7.若2.5x=1000,0.25y=1000,求. 8.函数f(x)的定义域为[0,1],则函数的定义域为. 9.已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是. 10.函数图象恒过定点,若存在反函数,则的图象必过定点. 11.若集合{x,xy,lgxy}={0,|x|,y},则log8(x2+y2)的值为多少. 12.(1) 求函数在区间上的最值. (2)已知求函数的值域. 13.已知函数的图象关于原点对称.(1)求m的值; (2)判断f(x) 在上的单调性,并根据定义证明. 14.已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称. (1)求函数y=g(x)的解析式及定义域M; (2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1,x2都有|h(x1)-h(x2)|≤a|x1-x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数. 参考答案:

对数函数讲义(可直接使用).

一、 教学目标: 1.理解对数的概念,掌握对数的运算性质; 2.掌握对数函数的概念、图象和性质;能利用对数函数的性质解题. 二、教学重、难点: 运用对数运算性质进行求值、化简、证明、运用对数函数的定义域、单调性解题 三、命题规律: 主要考察指数式b a N =与对数式log a N b =的互化,对数函数的图像和性质或由对数函数复合成的函数,主要涉及比较大小、奇偶性、过定点、单调区间以及运用单调性求最值等,主要以填空为主。 四、教学内容: 【知识回顾】 1.对数的概念 如果 ,那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。 即指数式与对数式的互化:log b a a N b N =?= 2.常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。 自然对数:通常将以无理数 2.71828e =???为底的对数叫做自然对数,记作ln N 。 3.对数的性质及对数恒等式、换底公式 (1)对数恒等式:①log N a a = (01,0)a a N >≠>且②log N a a = (01,0)a a N >≠>且 (2)换底公式:log a N =log log b b N a (3)对数的性质:①负数和零没有对数 ② 1的对数是零,即log 10a = ③底的对数等于1,即log 1a a = ④log log log a b c b c d ??=log a d

4.对数的运算性质 如果01,0,0a a M N >≠>>且,那么 (1)log ()a MN = ; (2)log a M N = ; (3)log n a M = ; (4)log n a m M = 。 (5)log log a b b a ?= ; (6)log a b =1log b a 5.对数函数 函数log (01)a y x a a =>≠且做对数函数,其定义域为(0,+∞),值域为(-∞,+∞).、 6.对数函数图像与性质 注:对数函数1log log (01)a a y x y x a a ==>≠与且的图像关于x 轴对称。 7.同真数的对数值大小关系如图 在第一象限内,图像从左到右相应的底逐渐增大, 即01c d a b <<<<< 8.对数式、对数函数的理解 ① 应重视指数式与对数式的互化关系,它体现了数学的转化思想,也往往是解决“指数、对数”问题的关键。 ② 在理解对数函数的概念时,应抓住定义的“形式”,像2log 2,log 2,3ln x y y x y x ===等函数均不符合形式log (01)a y x a a =>≠且,因此,它们都不是对数函数 ③ 画对数函数log a y x =的图像,应抓住三个关键点1(,1),(1.0),(,1)a a -

高中数学对数函数教案

高中数学对数函数教案 数学对数函数教案【教学目标】 1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用. (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个 函数图象间的关系正确描绘对数函数的图象. (2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想, 注重培养学生的观察,分析,归纳等逻辑思维能力. 3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性. 数学对数函数教案【教学建议】 教材分析 (1)对数函数又是函数中一类重要的基本初等函数,它是在学生 已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故 是对上述知识的应用,也是对函数这一重要数学思想的进一步认识 与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加 完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关 自然科学领域中实际问题的重要工具,是学生今后学习对数方程, 对数不等式的基础. (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图 象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又

是建立在指数与对数关系和反函数概念的基础上,故应成为教学的 重点. (3)本节课的主线是对数函数是指数函数的反函数,所有的问题 都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已 知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点. 教法建议 (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过 对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数 图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多 选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找 出共性,归纳性质. (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这 条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他 们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣. 数学对数函数教案【教学设计示例】 一.引入新课 一.对数函数的概念 1.定义:函数的反函数叫做对数函数. 由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的 认识是什么? 教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故 有着相同的限制条件. 在此基础上,我们将一起来研究对数函数的图像与性质.

指数函数与对数函数(讲义)

指数函数与对数函数(讲义) ? 知识点睛 1. 指数函数及对数函数的图象和性质: 2. 利用指数函数、对数函数比大小 (1)同底指数函数,利用单调性比较大小; (2)异底指数函数比大小,可采用化同底、商比法、取中间值、图解法; (3)同底数对数函数比大小,直接利用单调性求解;若底数为字母,需分类讨论; (4)异底数对数函数比大小,可化同底(换底公式)、寻找中间量(-1,0,1),或借助图象高低数形结合. 3. 换底公式及常用变形: log log log c a c b b a =(a >0,且a ≠1;c >0,且c ≠1;b >0) 1 log log a b b a = (a >0,且a ≠1;b >0,且b ≠1) log log m n a a n b b m = (a >0,且a ≠1;b >0,且b ≠1) log a b a b =(a >0,且a ≠1;b >0) ? 精讲精练 1. 若a ,b ,c ∈R +,则3a =4b =6c ,则( )

A .b a c 111+= B . b a c 122+= C .b a c 221+= D .b a c 212+= 2. 计算: (1)若集合{lg()}{0||}x xy xy x y =,,,,,则228log ()x y +=_________; (2)设0()ln 0x e x g x x x ?=?>?≤(), ()则1 (())2g g =_____________; (3)若2(3)6()log 6f x x f x x x +

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

高一数学讲义完整版

高一数学复习讲义09年版 函数部分(1) 重点:1把握函数基本知识(定义域、值域) x(a>0、<0) 主要是指数函数y=a x(a>0、<0),对数函数y=log a 2二次函数(重点)基本概念(思维方式)对称轴、 开口方向、判别式 考点1:单调函数的考查 2:函数的最值 3:函数恒成立问题一般函数恒成立问题(重点讲) 4:个数问题(结合函数图象) 3反函数(原函数与对应反函数的关系)特殊值的取舍 4单调函数的证明(注意一般解法) 简易逻辑(较容易) 1. 2. 3. 4.

启示:对此部分重点把握第3题、第4题的解法(与集合的关系) 问题1:恒成立问题解法及题型总结(必考) 一般有5类:1、一次函数型:形如:给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m, n]内恒有f(x)>0(<0) 练习:对于满足0-4x+p-3恒成立的x的取值范围 2、二次函数型:若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有a>0Δ<0若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解 练习:1设f(x)=x2-2ax+2,当x∈[-1, +∞)时,都有f(x)>a恒成立, a的取值范围 2关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。 3、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解 练习:若1-ax>1/(1+x),当对于x∈[0, 1]恒成立,求实数a的取值范围。 4利用图象 练习:当x∈(1, 2)时,不等式(x-1)2

高一《对数与对数函数》讲义【解析版】

对数与对数函数 【高考要求】 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化为自然对数或常用对数,了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性与函数图象通过的特殊点,知道指数函数y =a x 与对数函数y =log a x 互为反函数(a>0,a ≠1),体会对数函数是一类重要的函数模型. 【知识梳理】 1.对数的概念 (1)对数的定义 如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作___ x =log a N ___,其中__ a __叫做对数的底数,__ N __叫做真数.真数N 为正数(负数和零无对数). 说明:①实质上,上述对数表达式,不过是指数函数x a y =的另一种表达形式,例如:8134=与 81log 43= 这两个式子表达是同一关系,因此,有关系式.log N x N a a x =?= ②“log ”同“+”“×” “ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这 种运算叫对数运算,不过对数运算的符号写在数的前面。 ③对数的底数和真数 从对数的实质看:如果a b =N (a >0且a ≠1),那么b 叫做以a 为底N 的对数,即b =log a N .它是知道底数和幂求指数的过程.底数a 从定义中已知其大于0且不等于1;N 在对数式中叫真数,在指数式中,它就是幂,所以它自然应该是大于0的. (2)几种常见对数 2.对数的性质与运算法则 (1).对数基本性质:log 10a =,log 1a a =,log a N a N =---对数恒等式 (2).对数运算性质:若0,1,0,0a a M N >≠>>且,则: ①log ()log log a a a MN M N =+ ②log log log a a a M M N N =- ③log log ()n a a M n M n R =∈ (3).换底公式:log log (0,1;0,1;0)log c a c b b a a c c b a = >≠>≠> 推论:①log log (,,0)m n a a n M M m n R m m = ∈≠ ②1log log a b b a = 点评:(1)要熟练掌握公式的运用和逆用。 (2)在使用公式的过程中,要注意公式成立的条件。 例如:真数为两负数的积,).5(log ).3(log 22--不能写成).5(log ).3(log 22--=).5(log )3(log 22-+-

人教版高一数学对数函数教案

有关高一数学对数函数的概念以及一些常见的解题方法和延伸,基本的知识点及简单的例题,希望对高中生们有帮助。 1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaM/N=logaM-logaN. (3)logaM^n=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am·an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下:

①若a<0,则N的某些值不存在,例如log- ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1 (1)将下列指数式写成对数式: ①54=625;②2-6=164;③3x=27;④ (2)将下列对数式写成指数式: ①log1216=-4;②log2128=7; ③log327=x;④lg0.01=-2; ⑤ln10=2.303;⑥lgπ=k. 解析由对数定义:aN=b. 解答(1)①log5625=4.②log2164=-6. ③log327=x.④log135.73=m. 解题方法 指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:①12-4=16. ②27=128.③3x=27. ④10-2=0.01.⑤e2.303=10.⑥10k=π. 2 根据下列条件分别求x的值: (1)log8x=-23;(2)log2(log5x)=0; (3)logx27=31+log32;(4)logx(2+3)=-1. 解析(1)对数式化指数式,得:x=8-23=? (2)log5x=20=1. x=? (3)31+log32=3×3log32=?27=x? (4)2+3=x-1=1x. x=? 解答(1)x=8-23=(23)-23=2-2=14. (2)log5x=20=1,x=51=5. (3)logx27=3×3log32=3×2=6, ∴x6=27=33=(3)6,故x=3. (4)2+3=x-1=1x,∴x=12+3=2-3. 解题技巧 ①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化. ②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3 已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值. 解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;

笔记(高一数学基础-对数函数)

高一数学基础-对数函数 1、lg 5·lg 8000+06.0lg 6 1lg )2(lg 23++.2、 lg 2(x +10)-lg(x +10)3=4. 3、23log 1log 66-=x .4、9-x -2×31-x =27.5、x )81(=128. 6、5x+1=1 23-x . 7、10log 5log )5(lg )2(lg 2233++·.10 log 188、lg 25+lg2·lg50; (log 43+log 83)(log 32+log 92). 9、求121log 8.0--= x x y 的定义域.10、log 1227=a,求log 616. 11、f(x)=1322+-x x a ,g(x)=522-+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x). 12、已知函数f(x)=321121x x ?? ? ??+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0. 13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数. 14、求log 927的值. 15、设3a =4b =36,求a 2+b 1的值. 16、log 2(x -1)+log 2x=1 17、4x +4-x -2x+2-2-x+2+6=0 18、24x+1-17×4x +8=0 19、2 2)223()223(=-++-x x ±2 20、01433214111=+?------x x 21、042342222=-?--+-+x x x x 22、log 2(x -1)=log 2(2x+1) 23、log 2(x 2-5x -2)=2 24、log 16x+log 4x+log 2x=7 25、log 2[1+log 3(1+4log 3x)]=1 26、6x -3×2x -2×3x +6=0 27、lg(2x -1)2-lg(x -3)2=2 28、lg(y -1)-lgy=lg(2y -2)-lg(y+2) 29、lg(x 2+1)-2lg(x+3)+lg2=0 30、lg 2x+3lgx -4=0 31.2 22lg5lg8lg5lg20(lg2)3 +++;32.()()24525log 5+log 0.2log 2+log 0.5. 33.若()()lg lg 2lg2lg lg x y x y x y -++=++,求x y 的值. ①a b a c c c a log log log - ②42938432log )2log 2)(log 3log 3(log -++ 1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4)

高一数学对数函数教案

高一数学对数函数教案 教学目标 1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用. (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个 函数图象间的关系正确描绘对数函数的图象. (2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想, 注重培养学生的观察,分析,归纳等逻辑思维能力. 3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性. 教学建议 教材分析 (1)对数函数又是函数中一类重要的基本初等函数,它是在学生 已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故 是对上述知识的应用,也是对函数这一重要数学思想的进一步认识 与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加 完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关 自然科学领域中实际问题的重要工具,是学生今后学习对数方程, 对数不等式的基础. (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图 象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又

是建立在指数与对数关系和反函数概念的基础上,故应成为教学的 重点. (3)本节课的主线是对数函数是指数函数的反函数,所有的问题 都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已 知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点. 教法建议 (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过 对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数 图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多 选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找 出共性,归纳性质. (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这 条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他 们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.看过"高一数学对数函数教案"的还 看了:

高中数学对数教学设计

篇一:高中数学对数与对数运算教案 《对数与对数运算》 教案 xx大学数学与统计学院 xxx 一、教学目标 1、知识目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的相互转换;理解对数的运算性质,形成知识技能; 2、能力目标:通过实例让学生认识对数的模型,让学生有能力去解决今后有关于对数的问题,同时让学生学会观察和动手,通过做练习,使学生感受到理论与实践的统一,锻炼学生的动手能力; 3、分析目标:通过让学生分组进行探究活动,在探究中分析各种思维的技巧,掌握对数运算的重要性质。 二、教学理念 为了调动学生学习的积极性,使学生化被动为主动,从学习中体会快乐。本节课我引导学生从实例出发,引发学生的思考,从中认识对数的模型,体会对数的必要性。在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。 三、教法学法分析 1、教法分析 新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教法:实例引入法、开放式探究法、启发式引导法。 2、学法分析 “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:观察发现法、小组讨论法、归纳总结法。 四、教材分析 本节讲对数的概念和运算性质主要是为后面学习对数函数做准备。这在解决一些日常生活问题及科研中起着十分重要的作用。同时,通过对数概念的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。 五、教学重点与难点 重点:(1)对数的定义; (2)指数式与对数式的相互转化及其条件。难点:(1)对数概念的理解; (2)对数运算性质的理解;(3)换底公式的应用。 六、课时安排:1个课时七、教学过程 (一)创设情境,引入课题 问题:我们能从关系y?13?1.01x中,算出任意一个年头x的人口总数,反之,如果问“哪一年的人口总数可达到18亿,20亿,30亿??”,该如何解决? 抛出问题,让学生思考,这就引出这节课将要学习的问题,即对数与对数运算的问题,以及指数与对数如何相互转换的问题。 (二)讲授新课 1.对数的定义 x 一般地,如果a?n(a?0,且a?1),那么数x叫做以a为底n的对数,记

高一数学讲义-指数运算与指数函数

指数运算和指数函数 要求层次重点难点幂的运算 C ①根式的概念 ②有理指数幂 ③实数指数幂 ④幂的运算 ①分数指数幂的概 念和运算性质 ②无理指数幂的理 解 ③实数指数幂的意 义 指数函数的概念 B 在理解实数指数幂 的意义的前提下理 解指数函数 在理解实数指数幂 的意义的前提下理 解指数函数 指数函数的图象和 性质 C ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ③掌握指数函数作 为初等函数与二次 函数、对数函数结 合的综合应用问题 板块一:指数,指数幂的运算 (一)知识内容 1.整数指数 ⑴正整数指数幂:n a a a a =???,是n个a连乘的缩写(N n + ∈),n a叫做a的n次幂,a叫做幂的底数,n叫做幂的指数,这样的幂叫做正整数指数幂. ⑵整数指数幂:规定:01(0) a a =≠, 1 (0,) n n a a n a - + =≠∈N. 高考要求 第4讲 指数运算与指数函数 知识精讲

2.分数指数 ⑴ n 次方根:如果存在实数x ,使得n x a =(R,1,N )a n n +∈>∈,那么x 叫做a 的n 次方根. ⑵ 求a 的n 次方根,叫做a 开n 次方,称做开方运算. ① 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.这时, a 的n 表示. ② 当n 是偶数时,正数的n 次方根有两个,它们互为相反数.正数a 的正、负n 0)a >. ⑶正数a 的正n 次方根叫做a 的n 次算术根. 负数没有偶次方根.0的任何次方根都是0 0. n 叫做根指数,a 3.根式恒等式: n a =;当n a =;当n ||a a a ?=?-? 0a a <≥. 4.分数指数幂的运算法则 ⑴正分数指数幂可定义为:1(0)n a a > 0,,,)m m n m a a n m n +==>∈N 且 为既约分数 ⑵负分数指数幂可定义为:1(0,,,)m n m n m a a n m n a - += >∈N 且 为既约分数 5.整数指数幂推广到有理指数幂的运算性质: ⑴(0,,Q)r s r s a a a a r s +=>∈ ⑵()(0,,Q)r s rs a a a r s =>∈ ⑶()(0,0,Q)r r r ab a b a b r =>>∈ 6.n 次方根的定义及性质:n 为奇数时 a =,n 为偶数时 a =. 7. m n a = m n a - =(0a >,,*m n N ∈,且1n >) 零的正分数指数幂为0,0的负分数指数幂没有意义. 8.指数的运算性质:r s r s a a a +=,()r r r ab a b =(其中,0a b >,,r s ∈R ) 9.无理数指数幂 ⑴ 无理指数幂(0,a a αα>是无理数)是一个确定的实数. ⑵ 有理数指数幂的运算性质同样适用于无理数指数幂. 10.一般地,当0a >,α为任意实数值时,实数指数幂a α都有意义. 对任意实数α,β,上述有理指数幂的运算法则仍然成立.

(完整word)高中数学必修一对数函数.doc

2.3 对数函数 重难点:理解并掌握对数的概念以及对数式和指数式的相互转化,能应用对数运算性质及换 底公式灵活地求值、化简;理解对数函数的定义、图象和性质,能利用对数函数单调性比较同底对数大小,了解对数函数的特性以及函数的通性在解决有关问题中的灵活应用. 考纲要求:①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数 或常用对数;了解对数在简化运算中的作用;②理解对数函数的概念;理解对数 函数的单调性,掌握函数图像通过的特殊点;③知道对数函数是一类重要的函数 模型; ④了解指数函数与对数函数互为反函数. 经典例题:已知 f( logax ) =,其中a>0,且a≠1. (1)求 f( x);(2)求证:f(x)是奇函数;(3)求证:f(x)在R上为增函数. 当堂练习: 1.若,则() A . B .C.D. 2.设表示的小数部分,则的值是() A . B .C.0 D . 3.函数的值域是() A .B. [0,1] C. [0, D . {0} 4.设函数的取值范围为() A .(- 1,1)B.(- 1,+∞)C.D. 5.已知函数,其反函数为,则是() A .奇函数且在( 0,+∞)上单调递减B.偶函数且在( 0,+∞)上单调递增C.奇函数且在( - ∞, 0)上单调递减 D .偶函数且在( -∞, 0)上单调递增 6.计算=.

7.若 2.5x=1000,0.25y=1000, 求. 8.函数 f(x) 的定义域为 [0,1], 则函数的定义域为. 9.已知 y=loga(2 -ax)在[ 0, 1]上是 x 的减函数,则 a 的取值范围是. 10 .函数图象恒过定点,若存在反函数,则 的图象必过定点. 11.若集合 {x , xy, lgxy} ={0 , |x|, y} ,则 log8 ( x2+ y2)的值为多少. 12. (1) 求函数在区间上的最值. (2) 已知求函数的值域. 13.已知函数的图象关于原点对称.(1)求 m 的值; (2)判断 f(x) 在上的单调性,并根据定义证明. 14.已知函数 f(x)=x2 - 1(x ≥1) 的图象是 C1,函数 y=g(x) 的图象 C2 与 C1 关于直线 y=x 对称. (1) 求函数 y=g(x) 的解析式及定义域M ; (2) 对于函数y=h(x) ,如果存在一个正的常数a,使得定义域 A 内的任意两个不等的值x1 ,x2 都有 |h(x1) - h(x2)| ≤ a|x1-x2|成立,则称函数y=h(x) 为 A 的利普希茨Ⅰ类函数.试证明: y=g(x) 是 M 上的利普希茨Ⅰ类函数. 参考答案:

高一数学对数以及对数函数人教版

高一数学对数以及对数函数人教版 【同步教育信息】 一. 本周教学内容: 对数以及对数函数 二. 学习目标: 1. 理解对数的概念,了解对数运算与指数运算的互逆关系。 2. 能正确利用对数性质进行对数运算。 3. 掌握对数函数的图象性质。 4. 理解指数函数与对数函数的互逆关系。 三. 重点、难点: 1. 对数 (1)对数恒等式 ① b a b a =log (10≠,N 0>,则 ① N M MN a a a log log )(log += ② N M N M a a a log log log -= [例

(1)5lg 2lg 100lg 5lg 20lg 50lg 2lg -+ (2)4log ]18log 2log )3log 1[(6662 6÷?+- 解: (1)原式)2lg 1(2lg 2)2lg 1)(2lg 1()2lg 2(2lg ---++-= 1)2(lg 22lg 2)2(lg 1)2(lg 2lg 22 22=+--+-= (2)原式4log )]3log 1)(3log 1()3(log 3log 21[6662 66÷+-++-= 4log ])3(log 1)3(log 3log 21[62 6266÷-++-= 12 log 2 log 2log )3log 1(2662 66== ÷-= [例2] 已知正实数x 、y 、z 满足z y x 643==,试比较x 3、y 4、z 6的大小。 解:设t z y x ===643(1>t ),则t x 3log =,t y 4log =,t z 6log =,从而 4lg lg 43lg lg 3log 4log 34343t t t t y x -=-=-4 lg 3lg 3 lg 44lg 3lg ?-=t 0)3lg 4(lg 4 lg 3lg lg 43<-?= t 故y x 43< 又由6lg 4lg ) 4lg 36lg 2(lg 2)6lg lg 34lg lg 2(2)log 3log 2(26464?-=-=-=-t t t t t z y 6 lg 4lg ) 4lg 6(lg lg 232?-=t 而0lg >t ,04lg >,06lg >,3 2 4lg 6lg <,则上式0< 故z y 64<,综上z y x 643<< [例3] 已知m 和n 都是不等于1的正数,并且5log 5log n m >,试确定m 和n 的大小关系。 解:由n m n m 55log 1 log 15log 5log > ? >0log log log log 5555>?-?n m m n ???>?>-?0log log 0log log 5555n m m n 或???>>?1,1n m m n 或???<<<<<1 0,10n m m n 综上可得1>>m n 或10<<-+≥-0)32lg(03204222x x x x x ? ????±-≠>-<≥-≤?511322x x x x x 或或 则所求定义域为(∞-,51--)?(51--,3-)?),2[∞+ [例5](1)若函数)1lg(2 ++=ax ax y 的定义域为实数集R ,求实数a 的取值范围;(2)若函数)1lg(2 ++=ax ax y 的值域是实数集R ,求实数a 的取值范围。 解:

高一数学必修一对数及对数函数知识点总结

高一数学必修一对数及对数函数知识点总 结 数学是学习和研究现代科学技术必不可少的基本工具。以下是查字典数学网为大家整理的高一数学必修一对数及 对数函数知识点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。 对数定义 如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。 注: 1.以10为底的对数叫做常用对数,并记为lg。 2.称以无理数e(e=2.71828...)为底的对数称为自然对数,并记为ln。 3.零没有对数。 4.在实数范围内,负数无对数。在复数范围内,负数是有对数的。 对数公式 0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。/p p其中x 是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,

同样适用于对数函数。/p p对数函数性质/p p align=" center="" img="" /> 定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1} 值域:实数集R,显然对数函数无界。 定点:函数图像恒过定点(1,0)。 单调性:a>1时,在定义域上为单调增函数; 奇偶性:非奇非偶函数 周期性:不是周期函数 对称性:无 最值:无 零点:x=1 注意:负数和0没有对数。 两句经典话:底真同对数正,底真异对数负。 要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼

高一数学对数的知识点归纳

高一数学对数的知识点归纳 我们学习函数时,总会运用到对数,对数也是很多同学的短板。 高一数学上册关于对数的知识点归纳 一、对数的概念 (1)对数的定义: 如果ax=N(a0且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.当a=10时叫常用对数.记作x=lg_N,当a=e时叫自然对数,记作x=ln_N. (2)对数的常用关系式(a,b,c,d均大于0且不等于1): ①loga1=0. ②logaa=1. ③对数恒等式:alogaN=N. 二、解题方法 1.在运用性质logaMn=nlogaM时,要特别注意条件,在无M0的条件下应为logaMn=nloga|M|(n∈N,且n为偶数). 2.对数值取正、负值的规律: 当a1且b1,或00; 3.对数函数的.定义域及单调性: 在对数式中,真数必须大于0,所以对数函数y=logax的定义域应为{x|x0}.对数函数的单调性和a的值有关,因而,在研究对数函数的单调性时,要按01进行分类讨论.

4.对数式的化简与求值的常用思路 (1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并. (2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算. 方程的根与函数的零点 1、函数零点的概念:对于函数 ,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数 的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。 即:方程 有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: ○1 (代数法)求方程的实数根; ○2 (几何法)对于不能用求根公式的.方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数 (1)△0,方程 有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个

相关文档
最新文档